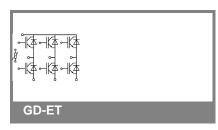


IGBT Module

SK30GD066ET

Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

Typical Applications*

- Inverter up to 10 kVA
- Typ. motor power 4 kW

Remarks

V_{isol} = 3000V AC,50Hz,1s

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions			Values	Units	
IGBT	•				•	
V_{CES}	T _j = 25 °C			600	V	
I _C	T _j = 175 °C	T _s = 25 °C		40	Α	
		$T_s = 70 ^{\circ}C$		31	Α	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			60	Α	
V_{GES}				± 20	V	
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 150 °C		6	μs	
Inverse D	Diode					
I_F	T _j = 175 °C	$T_s = 25 ^{\circ}C$		36	Α	
		$T_s = 70 ^{\circ}C$		28	Α	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	Α	
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		160	Α	
Module						
$I_{t(RMS)}$					Α	
T _{vj}				-40 + 175	°C	
T _{stg}				-40 + 125	°C	
V _{isol}	AC, 1 min.			2500	V	

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 0.43$ mA		5	5,8	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,0016	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		18,3	25	mΩ
		T _j = 150°C		28	35	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V	T _j = 25°C _{chiplev} .		1,45	1,85	V
		T _j = 125°C _{chiplev.}		1,65	2,05	V
C _{ies}				1,63		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,11		nF
C _{res}				0,05		nF
Q_G	V _{GE} =-7V+15V			275		nC
t _{d(on)}				24		ns
t _r	$R_{Gon} = 25 \Omega$	V _{CC} = 300V		27		ns
E _{on}	di/dt = 2335 A/μs	I _C = 30A		0,97		mJ
t _{d(off)}	$R_{Goff} = 25 \Omega$	$T_j = 150 ^{\circ}\text{C}$		328		ns
t _f	di/dt = 2335 A/µs	V _{GE} =-7/+15V		54		ns
E _{off}				1,77		mJ
$R_{th(j-s)}$	per IGBT			1,65		K/W

IGBT Module

SK30GD066ET

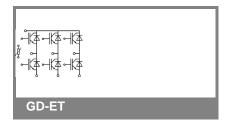
Target Data

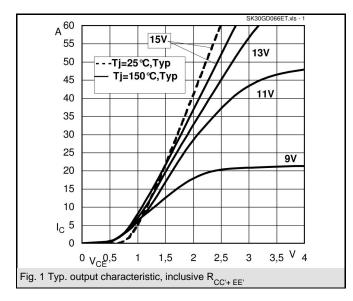
Features

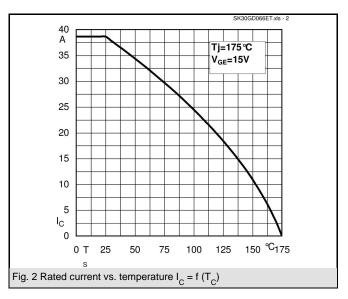
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL technology FWD
- Integrated NTC temperature sensor

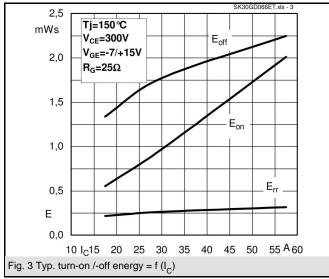
Typical Applications*

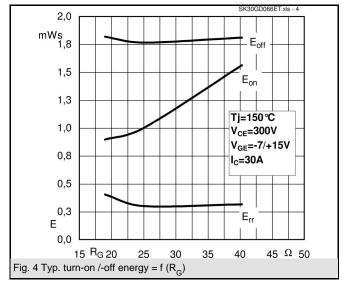
- Inverter up to 10 kVA
- . Typ. motor power 4 kW


Remarks


V_{isol} = 3000V AC,50Hz,1s


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D							
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V			1,45	1,7	V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		1,45	1,7	V	
V_{F0}		T _j = 25 °C		1	1,1	V	
		T _j = 150 °C		0,9	1	V	
r _F		T _j = 25 °C		15	20	mΩ	
		T _j = 150 °C		18	23,3	$m\Omega$	
I _{RRM}	I _F = 30 A	T _i = 150 °C		30		Α	
Q_{rr}	di/dt = 2335 A/µs	•		1,6		μC	
E _{rr}	V _{CC} = 300V			0,26		mJ	
$R_{th(j-s)D}$	per diode			2,1		K/W	
M _s	to heat sink		2,25		2,5	Nm	
w				30		g	
Temperature sensor							
R ₁₀₀	T_s =100°C (R_{25} =5kΩ)			493±5%		Ω	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

