
IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

IMS-2

PRODUCT SUMMARY						
OUTPUT CURRENT IN A TYPICAL 20 kHz MOTOR DRIVE						
I_{RMS} per phase (3.1 kW total) with $T_C = 90 ^{\circ}C$	11 A _{RMS}					
TJ	125 °C					
Supply voltage	360 Vdc					
Power factor	0.8					
Modulation depth (see fig. 1)	115 %					
V _{CE(on)} (typical) at I _C = 13 A, 25 °C	1.8 V					

FEATURES

ROHS

- · Fully isolated printed circuit board mount package
- · Switching-loss rating includes all "tail" losses
- HEXFRED® soft ultrafast diodes
- Totally lead (Pb)-free and RoHS compliant
- Designed and qualified for industrial level

DESCRIPTION

The IGBT technology is the key to Vishay's HPP advanced line of IMS (Insulated Metal Substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current		T _C = 25 °C	24 13		
Continuous conector current	I _C	T _C = 100 °C			
Pulsed collector current	I _{CM} ⁽¹⁾		48	Α	
Clamped inductive load current	I _{LM} (2)		48		
Short circuit withstand time	t _{SC}	T _C = 100 °C	9.3	μs	
Gate to emitter voltage	V_{GE}		± 20	V	
Isolation voltage	V _{ISOL}	t = 1 min, any terminal to case	2500	V _{RMS}	
Maximum power dissipation, each IGBT	В	T _C = 25 °C	63	w	
	P _D	T _C = 100 °C	25		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C	
Soldering temperature		For 10 s, (0.063" (1.6 mm) from case)	300	,,,	
Mounting torque		6-32 or M3 screw	5 to 7 (0.55 to 0.8)	lbf · in (N · m)	

Notes

⁽¹⁾ Repetitive rating; $V_{GE} = 20 \text{ V}$, pulse width limited by maximum junction temperature (see fig. 20)

 $^{^{(2)}}$ V_{CC} = 80 % (V_{CES}), V_{GE} = 20 V, L = 10 $\mu\text{H},~R_{G}$ = 10 Ω (see fig. 19)

CPV364M4KPbF

Vishay High Power Products

IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TYP.	MAX.	UNITS	
Junction to case, each IGBT, one IGBT in conduction	R _{thJC} (IGBT)	-	2.2		
Junction to case, each DIODE, one DIODE in conduction	R _{thJC} (DIODE)	-	3.7	°C/W	
Case to sink, flat, greased surface	R _{thCS} (MODULE)	0.10	-		
Weight of module		20	-	g	
vveight of module		0.7	-	oz.	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$		600	-	-	V
Temperature coeff. of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$		-	0.63	-	V/°C
		I _C = 13 A		-	1.80	2.3	V
Collector to emitter saturation voltage	$V_{CE(on)}$	I _C = 24 A	V _{GE} = 15 V See fig. 2, 5	-	1.80	-	
		I _C = 13 A, T _J = 150 °C		=	1.56	1.73]
Gate threshold voltage	V _{GE(th)}	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$		3.0	-	6.0	
Temperature coeff. of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$			-	- 13	-	mV/°C
Forward transconductance	g _{fe} ⁽²⁾	V _{CE} = 100 V, I _C = 10 A		11	18	-	S
Zoro goto voltogo collector current	7		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$		-	250	
Zero gate voltage collector current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$		=	-	3500	μΑ
Diede feward valte se dram	V	I _C = 15 A	See fig. 13	=	1.3	1.7	V
Diode forward voltage drop	V_{FM}	I _C = 15 A, T _J = 150 °C	See lig. 13	-	1.2	1.6	V
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 100	nA

Notes

Document Number: 94488 Revision: 01-Sep-08

 $^{^{(1)}\,}$ Pulse width $\leq 80~\mu s,$ duty factor $\leq 0.1~\%$

⁽²⁾ Pulse width 5.0 µs; single shot

Vishay High Power Products

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)										
PARAMETER	SYMBOL	1	EST CONDIT	IONS	MIN.	TYP.	MAX.	UNITS		
Total gate charge (turn-on)	Qg	I _C = 13 A			-	110	170	nC		
Gate to emitter charge (turn-on)	Q _{ge}	$V_{CC} = 400 \text{ V}$ $V_{GE} = 15 \text{ V}$	V _{CC} = 400 V			14	21			
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V See fig. 8			-	49	74			
Turn-on delay time	t _{d(on)}		_			50	-	nc		
Rise time	t _r	T _J = 25 °C				30	-			
Turn-off delay time	t _{d(off)}	I _C = 13 A, V			-	110	170	ns -		
Fall time	t _f	V _{GE} = 15 V,	$R_G = 10 \Omega$ es include "tail	" and diode	-	91	140			
Turn-on switching loss	E _{on}	reverse reco		and diodo	-	0.56	-			
Turn-off switching loss	E _{off}	See fig. 9, 1	See fig. 9, 10, 18				-	mJ		
Total switching loss	E _{ts}						1.1	1		
Short circuit withstand time	t _{sc}	$V_{CC} = 360 \text{ V}, T_J = 125 \text{ °C}$ $V_{GE} = 15 \text{ V}, R_G = 10 \Omega, V_{CPK} < 500 \text{ V}$			10	-	-	μs		
Turn-on delay time	t _{d(on)}				-	47	-			
Rise time	t _r	$I_J = 150 ^{\circ}\text{C}_s$ $I_C = 13 \text{A}, \text{V}_s$, see fig. 9, 10, cc = 480 V	, 11, 18	=	30	-			
Turn-off delay time	t _{d(off)}	$V_{GE} = 15 V$,	$V_{GE} = 15 \text{ V}, R_{G} = 10 \Omega$ Energy losses include "tail" and diode reverse recovery Measured 5 mm from package			250	-	ns		
Fall time	t _f					150	-			
Total switching loss	E _{ts}	- diode revers				1.28	-	mJ		
Internal emitter inductance	L _E	Measured 5				7.5	-	nH		
Input capacitance	C _{ies}	V _{GE} = 0 V	$V_{GE} = 0 \text{ V}$ $V_{CC} = 30 \text{ V}$ $f = 1.0 \text{ MHz}$ See fig. 7		-	1600	-			
Output capacitance	C _{oes}				-	130	-	pF		
Reverse transfer capacitance	C _{res}	-			-	55	-	1		
Diede was was was kine.		T _J = 25 °C	Confin 14		-	42	60			
Diode reverse recovery time	t _{rr}	T _J = 125 °C	See fig. 14		-	74	120	ns		
Diede veel, vereen veel veel veel		T _J = 25 °C		I _F = 15 A V _B = 200 V	-	4.0	6.0			
Diode peak reverse recovery charge	I _{rr}	T _J = 125 °C			-	6.5	10	A		
Diada rayaraa ragayary aharaa	0	T _J = 25 °C	$T_J = 25 ^{\circ}\text{C}$ See fig. 16	$= 25 ^{\circ}\text{C}$ See fig. 16 dl/dt = 200 A/ μ s	• • •	-	80	180	200	
Diode reverse recovery charge	Q_{rr}	T _J = 125 °C			-	220	600	nC		
Diode peak rate of fall of recovery	ما اما	T _J = 25 °C		0 " :-	0 " :=		-	188	-	Δ/ς
during t _b	dI _{(rec)M} /dt	T _J =125 °C See fig. 17			-	160	-	– A/μs		

IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

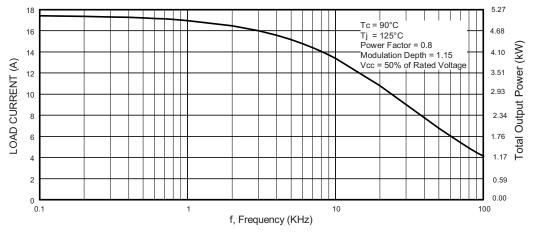


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

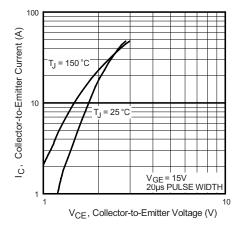


Fig. 2 - Typical Output Characteristics

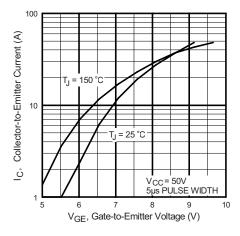


Fig. 3 - Typical Output Characteristics

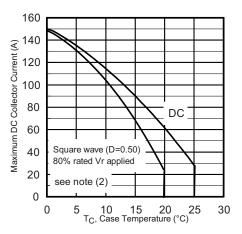


Fig. 4 - Maximum Collector Current vs. Case Temperature

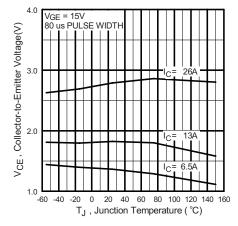


Fig. 5 - Typical Collector to Emitter Voltage vs.
Junction Temperature

Vishay High Power Products

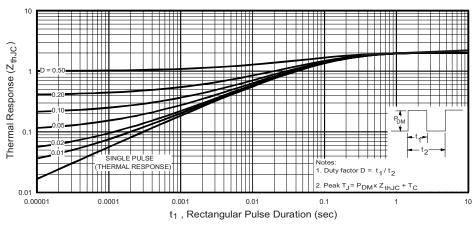


Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction to Case

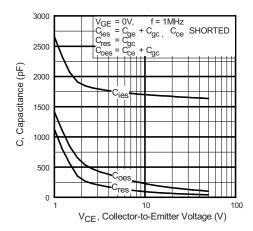


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

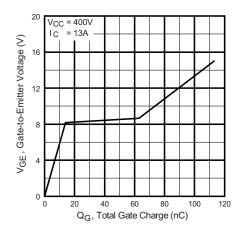


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

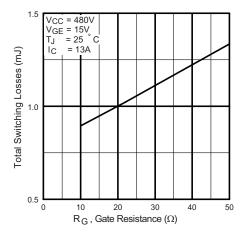


Fig. 9 - Typical Switching Losses vs. Gate Resistance

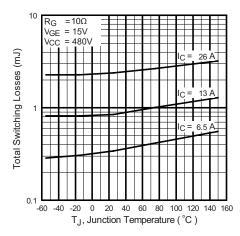


Fig. 10 - Typical Switching Losses vs. Junction Temperature

IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

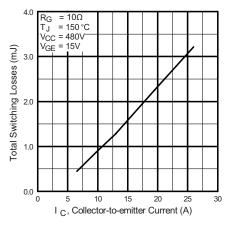


Fig. 11 - Typical Switching Losses vs. Collector to Emitter Current

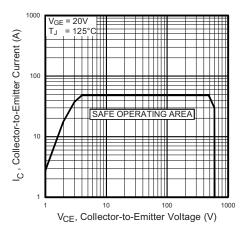


Fig. 12 - Turn-Off SOA

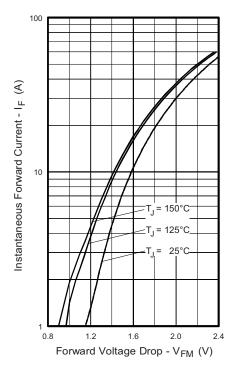


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

Vishay High Power Products

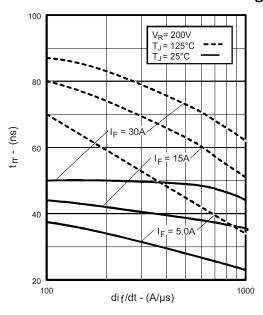


Fig. 14 - Typical Reverse Recovery Time vs. dl_F/dt

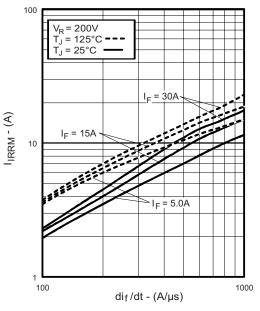


Fig. 15 - Typical Recovery Current vs. dl_F/dt

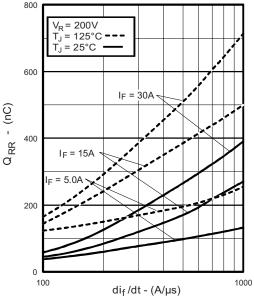


Fig. 16 - Typical Stored Charge vs. dl_F/dt

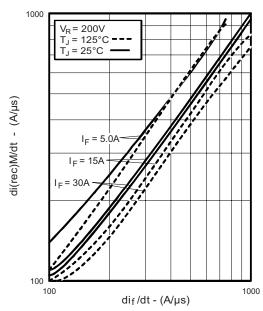


Fig. 17 - Typical $dl_{(rec)M}/dt$ vs dl_F/dt

IGBT SIP Module (Short Circuit Rated Ultrafast IGBT)

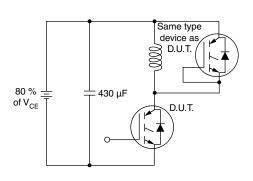


Fig. 18a - Test Circuit for Measurement of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(onf)}$, t_r , $t_{d(off)}$, t_f

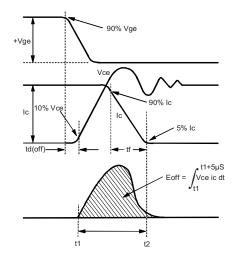


Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

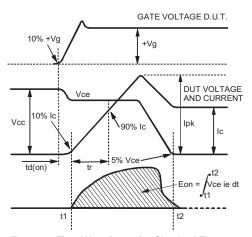


Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining $E_{on},\,t_{d(on)},\,t_{r}$

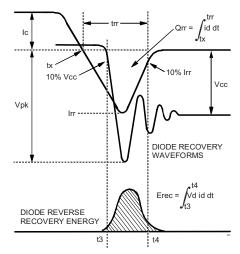


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

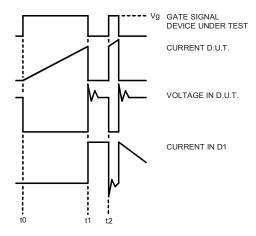


Fig. 18e - Macro Waveforms for Figure 18a's Test Circuit

Vishay High Power Products

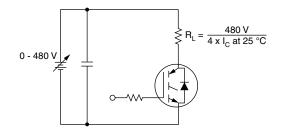
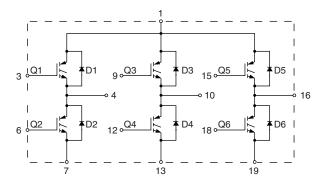



Fig. 19 - Clamped Inductive Load Test Circuit

Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	http://www.vishay.com/doc?95066			

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1