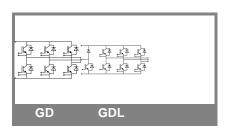


SEMITRANS[®] 6

IGBT Modules

SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

Features


- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)

Typical Applications*

- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

Absolute	Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units		
IGBT	•			•		
V_{CES}	T _j = 25 °C		1200	V		
I _C	T _j = 150 °C	T _{case} = 25 °C	75	Α		
		T _{case} = 80 °C	50	Α		
I _{CRM}	I _{CRM} =2xI _{Cnom}		100	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs		
Inverse D	Piode					
I _F	T _j = 150 °C	T_{case} = 25 °C	75	Α		
		T _{case} = 80 °C	50	Α		
I_{FRM}	I _{FRM} =2xI _{Fnom}		100	Α		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	550	Α		
Module						
I _{t(RMS)}			100	Α		
T_{vj}			- 40+ 150	°C		
T _{stg}			- 40+ 125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _c = 25 °C, unless otherwise specification					ecified	
Symbol	Conditions		min.	typ.	max.	Units
IGBT	•					
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,4	1,2	mA
V _{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		22	28	mΩ
		T _j = 125°C		30	38	mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V
C _{ies}				3,3	4,3	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,5	0,6	nF
C _{res}				0,22	0,3	nF
t _{d(on)}				44	100	ns
t _r	$R_{Gon} = 22 \Omega$	$V_{CC} = 600V$		56	100	ns
Ė _{on}		I _C = 50A		8		mJ
t _{d(off)}	$R_{Goff} = 22 \Omega$	T _j = 125 °C		380	500	ns
t _f		$V_{GE} = \pm 15V$		70	100	ns
E _{off}				5		mJ
R _{th(j-c)}	per IGBT				0,32	K/W

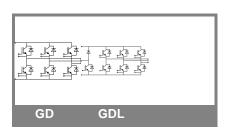
SEMITRANS[®] 6

IGBT Modules

SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

Features

- MOS input (voltage controlled)
- N channel, homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)


Typical Applications*

- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)

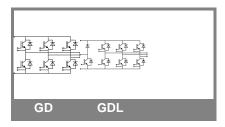
Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V			2	2,5	V
		$T_j = 125 ^{\circ}C_{chiplev.}$		1,8		V
V _{F0}		T _j = 25 °C		1,1	1,2	V
		T _j = 125 °C				V
r _F		T _j = 25 °C		18	26	mΩ
		T _j = 125 °C				$m\Omega$
I _{RRM}	I _F = 50 A	T _j = 125 °C		35		Α
Q_{rr}	di/dt = 800 A/µs			7		μC
E _{rr}	$V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$			2,2		mJ
$R_{\text{th(j-c)D}}$	per diode				0,6	K/W
Module						
L _{CE}					60	nH
R _{th(c-s)}	per module				0,05	K/W
M_s	to heat sink M5					Nm
M _t	to terminals		4		5	Nm
w					175	g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

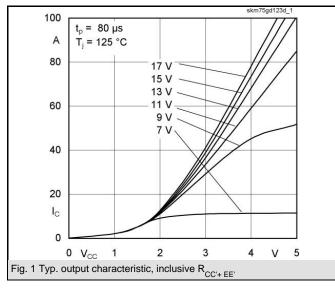
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

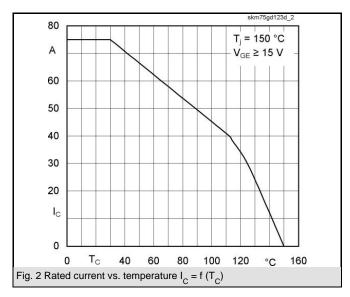
SEMITRANS® 6

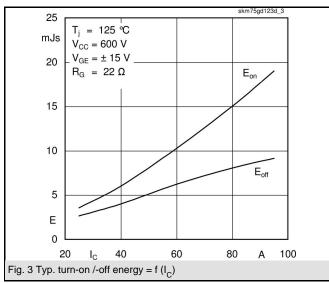
IGBT Modules

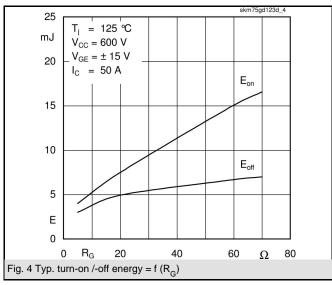

SKM 75GD123DL SKM 75GD123D SKM 75GDL123D

F	ea	tu	res	3
	Сu	·		Э


- MOS input (voltage controlled)
- N channel, homogeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, selt limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse Cal diodes
- Isolated copper baseplate using DCB Direct Bonding Technology
- Large clearance (9 mm) and creepage distance (13 mm)


Typical Applications*


- Switched mode power supplies
- DC servo and robot drives
- Three phase inverters for AC motor speed control
- Switching (not for linear use)




Z _{th}							
Symbol	Conditions	Values	Units				
Z _{Ri}	i = 1	240	mk/W				
R _i	i = 2	68	mk/W				
R_i	i = 3	9,2	mk/W				
R_{i}	i = 4	2,8	mk/W				
tau _i	i = 1	0,06	s				
tau _i	i = 2	0,0228	s				
tau _i	i = 3	0,0013	s				
tau _i	i = 4	0,0002	s				
Z R _i th(j-c)D							
R _i	i = 1	400	mk/W				
R_i	i = 2	168	mk/W				
R_{i}	i = 3	28	mk/W				
R_{i}	i = 4	4	mk/W				
tau _i	i = 1	0,0831	s				
tau _i	i = 2	0,0112	s				
tau _i	i = 3	0,0013	s				
tau _i	i = 4	0,08	s				

