

SEMITOP[®] 3

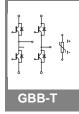
IGBT Module

SK30GBB066T

Target Data

Features

- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor


Typical Applications*


Remarks

• V_{isol} = 3000V AC,50Hz,1s

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specif					specified
Symbol	Conditions		1	Values	Units
IGBT					
V _{CES}	T _j = 25 °C			600	V
I _C	T _j = 175 °C	T _s = 25 °C		40	А
		T _s = 70 °C		31	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			60	А
V _{GES}				± 20	V
t _{psc}	V_{CC} = 360 V; V_{GE} \leq 20 V; VCES < 600 V	T _j = 150 °C		6	μs
Inverse	Diode				
I _F	T _j = 175 °C	T _s = 25 °C		36	A
		T _s = 70 °C		28	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			60	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C		160	А
Module					
I _{t(RMS)}					А
T _{vj}				-40 +175	°C
T _{stg}				-40 +125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics T _s =		25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,43 \text{ mA}$		5	5,8	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0016	mA
	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		0,9	1,1	V
		T _j = 150 °C		0,8	1	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		18,3	25	mΩ
		T _j = 150°C		28	35	mΩ
V _{CE(sat)}	I _{Cnom} = 30 A, V _{GE} = 15 V			1,45	1,85	V
		T _j = 125°C _{chiplev.}		1,65	2,05	V
C _{ies}				1,63		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,11		nF
C _{res}				0,05		nF
Q _G	V _{GE} =-7V+15V			275		nC
t _{d(on)}				24		ns
t,	$R_{Gon} = 25 \Omega$	$V_{\rm CC} = 300V$		27		ns
E _{on}	di/dt = 2335 A/µs	I _C = 30A		0,97 328		mJ
t _{d(off)}	R _{Goff} = 25 Ω di/dt = 2335 A/μs	T _j = 150 °C V _{GE} = -7/+15V		328 54		ns ns
t _f E _{off}	απαι - 2000 Αγμο	GE// 13V		1,77		mJ
R _{th(j-s)}	per IGBT	1		1,65		K/W

SEMITOP[®] 3

IGBT Module

SK30GBB066T

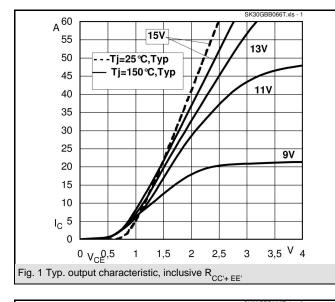
Target Data

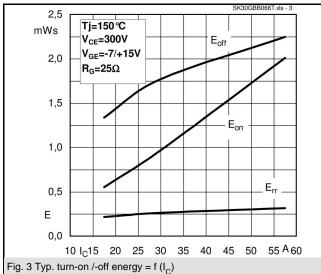
Features

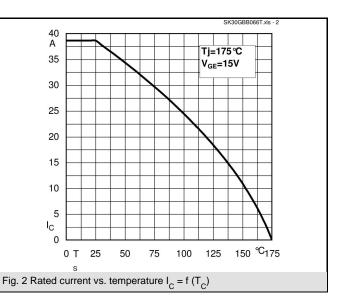
- Compact design
- One scre mounting
- Heat transfer and isolation trough direct copper bonded aluminium oxide ceramic (DCB)
- Trench IGBT technology
- CAL HD technology FWD
- Integrated NTC temperature sensor

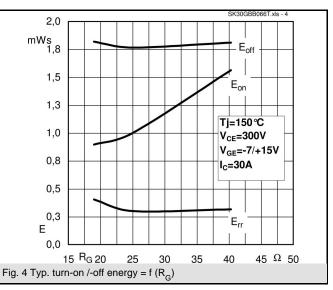
Typical Applications*

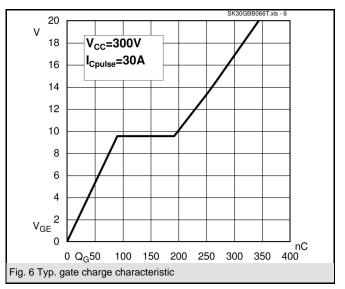
Remarks

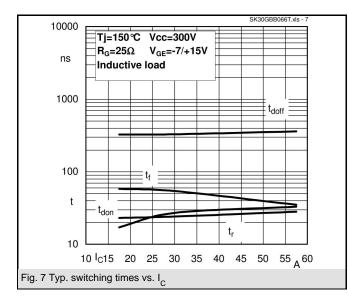

V_{isol} = 3000V AC,50Hz,1s

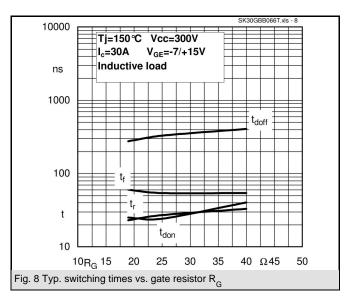

Symbol	Conditions		min.	typ.	max.	Units
Inverse D	biode					
$V_F = V_{EC}$	I _{Fnom} = 30 A; V _{GE} = 0 V	$T_j = 25 \ ^\circ C_{chiplev.}$		1,45	1,7	V
		T _j = 150 °C _{chiplev.}		1,45	1,7	V
V _{F0}		T _j = 25 °C		1	1,1	V
		T _j = 150 °C		0,9	1	V
r _F		T _j = 25 °C		15	20	mΩ
		T _j = 150 °C		18	23,3	mΩ
I _{RRM}	I _F = 30 A	T _i = 150 °C		30		Α
Q _{rr}	di/dt = 2335 A/µs	-		1,6		μC
E _{rr}	V _{CC} = 300V			0,26		mJ
R _{th(j-s)D}	per diode			2,1		K/W
M _s	to heat sink		2,25		2,5	Nm
w				30		g
Tempera	ture sensor					
R ₁₀₀	T _s =100°C (R ₂₅ =5kΩ)			493±5%		Ω

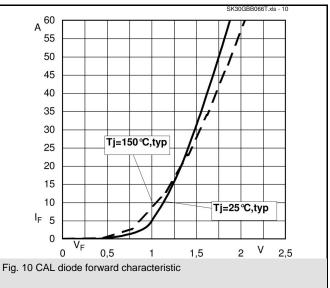

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

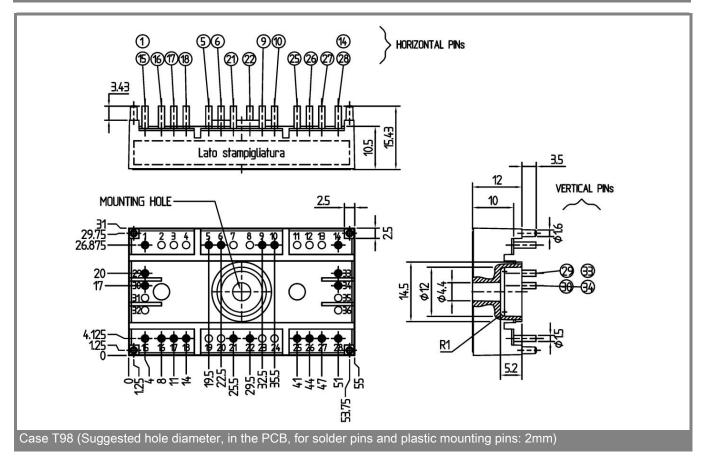

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

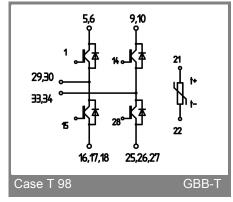












© by SEMIKRON

