TetraFET

D1020UK

METAL GATE RF SILICON FET

GOLD METALLISED MULTI-PURPOSE SILICON DMOS RF FET 150W – 28V – 400MHz PUSH–PULL

FEATURES

- EXTRA LOW C_{rss}
- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- SIMPLE BIAS CIRCUITS
- LOW NOISE
- HIGH GAIN 10 dB MINIMUM

APPLICATIONS

• HF/VHF/UHF COMMUNICATIONS from 1 MHz to 400 MHz

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

DRAIN 1

GATE 2

Tol.

0.020

0.005

5°

0.005

0.005

0.005

0.005

0.005

MAX

0.001

0.005

0.005

0.020

0.005

0.003

PIN 2

PIN 4

Inches

0.75

0.424

45°

0.385

0.225

1.100

0.060R

0.400

0.875

0.005

0.107

0.067

0.200

1.340

0.064R

PD	Power Dissipation	389W
BV _{DSS}	Drain – Source Breakdown Voltage *	70V
BV _{GSS}	Gate – Source Breakdown Voltage *	±20V
I _{D(sat)}	Drain Current *	25A
T _{stg}	Storage Temperature	–65 to 150°C
T _j	Maximum Operating Junction Temperature	200°C

^{*} Per Side

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

MECHANICAL DATA

$\begin{array}{c} C \\ (2 \text{ pis}) \\ H \\ D \\ (4 \text{ pis}) \\ F \\ (4 \text{ pis}) \\ F$

DR

Tol.

0.50

0.13

5°

0.13

0.13

0.13

0.13

0.13

MAX

0.02

0.13

0.13

0.50

0.13

0.08

- PIN 1 SOURCE (COMMON) PIN 3 DRAIN 2
- PIN 5 (
 - GATE 1

A B

С

D

E

F

G

н

l J

Κ

Μ

Ν

0

Ρ

Millimetres

19.05

10.77

45°

9.78

5.71

27.94

1.52R

10.16

22.22

0.13

2.72

1.70

5.08

34.03

1.61R

ELECTRICAL CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit				
PER SIDE											
BV _{DSS}	Drain–Source Breakdown	$V_{GS} = 0$	I _D = 100mA	70			V				
	Voltage			70			v				
I _{DSS}	Zero Gate Voltage	V _{DS} = 28V	$V_{GS} = 0$			5	m۸				
	Drain Current					5	mA				
I _{GSS}	Gate Leakage Current	V _{GS} = 20V	$V_{DS} = 0$			1	μΑ				
V _{GS(th)}	Gate Threshold Voltage*	I _D = 10mA	$V_{DS} = V_{GS}$	1		7	V				
9 _{fs}	Forward Transconductance*	V _{DS} = 10V	I _D = 5A	4			S				
TOTAL DEVICE											
G _{PS}	Common Source Power Gain	P _O = 150W		10			dB				
η	Drain Efficiency	V _{DS} = 28V	I _{DQ} = 2A	50			%				
VSWR	Load Mismatch Tolerance	f = 400MHz		20:1			_				
PER SIDE											
C _{iss}	Input Capacitance	V _{DS} = 28V V	$G_{\rm GS} = -5V$ f = 1MHz			300	pF				
C _{oss}	Output Capacitance	V _{DS} = 28V V	$G_{GS} = 0$ f = 1MHz			150	pF				
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 28V V	$f_{GS} = 0$ f = 1MHz			10	pF				

* Pulse Test: Pulse Duration = 300 μs , Duty Cycle $\leq 2\%$

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

THERMAL DATA

R _{THj-case}	Thermal Resistance Junction – Case	Max. 0.45°C / W
-----------------------	------------------------------------	-----------------

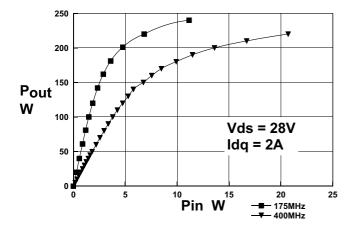


Figure 1. Output Power Vs Input Power

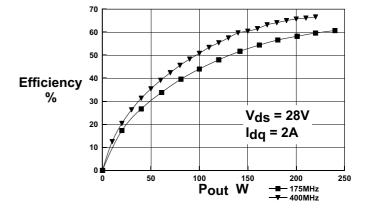


Figure 2. Efficiency Vs. Output Power

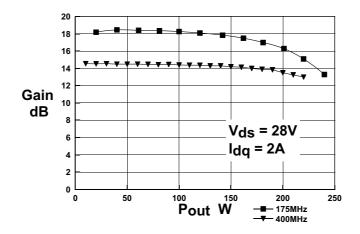


Figure 3. Gain Vs Output Power

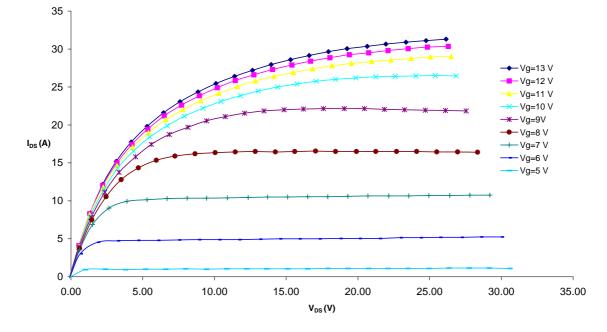
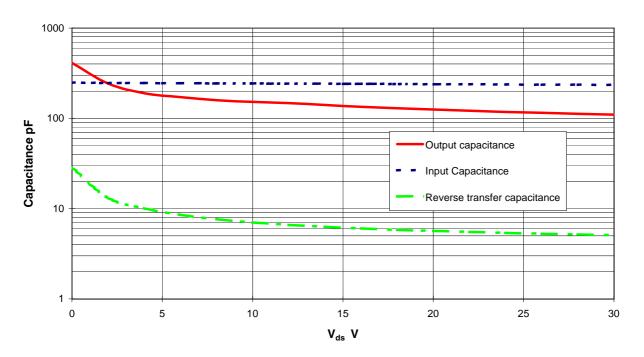
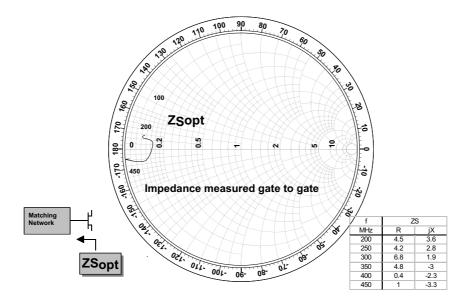
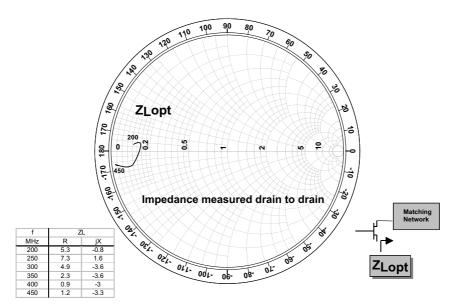
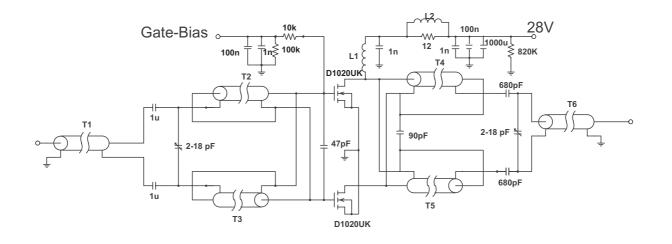




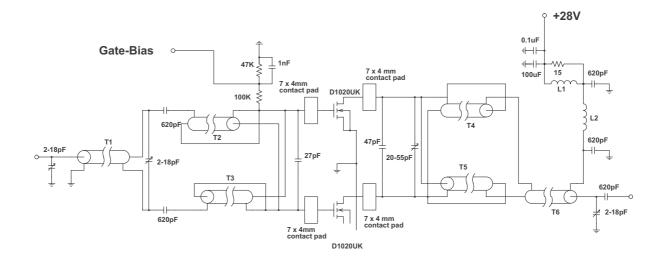
Figure 4 – Typical IV Characteristics.





Optimum Source Impedance

Optimum Load Impedance



175 MHz Test Fixture

- T1,2,3 7cm Storm Products EXE 18 19/30 S1TW coaxial cable on Siemens A1 x 1 2 hole core
- T4,5 14cm Storm products EXE18 19/30 S1TW coaxial cable
- T6 11cm Storm products EXE 18 19/30 S1TW coaxial cable
- L1 6 turns 1.2mm dia wire, 5mm internal diameter
- L2 1.5 turns 0.9mm dia wire on Siemens A1 x 1 2 hole core

400 MHz Test Fixture

- T1 11cm 50 Ohm UT47 semi-rigid coax
- T2,3,4,5 8.9cm 18 Ohm UT62-18 semi-rigid coax
- T6 9.4cm 50 Ohm UT85 semi-rigid coax
- L1 5.5 turns 18swg enamelled copper wire on Fair-Rite FT50B-43 ferrite core
- L2 6 turns 18swg enamelled copper wire, 3.5mm internal diameter