

Raychem Circuit Protection's SiBar thyristor surge protection devices are designed to help protect sensitive telecommunication equipment from the hazards caused by lightning, power contact, and power induction. These devices have a high electrical surge capability to help protect against transient faults and a high off-state impedance, rendering them virtually transparent during normal system operation.

SiBar thyristor surge protectors are designed to assist telecommunication and computer telephony equipment in meeting the applicable requirements and industry specifications.

Benefits:

- · Helps provide protection for sensitive telecom electronic equipment
- · Low leakage current
- · Low power dissipation
- · Fast, reliable operation
- · No wear-out mechanisms
- · Helps designers meet worldwide telecom standards
- · Helps reduce warranty and service costs
- · Easy installation
- · Helps improve power efficiency of equipment

Features:

- · RoHS compliant
- · Bidirectional crowbar transient voltage protection
- Broad voltage range 58V 300V with improved Vdrm/Vbo voltage range
- · High off-state impedance
- · Low on-state voltage
- · High surge capability
- · Short-circuit failure mode
- · Surface-mount technology
- DO-214AA SMB package
- 10 x 1000 µs 50A surge rating
- · Helps equipment comply with TIA-968, Telcordia GR-1089, IEC61000-4-5, ITU K.20/21/45

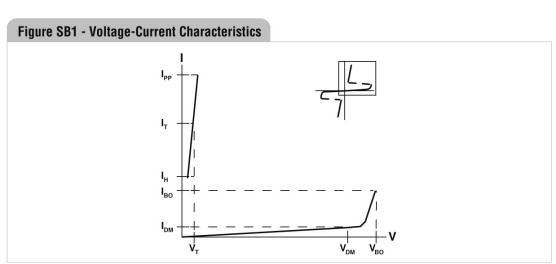
Applications:

- Modems
- Fax machines
- · Set top boxes
- · POS systems
- · PBX systems
- Phones, answering machines Analog and digital linecards (xDSL, T1/E1...)
 - · Other customer premise and central office network equipment requiring protection

Downloaded from Elcodis.com electronic components distributor

Table SB1 - Electrical Characteristics

			V⊤ Max. (V)	C1 (Typ) 50V _{DC} Bias	C2 (Typ) 2V _{DC} Bias	Current VD2=VDM (µA)
58	77	150	4	43	80	5
170	265	150	4	18	35	5
180	219	150	4	30 (Max)	60 (Max)	5
200	320	150	4	18	35	5
270	365	150	4	15	32	5
300	400	150	4	14	27	5
	170 180 200 270	170 265 180 219 200 320 270 365	170 265 150 180 219 150 200 320 150 270 365 150	1702651504180219150420032015042703651504	170265150418180219150430 (Max)200320150418270365150415	17026515041835180219150430 (Max)60 (Max)2003201504183527036515041532


Notes: All electrical characteristics are measured at 25°C. V_{DM} measured per UL497B pulse requirements: at max. off-state leakage current (IDM) = 5 μ A. V_{BO} measured at 100V/ μ s.

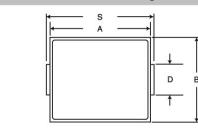
C1 measured at 1 MHz with a 50 V_{DC} bias. C2 measured at 1MHz with a 2 V_{DC} bias.

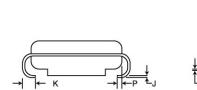
Table SB2	2 – Surge	Current Ra	ting							
	TIA-968			Telcordia GF	R-1089*	IEC61000-4-5	ITU K.20/21/45*			
	Туре А	Type B						_		
Part Number	I _{ρp} (A) 5 x 320 μs	I _{ρp} (A) 10 x 560 μs	_{թթ} (A) 10 x 160 µs	I _{ρρ} (A) 10 x 1000 μs	I _{pp} (A) 2 x 10 μs	I _{ρρ} (Α) 8 x 20 μs	I _{PP} (A) 5 x 310 μs (VOC: 10 x 700μs)	I _{тsм} Min. (А)	di/dt (A/µs)	dV/dt (V/µs)
TVBxxxSA-L	90	70	100	50	150	150	90	22	500	2000

Notes: *Lightning current wave forms for applicable industry specification. $I_{\rm TSM},$ peak on-state surge current is measured at 60 Hz, one cycle.

di/dt: critical rate-of-rise of on-state current (pulsed power amplifier Vmax = 600V; C = 30 μ F). dV/dt: critical rate-of-rise of off-stage voltage (linear wave form, V_D = rated V_{B0}, Tj = 25°C

The voltage current (V-I) is useful in depicting the electrical characteristics of the SiBar thyristor surge protectors in relation to each other.


SiBar Thyristor Surge Protectors © 2008 Tyco Electronics Corporation. All rights Reserved.


Downloaded from Elcodis.com electronic components distributor

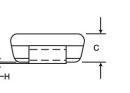

Document: SCD 27284 Status: Released Rev: A Date: JANUARY 11, 2008

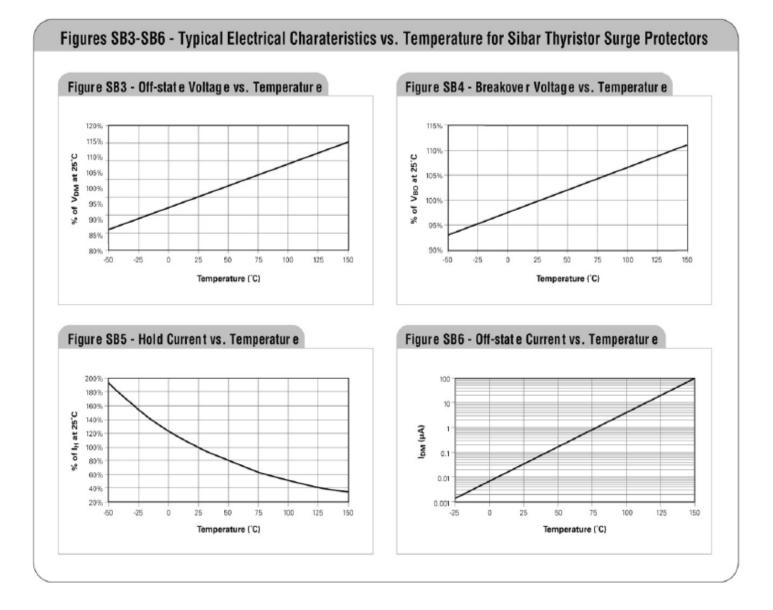
Figure SB2 - Dimension Figure

Table SB3 – Dimensions in Millimeters

	A		В		C		D	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
TVBxxxSA-L	4.06	4.57	3.30	3.94	1.90	2.41	1.95	2.20
	(0.160)	(0.180)	(0.130)	(0.155)	(0.075)	(0.095)	(0.077)	(0.087)

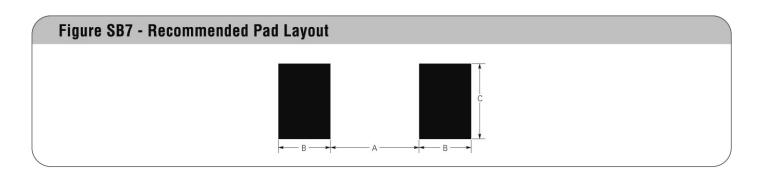
	Н		J		К		Р	S	
Dimension	Min.	Max.	Min.	Max.	Min.	Max.	Ref	Min	Max.
TVBxxxSA-L	0.051	0.200	0.150	0.31	0.76	1.27	0.51	5.21	5.59
	(0.002)	(0.008)	(0.006)	(0.012)	(0.030)	(0.050)	(0.202)	(0.205)	(0.220)

Notes: *D dimension is measured within dimension P. TVB series devices use industry standard SMB package type. All devices are bidirectional and may be oriented in either direction for installation


Table SB4 – Physical Characteristics and Environmental Specifications

Lead material	Matte tin finish (-L devices)
Encapsulating material	Epoxy, meets UL94V-0 requirements
Solderability	per MIL-STD-750, Method 2026
Solder heat withstand	per MIL-STD-750, Method 2031
Solvent resistance	per MIL-STD-750, Method 1022
Mechanical shock	per MIL-STD-750, Method 2016
Vibration	per MIL-STD-750, Method 2056
Storage temperature (°C)	-55 to 150
Operating temperature (°C)	-40 to 125
Junction temperature (°C)	175
Maximum Lead Temperature for Soldering Purpose; for 10s (°C)	260

Table SB5 – Reliability Tests


Test	Conditions	Duration
High temperature, reverse bias	+100°C, 50VDC bias	1000 hours
High humidity, high temperature, reverse bias	85% RH, +85°C, 50VDC bias	1000 hours
High temperature storage life	+150°C	1000 hours
Temperature cycling	-65°C to +150°C, 15 minute dwell	1000 cycles
Autoclave	100% RH, +121°C, 15 PSI	96 hours

Downloaded from Elcodis.com electronic components distributor

Table SB6 – Packaging and Marking Information

	_			Recommended Pad Layout (millimeters/inchs)					
Part Description	Tape and Reel Quantity	Standard Package	Part Marking	Dimension A (Nom.)	Dimension B (Nom.)	Dimension C (Nom.)	Agency Recognition*		
TVB058SA-L	2,500	10,000	058A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		
TVB170SA-L	2,500	10,000	170A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		
TVB180SA-L	2,500	10,000	180A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		
TVB200NSA-L	2,500	10,000	200A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		
TVB270SA-L	2,500	10,000	270A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		
TVB300NSA-L	2,500	10,000	300A	2.261 (0.089)	2.159 (0.085)	2.743 (0.108)	UL		

Our commitment. Your advantage.

308 Constitution Drive, MS R21/2A Menlo Park, CA USA 94025-1164 Tel (800) 227-7040 (650) 361-6900 Fax (650) 361-2508 www.circuitproection.com www.circuitprotection.com.hk (Chinese) www.circuitprotection.jp (Japanese)

Raychem, PolySwitch, SiBar, TE Logo and Tyco Electronics are trademarks. All other trademarks and copyrights are property of their respective owners.

SiBar Thyristor Surge Protectors © 2008 Tyco Electronics Corporation. All rights Reserved. Document: SCD 27284 Status: Released Rev: A Date: JANUARY 11, 2008