Sentry Residual Current Devices (RCDs) 1:5

Description

The Sentry range of RCDs offers a comprehensive selection of devices designed to meet most residential, commercial and light industrial requirements.

The range includes two and four pole, a.c., d.c. fault current sensitive and time delayed models and a selection of current ratings from 16 to 100A is available in a variety of tripping sensitivities.

When in the OFF position a contact gap of 4mm is present, enabling Sentry RCDs to be used as isolating switches where appropriate.

Positive indication of the opening of the contacts is only given when the legend 'OFF-O' can be seen on the RCD dolly The operating dolly may be locked in either the ON or OFF position without affecting the ability of the trip mechanism to operate, i.e.the RCD is 'trip-free'. It is not possible to hold the contacts closed when a fault condition exists.

All Sentry RCDs incorporate a filtering device to provide protection against transient surges in the supply to the unit, thus reducing the occurrence of unwanted tripping.

This feature is represented by the symbol $\ensuremath{\mathcal{N}}$ on all Sentry RCDs.

Features

- Meet BS EN and IEE Wiring Regulation requirements
- Extensive range to suit all specifications
- Protect against unwanted tripping
- Positive contact status indication
- Suitable for most residential, commercial and light industrial applications
- Offer a high degree of protection against electrocution in accidental shock hazard situations
- Two module, double pole units available up to 100A

16A, 110V 30mA 16A, 230V 10mA 16A, 230V 30mA 32A, 110V 30mA 32A, 230V 30mA 40A, 230V 30mA 63A, 230V 30mA 63A, 230V 100mA 63A, 230V 300mA 80A, 230V 30mA 80A, 110V 30mA 80A, 230V 300mA 80A, 230V 100mA 100A, 230V 30mA 100A, 230V 100mA 100A, 230V 300mA Double pole, pulsating d.c., fault current sensitive, 2 module 16A, 230V 10mA 16A, 230V 30mA 32A, 230V 30mA 40A, 230V 30mA 63A, 230V 30mA Time delayed 80A, 230V 100mA

PRODUCT RANGE

Double pole, 2 module

Tripping current

10mA

List No.

6016s

6416s

6316s

5716s

6032s

6730s

5740s

5760s

6160s

5860s

5780s

6080s

5880s

6180s

7700s

6600s

7800s

6216s

6716s

6630s

5640s

5660s

6980s

6640s

Rating

16A, 110V

100A, 230V	100mA	6400s			
Four pole, 4 mo	odule				
25A, 230/400V	30mA	6425s			
40A, 230/400V	30mA	6440s			
40A, 230/400V	100mA	6240s			
63A, 230/400V	30mA	6463s			
63A, 230/400V	100mA	6363s			
63A, 230/400V	300mA	6263s			
Four pole, pulsating d.c., fault current sensitive, 4 module					
25A, 230/400V	30mA	6625s			

©2001 MK Electric Limited The Arnold Centre, Paycocke Road, Basildon, Essex SS14 3EA, United Kingdom Tel: +44 (0)1268 563720 Fax: +44 (0)1268 563064 email: more@mkelectric.co.uk www.mkelectric.co.uk Edition 07-01

40A, 230/400V 30mA

Sentry Residual Current Devices (RCDs)

2:5

TECHNICAL SPECIFICATION

Electrical

Rated making and breaking capacity: Normal (/m) 630A (16 - 63A) and residual (/ Δ m) 800A (80 - 100A)

Rated conditional short-circuit current: Normal (/nc) 10,000A and residual (/ Δ m) 80A Fuse (16 - 40A) 100A Fuse (63 - 100A)

Fault breaking capacity: 3,000A

When used in conjunction with a Sentry MCB, the RCD will withstand fault current up to the breaking capacity of the MCB, i.e. 6,000A.

When backed up by a BS 88 fuse, then the breaking capacity of the RCD is increased to 10,000A.

Operating frequency: 50Hz

Operating voltages: 2 pole devices, 100V and 230V 4 pole devices, 230V to 400V

Physical

Ambient operating temperature: a.c.: $-5^{\circ}C$ to $+60^{\circ}C$ d.c.: $-25^{\circ}C$ to $+60^{\circ}C$

IP rating: Front face IP4X, screw IP2X

Max. installation altitude: 2000 metres

Standards and approvals

All Sentry RCDs are designed to fully comply with the requirements of BS EN 61008: 1995.

They all feature positive contact status indication in accordance with 16th edition IEE Wiring Regulations (537-02-03 and 537-03-02).

Application

The choice of the most suitable RCD for a particular application should take into account the following considerations:

1. Sensitivity

- 10mA RCDs offer a high degree of protection against electrocution in an accidental shock hazard situation. They are of particular value in a high risk area where resistances external to the body are likely to restrict the earth fault current flowing through the body to less than 30mA and where 110V supply is being used.
- 30mA RCDs offer a high degree of protection in an accidental shock hazard situation and are by far the most popular sensitivity used in the United Kingdom. In a shock situation, the current flowing through the human body at 240V 50Hz could be between 80 and 240mA, depending on the resistance of the body in question. To ensure that there are no harmful physiological effects in such a situation, it is necessary for the RCD to operate within 300mS at 30mA and 40mS at 150mA. As the Sentry RCD typically operates well below these times, it clearly more than satisfies this requirement.
- 100mA RCDs may, in some circumstances, provide protection against electrocution in an accidental shock hazard situation, however, it is important to note that there is a likelihood that the earth fault current may be below the sensitivity of the RCD. This becomes increasingly likely if additional resistances to that of the human body are in the current path.
- 300mA RCDs provide protection against the risk of fire only. They do not provide protection against electrocution in an accidental shock hazard situation. A typical application would be lighting circuits where it is deemed that the risk of electric shock is small.

It is important to note that a current of less than 500mA flowing in a high resistance path is sufficient to bring metallic parts to incandescence and, potentially, initiate a fire.

2. Requirements of the IEE Wiring Regulations

RCDs may be used to provide additional protection against both Indirect and Direct Contact.

The 10mA and 30mA RCDs are the only RCD sensitivities acceptable under the 16th Edition Wiring Regulations for direct contact protection.

Indirect Contact

Defined as the "contact of persons or livestock with exposed conductive parts made live by a fault and which may result in electric shock".

Effective earthing in conjunction with automatic disconnection should always be employed to protect against the effects of indirect contact. The provision of a low resistance path back to the supply from the fault should ensure that the overcurrent device operates before damage occurs. This is the earth fault loop impedance.

In circumstances where the earth fault loop impedance in the circuit is too high to ensure operation of the overcurrent device, then the IEE Wiring Regulations allow the installation of an RCD. To comply with the Regulations, the earth loop impedance of the circuit (in ohms), multiplied by the rated tripping current of the RCD (in amperes) must not produce a value greater than 50. With this in mind, the maximum values of earth loop impedance permissible when installing an MK Sentry RCD are as follows:

Z3 (max) =	50	50	1666 ohms
23 (IIIax) -	lo∆n	0.03	

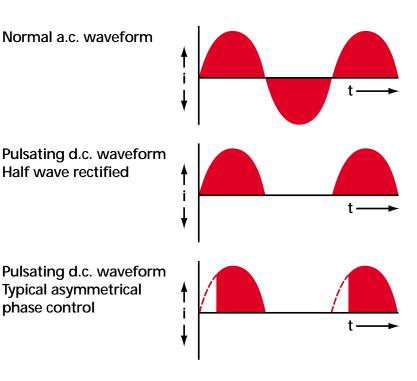
Maximum Permissible Earth Fault Loop Impedance
5000 ohms
1666 ohms
500 ohms
166 ohms

(Regulations 413-02-15 and 16 apply). RCDs are further specified for protection against indirect contact on TT systems. (Regulations 413-02-19 and 20 apply.)

- Direct Contact

Defined as "contact of persons or livestock with live parts which may result in electric shock".

The Regulations recognises four main means of providing protection against direct contact which include enclosures and the use of extra low voltage systems.


However, the use of RCDs is specified by the regulations in the following instances:

• A socket outlet rated at 32A or less which may reasonably be expected to supply portable equipment for use outdoors shall be protected by an RCD having the characteristics specified in Regulation 412-06-02. (Regulation 471-16-01 applies.)

• Where socket outlets are used to supply caravans on caravan sites, then they must be protected by an RCD having the characteristics specified in Regulation 412-06-02.

Although RCDs must never be used as the sole method of direct contact protection, they are invaluable in providing supplementary protection in high risk environments where damage may occur. Typical applications include situations where equipment may be used outside or fed by trailing sockets, equipment accessible to children or equipment used in wet areas. Fore these reasons RCDs are commonly found in schools, hospitals and residential installations.

Sentry Residual Current Devices (RCDs) 3:5

Application (continued)

3. Pulsating d.c. Fault Currents

The use of semiconductor devices in modern electrical and electronic equipment, such as computers, printers, plotters, televisions, video cassette recorders and hi-fi equipment, is growing.

Such devices may result in the normal sinusoidal a.c. waveform generated by the mains electrical supply being 'modified'. for example, the waveform may be rectified or, as in asymmetric phase control devices, the waveform may be chopped. The resulting waveforms are said to contain a pulsating d.c. component as illustrated above.

Pulsating d.c. fault current sensitive RCDs

Should a waveform containing a pulsating d.c. component develop an earth fault, then it is possible that it may not be detected by an "a.c. only" sensitive RCD. For this reason, the Sentry range contains RCDs designed to be sensitive to pulsating d.c. fault currents thus maintaining the intended degree of protection.

Installation

Sentry RCDs must never be used as the sole method of direct contact protection, but are invaluable in providing supplementary protection in high risk environments where damage may occur.

Time Delayed RCDs

When two or more Sentry RCDs are installed in series with one another, measures must be taken to ensure that they discriminate properly. In event of an earth fault, only the RCD immediately upstream from the fault should operate.

RCDs do not discriminate on rated tripping current alone, i.e. a 100mA rated RCD situated upstream from a 30mA rated RCD, will not offer inherent discrimination.

In order to ensure that discrimination is achieved, a Sentry Time Delayed RCD should be used. The in-built time delay period

ensures that the downstream RCD opens the circuit before the upstream RCD starts to operate.

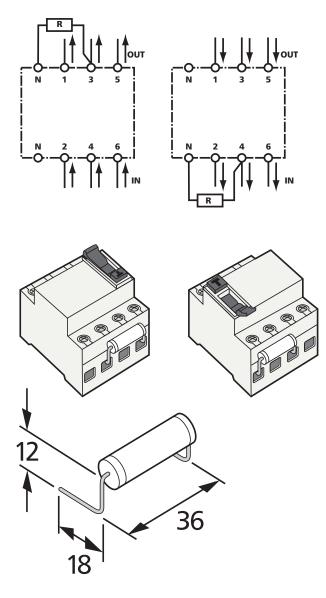
The maximum tripping time of a Sentry Time Delayed RCD is 450ms. Typical applications are:

 i) as main incomers on TT systems where all sockets are already protected by a 30mA instantaneous RCD, but where unwanted tripping may become a problem.

ii) as the main incomer of split load consumer unit arrangement where all circuits are protected by a 10 or 30mA instantaneous RCD or otherwise comply with the direct and indirect contact protection requirements of the Wiring Regulations.

The Sentry Time Delay RCDs are clearly identified with the internationally agreed representative symbol; (5) and the words; 'TIME DELAY'.

Sentry Residual Current Devices (RCDs) 4:5


3 phase, 3 wire systems

Sentry 4 pole RCDs may be used to provide earth fault protection on 3 phase, 3 wire systems, as the current balance mechanism does not require a neutral to be connected in order to operate effectively.

However, Sentry 4 pole RCDs do, ideally, require a neutral connector to be provided on the supply side of the RCD in order to ensure that the test circuit operates satisfactorily.

Where connection of a neutral supply is not possible, then an alternative method of ensuring that the test button is operational is to fit a suitable power resistor (rating 4W) between the load side neutral pole and a phase pole not associated with the normal test button operation

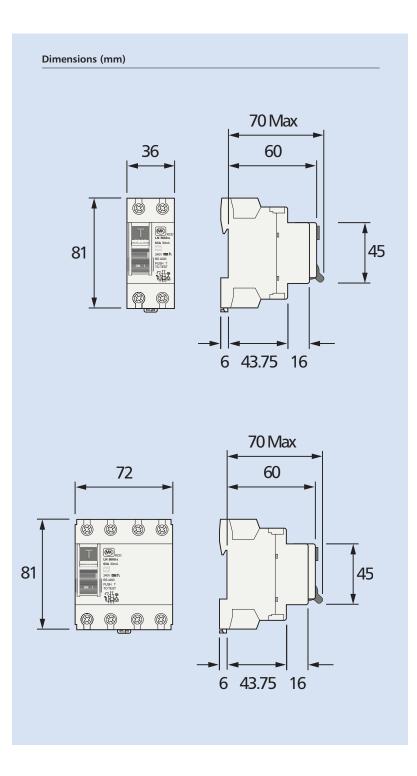
See below for details.

Testing

If an RCD is installed for additional protection against indirect contact, it is a requirement of the IEE Regulations that the effectiveness of the RCD be verified. This must be achieved by a test simulating an appropriate fault condition and be independent of any test facility incorporated in the RCD. The test currents to be applied are as follows:

Test current Condition

0.5 x l∆ n	RCD must not trip
1.0 x l ∆ n	RCD must trip within 300mS
5.0 x l ∆ n	RCD must trip within 40mS


Where I Δ n is the RCD's rated tripping current in accordance with wiring regulations and product standard BS EN 61008.

Sentry 4	pole	RCD	on	three	wire	system
----------	------	-----	----	-------	------	--------

l ∆ n (ma)	R (Ω)	Л			
30	2200				
100	680				
300	220				
(R not provided)					

Sentry Residual Current Devices (RCDs) 5:5

©2001 MK Electric Limited The Arnold Centre, Paycocke Road, Basildon, Essex SS14 3EA, United Kingdom Tel: +44 (0)1268 563720 Fax: +44 (0)1268 563064 email: more@mkelectric.co.uk www.mkelectric.co.uk Centre Paycocke Road, Basildon, Essex SS14 3EA, United Kingdom Tel: +44 (0)1268 563720 Fax: +44 (0)1268 563764 email: more@mkelectric.co.uk www.mkelectric.co.uk