Think Automation and beyond...

IDEC

NC1V
 Circuit Protectors

IDEC CORPORATION

IDEC's original Spring-up Terminals and Cover Provide IP20 Finger-safe Protection.

Finger-safe, spring-up terminals reduce wiring time.
Ring terminal tabs can be installed easily, and screws are held secure.

Main Circuit Terminals are Fingersafe (IP20)

Spring-up, fingersafe structure requires no terminal cover.

Retractable Actuator

The actuator retracts when the circuit protector turns on. Inadvertent operation, due to touching the actuator, is prevented. Status of the circuit protector can easily be confirmed by viewing the position of the actuator.

Slim Housing Saves Space

1-pole	17.5 mm Wide
2-pole	35.0 mm Wide
3-pole	52.5 mm Wide

Auxiliary/Alarm Contact Terminals are Equipped with a Terminal Cover

Voltage coil terminals on the relay trip version are also equipped with a terminal cover as standard.

Auxiliary/Alarm Contact, and Relay Trip Voltage Coil Terminals are Equipped with a Terminal Cover.

35mm-wide DIN Rail Mounting or Direct Panel Mounting

Distinguishing Characteristics
Wide variety of rated currents and tripping curves. One and 2-pole models are AC/DC compatible and allow for a reduction in inventory.
Rated Short-circuit Capacity 2500A
Available with Inertia Delay
Allows for use with large inrush currents such as motors and lamps.

Safe Trip-free Mechanism

The circuit remains open even when the operator is turned on after tripping (unit must be manually reset after removing the cause of the tripping).
Available with Auxiliary or Alarm Contacts

Auxiliary or Alarm Contact (Shown without terminal cover.)

Conforms to various international standards
『®.OC€ ©

After tripping, the retractable actuator is in the middle position.
Circuit protector must be turned off before it can be reset.

NC1V Circuit Protectors

IDEC's original spring-up, fingersafe terminals enhance reliability and safety.

- Integrated electric shock protection structure (IP20).
- Auxiliary/alarm contact terminals and voltage coil terminals on the relay trip types are equipped with terminal covers.
- Spring-up, fingersafe terminals reduce wiring time.
- Ring terminals can be installed. Captive terminal screws.
- Available with inertia delay
- Available with auxiliary or alarm contacts
- Rated short-circuit capacity: 2500A
- Slim, space-saving housing 1 -pole: 17.5 mm wide
2-pole: 35.0 mm wide
3 -pole: 52.5 mm wide
- Retractable actuator
- The trip-free mechanism maintains the circuit open even when the operator is turned on after tripping.

Applicable Standards	Certification Mark		$\begin{aligned} & \hline \text { Certification Organization } \\ & \text { (File No.) } \\ & \hline \end{aligned}$
UL1077	\approx		E68029
CSA C22.2 No. 235	S8)		LR83454
EN60934	(iv)		B07 0913332063
	$C E$		European Commission's Low Voltage Directive
GB17701-1999	(ccc)		No. 2008010307265840
Electrical Applicance and Material Safety Law Technical Standard	Series Trip		JET
	Relay Trip	(Es)	

Note: TÜV, CE, and CCC marks are applicable for series trip type only.

Specifications

Operator Style			Retractable actuator		
Internal Circuit			Series trip (current trip), Relay trip (voltage trip)		
Protection Method			Hydraulic magnetic tripping system, Magnetic tripping system (voltage trip)		
No. of Poles			1-pole	2-pole	3-pole
Rated Voltage (AC/DC) (Note 1)			250 V AC $50 / 60 \mathrm{~Hz}, 65 \mathrm{~V}$ DC	250 V AC $50 / 60 \mathrm{~Hz}, 125 \mathrm{~V}$ DC	250V AC, $50 / 60 \mathrm{~Hz}$
Series Trip (Current Trip)		Rated Short-circuit Capacity	250 V AC, 2500A 65V DC, 2500A	$\begin{aligned} & \text { 250V AC, } 2500 \mathrm{~A} \\ & 125 \mathrm{~V} \text { DC, } 2500 \mathrm{~A} \\ & \hline \end{aligned}$	250 V AC, 2500A
		Rated Current	0.1A, 0.3A, 0.5A, 1A, 2A, 3A, 5A, 7A, 10A, 15A, 20A, 25A, 30A		
		Operation Characteristics (Note 2)	Time delay curve curve M (slow), curve A (medium), S (instantaneous) Curves M and A are avilable with inertia delay.		
Relay Trip (Voltage Trip)		Rated Current	30A		
		Trip Voltage	$\begin{array}{\|l\|} \hline 24 \text { to } 48 \mathrm{~V} \mathrm{DC} \mathrm{(at} 25^{\circ} \mathrm{C} \text {) } \\ \text { Voltage application duration } 10 \mathrm{sec} \text { maximum, tripping time } 0.1 \mathrm{sec} \text { maximum (at rated voltage) } \\ \hline \end{array}$		
Auxiliary Contact/ Alarm Contact		Contact Rating	125V AC 3A (resistive load), 30V DC 2A (resistive load)		
		Minimum Applicable Load	24V DC 1mA (resistive load, reference value)		
Insulation Resistance			$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
Dielectric Strength			2000 V AC, 1 minute (between terminals when main contacts are open, between live parts of different poles, between live and dead parts) 600 V AC (between terminals when auxiliary circuits are open)		
Vibration Resistance (with rated current applied)			Damage limits: $\quad 147 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 55 Hz) (1-pole, 2-pole), $78 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole) Operating extremes: $98 \mathrm{~m} / \mathrm{s}^{2}$ (1-pole, 2-pole), $78 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole)		
Shock Resistance (S time delay curve: 80% rated current, A, M time delay curve: 100% rated current)			Damage limits: $\quad 490 \mathrm{~m} / \mathrm{s}^{2}$ (1-pole, 2-pole), $297 \mathrm{~m} / \mathrm{s}^{2}$ (3-pole) Operating extremes: $196 \mathrm{~m} / \mathrm{s}^{2}$ (S, A, M types)		
Electrical Life			10,000 cyles minimum (at rated curent), 10 operations per minute		
Reference Temperature			$40^{\circ} \mathrm{C}$		
Operating Tempperature			-10 to $+60^{\circ} \mathrm{C}$ (no freezing) Rated current is based on an ambient temperature of $40^{\circ} \mathrm{C}$. When the operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by using the factors shown below.		
Operating Humidity			45 to 85\% RH (no condensation)		
Terminal Style		in Circuit Terminal	Spring-up, fingersafe terminal: M4 screw (up to 20A), M5 screw (25A and 30A)		
		xiliary/Alarm Contacts, tage Coil Terminal	M3.5 screw		
Weight (approx.)			1-pole: 90 g , 2-pole: 170 g , 3-pole: 260 g		

Note 1: 3-pole type is for AC voltage only.
Note 2: For S (instantaneous) tripping curve, humming sound may be caused when used in an AC sinusoidal-wave current circuit around 80% of Operating Temp. Derating Factor the rated current, however, the performance of the circuit protector will not be affected.

Type No. Development
NC1V - 2100 F - 30A A DC24V
(1) Type $\longrightarrow T^{\square} T^{\square}$

NC1V: Flap actuator type
DIN rail and panel mounting
2 No. of Poles
1: 1-pole
2: 2-pole
3: 3-pole
3 Internal Circuit
1: Series trip (current trip) 5: Relay trip (voltage trip)
4 Auxiliary/Alarm Contacts 00: None
11: With one auxiliary contact
12: With two auxiliary contacts
13: With three auxiliary contacts
21: With one alarm contact
31: With one auxiliary contact and one alarm contact 32: With two auxiliary contacts and one alarm contact

8 Voltage Trip Coil Voltage
DC24V: 24-48V DC

* Specified for relay trip only.

7 Time Delay Curve
M: Slow
A: Medium
S : Instantaneous

* For both AC/DC.
* Specified for series trip only.

6 Rated Current

$0.1 \mathrm{~A}, 0.3 \mathrm{~A}, 0.5 \mathrm{~A}, 1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$,
5A, 7A, 10A 15A, 20A, 25A, 30A

* Specified for series trip only.

5 Inertia Delay
Blank: Without
F: With

* Inertia delay is for AC voltage only.
* Available with medium and slow types (not applicable with relay trip).

Types

- Specity rated current, time delay curve, or voltage trip coil voltage in place of 678 in the Ordering Type No.

Internal Circuit	No. of Poles	Inertia Delay	Auxiliary Contact Alarm Contact	Ordering Type No.	Applicable Standards	Code		
						$\begin{aligned} & 6 \text { Rated } \\ & \text { Current } \end{aligned}$	7 Time Delay	$\begin{array}{\|l\|} \hline 8 \text { Voltage Trip } \\ \text { Coil Voltage } \\ \hline \end{array}$
Series Trip(Current Trip)	1-pole	-	-	NC1V-1100-6] 7		$\begin{gathered} 0.1 \mathrm{~A} \\ 0.3 \mathrm{~A} \\ 0.5 \mathrm{~A} \\ 1 \mathrm{~A} \\ 2 \mathrm{~A} \\ 3 \mathrm{~A} \\ 5 \mathrm{~A} \\ 7 \mathrm{~A} \\ 10 \mathrm{~A} \\ 15 \mathrm{~A} \\ 20 \mathrm{~A} \\ 25 \mathrm{~A} \\ 30 \mathrm{~A} \end{gathered}$	M (slow) A (medium) S (instantaneous)	-
			One Auxiliary Contact	NC1V-1111-6] 7				
			One Alarm Contact	NC1V-11216 7				
		With	-	NC1V-1100F-67	제 (1) (
			One Auxiliary Contact	NC1V-1111F-6] 7				
			One Alarm Contact	NC1V-1121F-6] 7				
	2-pole	-	-	NC1V-2100-6] 7				
			One Auxiliary Contact	NC1V-2111-6] 7	TN® (1) (
			Two Auxiliary Contacts	NC1V-2112-6]7				
			One Alarm Contact	NC1V-2121-6]7				
			One Auxiliary Contact and One Alarm Contact	NC1V-2131-67				
		With	-	NC1V-2100F-6]7				
			One Auxiliary Contact	NC1V-2111F-6] 7	TN®. (1) (¢ @)			
			Two Auxiliary Contacts	NC1V-2112F-67				
			One Alarm Contact	NC1V-2121F-67				
			One Auxiliary Contact and One Alarm Contact	NC1V-2131F-6]				
	3 -pole	-	-	NC1V-3100-6]7				
			One Auxiliary Contact	NC1V-3111-6]7				
			Two Auxiliary Contacts	NC1V-3112-6]7				
			Three Auxiliary Contacts	NC1V-3113-6] 7				
			One Alarm Contact	NC1V-3121-6] 7				
			One Auxiliary Contact and One Alarm Contact	NC1V-3131-6] 7				
			Two Auxiliary Contacts and One Alarm Contact	NC1V-3132-6] 7				
		With	-	NC1V-3100F-667	T® (1) (
			One Auxiliary Contact	NC1V-3111F-66 7				
			Two Auxiliary Contacts	NC1V-3112F-667	サי® (1) (E)			
			Three Auxiliary Contacts	NC1V-3113F-667	T®®. (\%)			
			One Alarm Contact	NC1V-3121F-667	TN® (1) (
			One Auxiliary Contact and One Alarm Contact	NC1V-3131F-6 7	T® (1) (E)			
			Two Auxiliary Contacts and One Alarm Contact	NC1V-3132F-6] 7				
Relay Trip (Voltage Trip)	1-pole	-	-	NC1V-1500-8		-	-	DC24V
	2-pole			NC1V-2500-8				
	3-pole			NC1V-3500-8	T10 (1)			

Note: Inertia delay is for AC circuit. Also, time delay curve of S (instantaneous) is not available with inertia delay.

NC1V Circuit Protectors

Internal Circuit
-1-pole

NC1V-1100 (Without auxiliary/alarm contacts)	NC1V-1111 (With auxiliary contact)	NC1V-1121 (With alarm contact)	NC1V-1500 (Relay Trip)

- 2-pole

NC1V-2100 (Without auxiliary/alarm contacts)	NC1V-2111 (With auxiliary contact)	NC1V-2121 (With alarm contact)	NC1V-2500 (Relay Trip)

Note: Those with two auxiliary contacts and with one auxiliary contact and one alarm contact have been applied for UL and CCC.
-3-pole

Note: Those with two or three auxiliary contacts, with one auxiliary contact and one alarm contact, and with two auxiliary contacts and one alarm contacts have been applied for UL and CCC.

Overcurrent-Time Delay Characteristics (sec at $40^{\circ} \mathrm{C}$) [vertical mounting]

Item	Time Delay Curve	Percent of Rated Current								
		100\%	125\%	150\%	175\%	200\%	400\%	600\%	800\%	1000\%
AC ($50 / 60 \mathrm{~Hz}$)/DC	S (instantaneous)	NO TRIP	-	$\begin{aligned} & * 0.005 \\ & \text { to } 0.1 \end{aligned}$	$\begin{aligned} & 0.003 \\ & \text { to } 0.06 \end{aligned}$	$\begin{aligned} & 0.0027 \\ & \text { to } 0.05 \end{aligned}$	$\begin{aligned} & 0.002 \\ & \text { to } 0.03 \end{aligned}$	$\begin{gathered} 0.002 \\ \text { to } 0.028 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.025 \end{gathered}$	$\begin{gathered} 0.002 \\ \text { to } 0.022 \end{gathered}$
	A (medium)	NO TRIP	*25 to 240	16 to 140	-	6 to 32	0.4 to 4	$\begin{gathered} 0.0055 \\ \text { to } 1.5 \end{gathered}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.65 \end{aligned}$
	M (slow)	NO TRIP	*60 to 600	30 to 200	-	9 to 60	0.4 to 10	$\begin{aligned} & 0.006 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.004 \\ & \text { to } 0.8 \end{aligned}$
AC ($50 / 60 \mathrm{~Hz}$)	With Inertia Delay A (medium)	NO TRIP	25 to 240	-	-	6 to 32	0.8 to 6	$\begin{aligned} & 0.09 \\ & \text { to } 3.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 1.8 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.0 \end{aligned}$
	With Inertia Delay M (slow)	NO TRIP	60 to 600	-	-	10 to 60	0.8 to 10	$\begin{aligned} & 0.06 \\ & \text { to } 4.5 \end{aligned}$	$\begin{aligned} & 0.02 \\ & \text { to } 3 \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { to } 1.75 \end{aligned}$

*: MAY TRIP on DC

Time Delay Curves at $40^{\circ} \mathrm{C}$

Time Delay Curve and Ambient Temperature

NC1V circuit protectors employ an electromagnetic tripping system, where the rated current (trip current) is not affected by ambient temperatures. But the time delay may vary with the oil viscosity in the oil dash pot. Lower oil viscosity at higher temperatures results in a shorter delay, whereas at lower temperatures the delay will be longer.

Temperature Correction Curve

The time delay curves on the preceding page are measured at $40^{\circ} \mathrm{C}$. With reference to the following curves, time delays can be corrected according to ambient temperature.

The time delay is based on an ambient temperature of $40^{\circ} \mathrm{C}$. Time delays at other temperatures are corrected according to the temperature correction curve. The time delay of the instantaneous time delay curve (S) is not affected by the ambient temperature
When operating temperature exceeds $40^{\circ} \mathrm{C}$, derate the rated current by multiplying the derating factor shown on the right.

Operating Temp.	Derating Factor
$50^{\circ} \mathrm{C}$	0.9
$55^{\circ} \mathrm{C}$	0.8
$60^{\circ} \mathrm{C}$	0.7

Impedance and Coil Resistance

- Series Trip (Current Trip)
at $25^{\circ} \mathrm{C}$

Rated Current	For AC 50/60 Hz Impedance (Ω)		For DC Resistance (Ω)	
	Curve S	Curves A, M	Curve S	Curves A, M
0.1 A	66.0	116.0	43.0	106.0
0.3 A	6.6	11.0	4.1	10.0
0.5 A	1.92	3.65	0.86	3.40
1A	0.50	0.93	0.25	0.90
2 A	0.16	0.27	0.11	0.25
3A	0.07	0.12	0.050	0.11
5A	0.025	0.050	0.015	0.045
7A	0.014	0.027	0.011	0.025
10 A	0.007	0.021	0.005	0.020
15 A	0.006	0.010	0.005	0.009
20 A	0.005	0.006	0.004	0.005
25 A	0.004	0.005	0.004	0.005
30A	0.003	0.004	0.003	0.004

Tolerance: $\pm 25 \%$ (up to 20A),
$\pm 50 \%$ (25A and 30A)

- Relay Trip (Voltage Trip)
Tripping Voltage For DC Resistance (Ω)
$24-48 \mathrm{~V}$

Tolerance: $\pm 25 \%$

Inertia Delay

Inertia delay is designed not to trip on a non-repeating single pulse of 20 times the rated current (peak value) for a duration of 8 ms . In addition, circuit protectors equipped with inertia delay do not respond to high inrush currents caused by transformer or lamp loads, but perform the specified interruption on the subsequent overcurrents. Inertia delay is available on AC circuits, and is not available with the series trip curve S (instantaneous).

Voltage Drop Due to Coil Resistance or Impedance

The internal resistance or impedance of a circuit protector tends to be larger for a smaller rated current. Therefore, when circuit protectors of a small rated current are used, voltage drop should be taken into consideration. Internal resistance also varies with time delay curves, which should also be considered during installation.

Dimensions

- 2-pole

NC1V Circuit Protectors

- 2-pole

- 3-pole

Instructions

- Installation Angle

Tripping method is hydraulic magnetic. Minimum operating current varies with installation angle. Operating currents are influenced by the weight of movable iron core. With reference to the following figures, correct the rated current.

Minimum operating current is calculated from the following formula:
$($ Minimum operating current $)=($ Rated current $) \times$
(Correction factor by installation angle) \times (Reference minimum tripping current rate)

- DIN Rails

[Installation on DIN Rail]

1. Fasten the DIN rail securely.
2. With the latch facing downward, install the NC1V circuit protector on the DIN rail as shown below.
[Removal from DIN Rail]
Using a flat screwdriver, pull the latch on the circuit protector to remove from the DIN rail.

- Applicable Wire and Crimp Terminal

Terminal	Terminal Screw	$\begin{gathered} \hline \text { Connectable } \\ \text { Wire Size } \\ \left(\mathrm{mm}^{2}\right) \end{gathered}$	Applicable Crimping Terminal	Tightening Torque ($\mathrm{N} \cdot \mathrm{m}$)
	Spring-up, fingersafe, slotted Phillips screw with square washer (up to 20A)	0.25 to 1.65	R1.25-4	1 to 1.4
		1.04 to 2.63	R2-4	
		2.63 to 6.64	R5.5-4	
	Spring-up fingersafe terminal (25A and 30A)	0.25 to 1.65	R1.25-5	1.8 to 2.2
		1.04 to 2.63	R2-5	
		2.63 to 6.64	R5.5-5	
	Slotted Phillips screw with square washer	0.25 to 1.65	R1.25-3.5	0.7 to 0.9
		1.04 to 2.63	R2-3.5	

- For wiring the main circuit terminal, use the applicable crimp terminals and
tighten to the recommended torque.
- When using the NC1V circuit protector as CSA-certified product, use with CSAcertified crimp terminal.
- When using the NC1V circuit protector as UL-listed product, use with UL-listed crimp terminal.
Panel Mounting Screw (not supplied)

Srew Type	Tightening Torque	Shape
M 4	0.8 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$	Spring Washer Plain Washer

Product Markings (Example: NC1V-1111-30AA)

Installation of Auxiliary/Alarm Terminal Cover

After wiring the terminals, install the terminal cover by aligning with the circuit protector as shown below.

Terminal cover installed

Accessories

- DIN Rail

Length	Part No.	Material
1000 mm	BNDN1000	Aluminum

- End Clip

Part No.	Applicable Rail	Material	Package Quantity
BNL6	BNDN1000	Galvanized Trivalent Chromate Treatment	10

- Auxiliary/Alarm Terminal Cover

Type No.	Material	Package Quantity
NC1V-AUX-CV	Nylon (PA66)	1

- Miscellaneous Accessories (available 2009)

Type No.	Description
NC9Z-MA11	Panel Cut-Out Mounting bracket for 1-pole mode
NC9Z-MA21	Panel Cut-Out Mounting bracket for 2-pole model
NC9Z-MA31	Panel Cut-Out Mounting bracket for 3-pole model
NC9Z-TA1	Fast-On Tab terminal Adapter
NC9Z-PW1	Marking Plate
NC9Z-LK1	Lock-Out Bracket

	RPORATIO	7-31, Nishi-Miyahara 1-Chome, Yodogawa-ku, Osaka 532-8550, Japan Tel: +81-6-6398-2571, Fax: +81-6-6392-9731 E-mail: products@idec.co.jp	
	IDEC CORPORATION (USA)	IDEC ELEKTROTECHNIK GmbH Wendenstrasse 331, 20537 Hamburg, Germany Tel: +49-40-25 $3054-0$, Fax: +49-40-25 30 54-24 E-mail: service@idec.de IDEC (SHANGHAI) CORPORATION Room 608-609, 6F, Gangtai Plaza, No. 700, Yan'an East Road, Shanghai 200001, PRC Tel: +86-21-5353-1000, Fax: +86-21-5353-1263 E-mail: idec@cn.idec.com IDEC (BEIJING) CORPORATION Room 211B, Tower B, The Grand Pacific Building, 8A Guanghua Road, Chaoyang District, Beijing 100026, PRC Tel: +86-10-6581-6131, Fax: +86-10-6581-5119 IDEC (SHENZHEN) CORPORATION Unit AB-3B2, Tian Xiang Building, Tian'an Cyber Park, Fu Tian District, Shenzhen, Guang Dong 518040, PRC Tel: +86-755-8356-2977, Fax: +86-755-8356-2944	IDEC IZUMI (H.K.) CO., LTD. Units 11-15, Level 27, Tower 1, Millennium City 1, 388 Kwun Tong Road, Kwun Tong, Kowloon, Hong Kong Tel: +852-2803-8989, Fax: +852-2565-0171 E-mail: info@hk.idec.com IDEC TAIWAN CORPORATION 8F-1, No. 79, Hsin Tai Wu Road, Sec. 1, Hsi-Chih, Taipei County, Taiwan Tel: +886-2-2698-3929, Fax: +886-2-2698-3931 E-mail: service@tw.idec.com IDEC IZUMI ASIA PTE. LTD. No. 31, Tannery Lane \#05-01, HB Centre 2, Singapore 347788 Tel: +65-6746-1155, Fax: +65-6844-5995 E-mail: info@sg.idec.com
	1175 Elko Drive, Sunnyvale, CA 94089-2209, USA		
	Tel: +1-408-747-0550 / (800) 262-IDEC (4332)		
	Fax: +1-408-744-9055 / (800) 635-6246		
	E-mail: opencontact@idec.com		
	IDEC CANADA LIMITED 3155 Pepper Mill Court, Unit 4, Mississauga,		
	Ontario, L5L 4X7, Canada		
	Tel: +1-905-890-8561, Toll Free: (888) 317-4332		
	Fax: +1-905-890-8562		
	IDEC AUSTRALIA PTY. LTD.		
	2/3 Macro Court, Rowville, Victoria 3178, Australia		
	Tel: +61-3-9763-3244, Toll Free: 1800-68-4332 Fax: $+61-3-9763-3255$		
	Fax: +61-3-9763-3255 E-mail: sales@au.idec.com		
	IDEC ELECTRONICS LIMITED		
	Unit 2, Beechwood, Chineham Business Park,		
	Basingstoke, Hampshire RG24 8WA, UK		
	Tel: +44-1256-321000, Fax: +44-1256-327755		
www.idec.com	E-mail: sales@uk.idec.com		

