ACTION PAK AP1080 \& AP1090

DC I nput, Field Configurable Limit Alarms

Provides Relay Contact Closures at a Preset DC Input Level

Benefits

- Field Configurable Input Ranges for DC Voltage and Current
- Setpoints Programmable HI or LO
- Exclusive"Dynamic Deadband" Prevents False Trips
- Selectable Failsafe/

Latching Operation

- LED Trip Indicators
- Selectable 120/240VAC Input Power
(9 to 30 VDC Available)

Description

Action Pak models AP1080 single setpoint and AP1090 dual setpoint limit alarms offer flexible, wide-ranging DC input capability. Voltage spans from 10 mV to 200 volts and current spans from 1 mA to 100 mA can be field configured. Bipolar inputs are also accepted. Both models offer configurable latching, failsafe and HI/LO operation. The AP1080 and AP1090 also include 0.25% 50% adjustable deadbands and selectable 120/240VAC input power.

Diagnostic LED

Models AP1080-2000 and AP1090-2000 are equipped with a dual function diagnostic LED. The green center LED indicates line power and input signal status. Active line power is indicated by an illuminated LED. If the center LED is off, check line power and the wiring connection. If the input signal is above 100% full scale, the LED will flash at approximately 8 Hz . Below 0%, the flash rate is approximately 4Hz.

Output Selection

The single setpoint AP1080 and the dual setpoint AP1090 provide the following relay outputs:

```
AP1080 Single Trip (DPDT, 5A)
AP1090 Single/Dual Trip (2 SPDT, 5A)
```

Setpoints are top accessed multi-turn potentiometers or option "P" provides top mounted ten-turn dials.

Operation

The field configurable AP1080 and AP1090 limit alarm setpoints can be configured for HI, LO, latching or failsafe trip operation. Non-latching HI and LO setpoints have respective HI and LO deadbands. In a tripped condition, the setpoint is exceeded and the appropriate red LED will illuminate. The trip will reset only when the process falls below the HI deadband or rises above the LO deadband (see figure 1). To reset a latched setpoint the signal must be in the safe region and the line power turned off for at least 5 seconds. For proper deadband operation, a HI setpoint must always be set above a LO setpoint.

In failsafe operation, the relay is energized when the process is below the HI setpoint or above the LO setpoint (opposite for non-failsafe). In the failsafe mode, the relays go to the tripped condition when the power fails.
action instruments

Figure 1: Limit alarm operation and effect of deadband.

Dynamic Deadband

The input must remain beyond the setpoint for 100 milliseconds, uninterrupted, to qualify as a valid trip condition. Likewise, the input must fall outside the deadband and remain there for 100 milliseconds to return the alarm to an untripped condition. This effectively results in a "dynamic deadband" - based on time - in addition to the normal deadband.

Options

U Urethane coating of internal circuitry for protection from corrosive atmospheres.

P Top Mounted, Ten-Turn Dial(s) for setpoint adjustment.

C620 Factory calibration to input range, setpoints and output relays. Not available with option P.

Configuration

The factory presets models AP1080 and AP1090 as follows:

	AP1080	AP1090
Input	$0-20 \mathrm{~mA}$	$0-20 \mathrm{~mA}$
Output	Single, DPDT	Dual, SPDT
Trip	HI	A: HI, B: LO
Latching	No	No
Failsafe	Yes	No
Deadband	0.25%	A/B: 0.25%
Power	120VAC	120VAC

For other I/O ranges, remove the four base screws and case to access the configuration switches.

Replace the cover before applying power.
Refer to Figure 4 for switch locations.

Input

1. Position input jumper "W2" for Current or Voltage inputs.

2. Set position 1 of the Mode Selector for Unipolar or Bipolar operation. Unipolar is the default.

Note: A bipolar span selection will double any span from Table 1 (e.g., 10V unipolar span $= \pm 10 \mathrm{~V}$ bipolar span)
3. Using Table 1, configure positions 1 through 4 of the Input Range Selector for the desired maximum setpoint input. Round desired maximum input values to the next highest range (e.g., $0-120 \mathrm{~V}=200 \mathrm{~V}$ range).

Output

Configure the Mode Selector for the required function. See Figure 6.

Power

Configure the AC jumpers for either 120 or 240 VAC operation. See Figure 5.

Calibration

Note: To maximize thermal stability, final calibration should be performed in the operating installation, allowing approximately 12 hours for warmup and thermal equilibrium of the system.

Setpoint: Set deadband at its minimum (factory default - 20 turns Counter Clockwise) before adjusting the setpoint. With the specified trip voltage or current input applied, adjust setpoint until the relay trips. For HI trip calibration, start with the setpoint above the desired trip. For LO trip calibration, start below the desired trip.

Deadband: Set deadband to its minimum (factory default - fully CCW). Set setpoint to desired trip. Adjust voltage/current input until relay trips. Readjust deadband to 50% (20 turns CW). Set voltage/current input to desired deadband position. Slowly adjust deadband until relay untrips.

Note that Custom Calibration (option C620) is available from the factory (settings MUST be within specifications):
a) Setpoint A: Type (HI/LO); Units (mA, mV, V); Deadband (\%)
b) Setpoint B (1090 only): Type (HI/ LO); Units (mA, mV, V); Deadband (\%)
c) Latching (ON/OFF)
d) Failsafe (ON/OFF)

Table 1: AP1080-2000 and 10902000 Input Ranges

*Voltage	*Current	Input Range Selector
10 mV	1 mA	
20 mV	2 mA	
50 mV	5 mA	
100 mV	10 mA	
200 mV	20 mA	
500 mV	50 mA	
1 V	100 mA	
2 V		
5 V		
10V		
20 V		
50 V		
100 V		
200 V		- 4

*Note: Use Jumper (W2) to configure either voltage or current input. All unipolar input ranges are zero based.

Note that if a deadband entry is not specified, the default entry will be used.

Relay Protection and EMI Suppression

When switching inductive loads, maximum relay life and transient EMI suppression is achieved using external protection (see Figures $2 \& 3$). Place all protection devices directly across the load and minimize all lead lengths. For AC inductive loads, place a prop-erly-rated MOV across the load in parallel with a series RC snubber. Use a 0.01 to $0.1 \mu \mathrm{~F}$ pulse film capacitor (foil polypropylene recommended) of sufficient voltage, and a 47Ω, $1 / 2 \mathrm{~W}$ carbon resistor. For DC inductive loads, place a diode across the load (PRV > DC supply, 1N4006 recommended) with (+) to cathode and (-) to anode (the RC snubber is an optional enhancement).

Figure 6: Mode Selection Dual Trip/A: HI, B: LO, Non-Latching, Non-Failsafe *AP1090-2000 only.

Specifications

Inputs
Voltage Input
Range: 10 mV to 200 V
Impedance: >100Kohms
Overvoltage: 400V, max
Current Input
Range: 1 mA to 100 mA
Impedance: 200hms, typical
Overcurrent: 200mA, max
Overvoltage: 60VDC
Common Mode (Input to Ground): 1000VDC, max
LED Indications
Input Range (Green)
$>100 \%$ input: 8Hz flash
<0\% input: 4Hz flash
Setpoint (Red)
Tripped: Solid red Safe: Off
Limit Differential (Deadband)
$>50 \mathrm{mV} / 5 \mathrm{~mA}$: 0.25% to 50% of span
$<50 \mathrm{mV} / 5 \mathrm{~mA}: 1 \%$ to 50% of span
Response Time
Dynamic Deadband:
Relay status will change when proper setpoint/process condition exists uninterrupted for 100 msec . Normal Mode (analog filtering): <250msec, (10-90\%)

Setpoint
Effectivity:
Setpoints are adjustable over 100% of the selected input span.
Repeatability (constant temp):
$>50 \mathrm{mV} / 5 \mathrm{~mA}: 0.1 \%$ of full scale
$<50 \mathrm{mV} / 5 \mathrm{~mA}: 0.2 \%$ of full scale
Stability
Line Voltage: $\pm 0.01 \% / \%$, max.
Temperature: $\pm 0.05 \%$ of full scale $/{ }^{\circ} \mathrm{C}$, max.
Common Mode Rejection
DC to $60 \mathrm{~Hz}: 120 \mathrm{~dB}$
Isolation
1000VDC between contacts, input and power
ESD Susceptibility
Meets IEC 801-2, Level 2 (4KV)
Humidity
Operating: 15 to $95 \%\left(@ 45^{\circ} \mathrm{C}\right.$)
Soak: 90% for 24 hours (@65 ${ }^{\circ} \mathrm{C}$)
Temperature Range
Operating: 0 to $60^{\circ} \mathrm{C}\left(32\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
Storage: -15 to $70^{\circ} \mathrm{C}\left(5\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Power
Consumption: 2W typical, 5W max.
Standard:
Selectable $120 / 240 \mathrm{VAC}(\pm 10 \%, 50-60 \mathrm{~Hz})$ Optional:

9 to 30VDC, Inverter-Isolated

Relay Contacts

AP1080: DPDT (2 Form C)
AP1090: 1 SPDT (1 Form C) per setpoint
Current Rating (resistive)
120VAC: 5A; 240VAC: 2A; 28VDC: 5A
Material: Silver-Cadmium Oxide
Electrical Life: 10^{5} operations at rated load
Note: External relay contact protection is required for use with inductive loads. See
relay protection section (Fig 2 \& 3).
Mechanical Life: 10^{7} operations
Latch Reset Time
5 seconds
Weight
AP1080: 0.46 lbs ; AP1090: 0.62 lbs
Agency Approvals
CSA certified per standard C22.2,
No. M1982, File No. LR42272-8, 9)
UL recognized per standard UL508,
(File No. E99775)

Mounting

All Action Paks feature plug-in installation. Mod els AP1080 and AP1090 use an 11-pin base, either molded socket (M011) or DIN rail socket (MD11).

Ordering Information

Specify:

1. Model: AP1080-2000, AP1090-2000
2. Options: U, P (see text)
3. Line Power (see specs.)(All power supplies are transformer-isolated from the internal circuitry.)
4. C620 Custom Calibration? (see Options)

Pin Connections

1 AC Power (Hot)
2 No Connection

3 AC Power (Neu)
4 Input (+)
5 Input (-)
6 (A) N.O.
7 (A) C
8 (A) N.C.
9 (B) N.O.
10 (B) C
11 (B) N.C.
$\frac{\text { Dimensions }}{\text { Dimensions are in millimeters (inches) }}$

M011 (Track/
Surface)

ε^{\bullet} Invensys EUROTMERM

Eurotherm Controls

741-F Miller Drive
Leesburg, VA 20175-8993
703-443-0000
info@eurotherm.com
actionio.com

