
PRL-420TD DUAL CHANNEL DIFFERENTIAL TTL LINE DRIVER

APPLICATIONS

- Converting TTL/CMOS signals to Differential TTL
- Converting TTL/CMOS Signals to RS422 Signals
- **High Speed Digital Communications Systems Testing**
- **Differential Long Line Drivers**

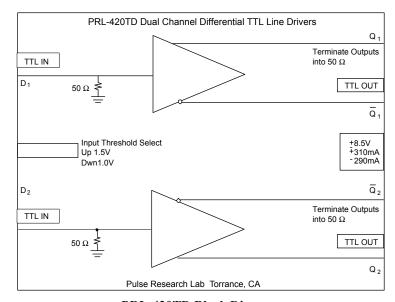
FEATURES

- $f_{max} > 250 \text{ MHz}$
- 1.2ns Typical Output Rise & Fall Times
- TTL Compatible 50Ω Input
- 1.5V or 1V Selectable Input Threshold
- Complementary 50Ω Outputs
- **BNC Input/SMA Output Connectors**
- DC Coupled I/O's
- Self-contained 1.3 x 2.9 x 3.9-in. unit including an AC/DC Adapter

DESCRIPTION

The PRL-420TD is a dual channel single-ended input, differential output TTL Line Driver. Each channel has a 50Ω TTL/CMOS compatible input and a pair of differential 50Ω outputs for driving long lines, in excess of 100ft, with or without 50Ω terminations. The input threshold voltage can be selected between 1.5V and 1V using a front panel switch. The 1V threshold makes easy interfacing with 3.3V TTL/CMOS devices.

The PRL-420TD is intended for use in testing and interfacing of high speed digital communication circuits, where conversion from single-ended TTL/CMOS level signals to differential signals is often required. The differential outputs are ideal for driving RS422 input circuits and for high speed A/D's where differential clock input is often required. The PRL-420TD complements other PRLseries Level Translators, such as the PRL-420ND/PD, PRL-450ND/PD, and PRL-460NPD/PND, etc., in systems integration applications where interconnections among different logic signals are often necessary.


The PRL-420TD is a ready-to-use functional module housed in a 1.3 x 2.9 x 3.9-in. extruded aluminum enclosure and is supplied with a ±8.5V AC/DC Adaptor. BNC input and SMA output connectors are provided. A block diagram showing the equivalent input and output circuits of the PRL-420TD is shown in Fig. 1.

SPECIFICATIONS ($0^{\circ} \text{ C} \le \text{Ta} \le 35^{\circ} \text{C}$)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into 50Ω .

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{in}	Input Resistance	49.5	50	50.5	Ω	
Rout	Output Resistance	49.5	50	50.5	Ω	
V_{TOSH}	Input Threshold Voltage (high)	1.4	1.5	1.6	V	
V_{TOSL}	Input Threshold Voltage (low)	0.9	1	1.1	V	
$ m V_{IL}$	TTL input Low Level	-0.5	0	0.5	V	
V _{IHH}	TTL input High Level	1.8	2	5	V	V_{TOSH}
V _{IHL}	TTL input High Level	1.2	1.3	5	V	V_{TOSL}
$V_{ m OL}$	TTL Output Low Level	-0.1	0	0.5	V	
V_{OH}	TTL Output High Level	2	2.2	2.4	V	
I_{DC}	DC Input Currents		310	330	mA	
			-285	-310	mA	
$V_{ m DC}$	DC Input Voltages	±7.5	±8.5	±12	V	
V _{AC}	AC/DC Adaptor Input Voltage	103	115	127	V	
T_{PLH}	Propagation Delay to output ↑		2		ns	
$T_{ m PHL}$	Propagation Delay to output ↓		2		ns	
t_r/t_f	Rise/Fall Times (10%-90%)		1.2	1.4	ns	Note (1)
T _{SKEW}	Skew between any 2 outputs		150	400	ps	
f _{max}	Max Clock Frequency	250	300		MHz	Note (2)
	Size		1.3x2.9x3.9		in.	
	Weight		5		Oz	

PRL-420TD Block Diagram

Notes:

- (1). The output rise and fall times are measured with both the Q and \overline{Q} outputs terminated into 50Ω . If an unused complementary output is left unterminated, a slight increase in rise and fall times will result.
- (2). f_{MAX} is measured by connecting its inputs to the PRL450ND, ECL to TTL Logic Level Translator, and its outputs to the PRL-350ECL comparator. The input threshold voltage of the PRL-350ECL is set to 2V. The outputs of the PRL-350ECL are divided by two using the PRL-255. The outputs of the PRL 255 are then measured using the PRL-550NQ5X, four channel ECL Terminators, connected to a 50 Ω input sampling 'scope.

1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 Email: sales@pulseresearchlab.com www.pulseresearchlab.com