
PRL-350ECL DUAL CHANNEL COMPARATOR, ECL OUTPUT PRL-350TTL DUAL CHANNEL COMPARATOR, TTL OUTPUT PRL-350TTL-NIM DUAL CHANNEL NIM-INPUT COMPARATOR, TTL OUTPUT

APPLICATIONS

- Window Comparators
- High Speed Timing
- Line Receivers
- Threshold Detection
- Peak Detection
- NIM translation

FEATURES

- $f_{MAX} > 1000/250 \text{ MHz}$ for PRL-350ECL*/PRL-350TTL
- 750 ps/1.1 ns Typical t_r for PRL-350ECL/PRL-350TTL
- +50 mV, 0 V or -50 mV Preset Input Threshold Voltage
- +400 mV, 0V or -400 mV for models with –NIM suffix
- -2.0 V to +3.0 V Input Common Mode Range
- 10 mV_{P-P} Minimum Input @ 250 MHz for PRL-350ECL and @ 150 MHz for PRL-350TTL
- DC Coupled 50 Ω Inputs
- Complementary ECL/TTL Outputs
- SMA I/O Connectors
- Self-contained 1.3 x 2.9 x 3.9-in. modules include AC/DC Adapters

PRL-350TTL
Dual Channel Comparator, TTL Outputs

DESCRIPTION

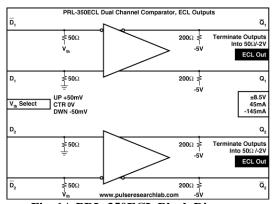
The PRL-350ECL and PRL-350TTL are ready-to-use, high-speed dual-channel comparator modules. The PRL-350ECL has a typical maximum clock frequency in excess of 2 GHz* and has complementary ECL outputs designed for driving 50 Ω transmission lines terminated to 50 Ω /-2 V. The PRL-350TTL has a typical maximum clock frequency in excess of 250 MHz and has complementary TTL outputs designed for driving 50 Ω transmission lines with or without 50 Ω load terminations.

Both models have DC coupled $50~\Omega$ inputs and outputs. Input threshold voltage can be selected either from a set of preset values of +50~mV, 0~V or -50~mV using a common three-position switch, or varied independently in each channel by applying a DC voltage to one of the two inputs. Input Common Mode Range is -2.0~V to +3.0~V. Models with -NIM suffix, such as PRL-350TTL-NIM, have $\pm 400~\text{mV}$ or 0~V preset input threshold voltage. The -400 mV threshold setting is intended for NIM input signals. The 0V threshold setting is intended for signals with zero crossings, such as a sinewave or AC-coupled square wave, etc.

These high-speed comparators are Mini Modular InstrumentsTM that can be used as peak detectors, threshold detectors, sinewave-to-square wave converters, window comparators or differential line receivers, etc. Typical minimum input voltage of $10~\text{mV}_{\text{P-P}}$ into $50~\Omega$ is required for up to 250~MHz for the ECL output and 150~MHz for the TTL output. It is recommended that the non-driven input be terminated into $50~\Omega$ when the input frequency is near f_{MAX} and its amplitude is less than $20~\text{mV}_{\text{P-P}}$.

Each unit is supplied with a ±8.5 V AC/DC Adapter and housed in a 1.3 x 2.9 x 3.9-in. extruded aluminum enclosure.

* Although the PRL-350ECL typically operates up to 2 GHz, the internal device is specified at 1 GHz by the device manufacturer; therefore the guaranteed f_{MAX} is 1 GHz.



1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 sales@pulseresearchlab.com www.pulseresearchlab.com

SPECIFICATIONS (0° C \leq T_A \leq 35° C)

Unless otherwise specified, dynamic measurements are made with all outputs terminated into 50 Ω/V_{TT} , where $V_{TT} = -2 \text{ V}$ for ECL outputs and 0 V for TTL outputs.

		PRL-350ECL			PRL-350TTL			
SYMBOL	PARAMETER	Min	Тур	Max	Min	Тур	Max	UNIT
R _{in}	Input Resistance	49.5	50	50.5	49.5	50	50.5	Ω
R _{out}	Output Resistance	NPN emitter			49.5	50	50.5	Ω
$V_{\mathrm{TH}^{+}}$	Preset positive threshold voltage	45	0	55	45	50	55	mV
NIM+		396	400	404	396	400	404	
V_{TH-}	Preset negative threshold voltage	-55	-50	-45	-55	-50	-45	mV
NIM-		-404	-400	-396	-404	-400	-396	
V_{TH0}	Preset zero threshold voltage ⁽¹⁾	-2	0	2	-2	0	2	mV
V_{OL}	Output Low Level	-2	-1.6	-1.5	-0.5	0	0.5	V
V_{OH}	Output High Level	-1	-0.8	-0.6	2	2.2	2.4	V
I_{DC}	DC Input Current		36/ -136	45/-145		300/-285	325/-300	mA
v_{DC}	DC Input Voltage	±7.5	±8.5	±12	±7.5	±8.5	±12	V
v_{AC}	AC/DC Adapter Input Voltage	103	115	127	103	115	127	V
t _{PLH}	Propagation Delay to output ↑		1.5			2		ns
t _{PHL}	Propagation Delay to output ↓		1.5			2		ns
t_r/t_f	Rise/Fall Times ⁽²⁾		750	850		1100	1250	ps
t _{SKEW}	Skew between any 2 outputs		100	300		200	400	ps
V _{IN} I**	Minimum Input Voltage @ 150MHz ⁽³⁾	20	10		20	10		mVp-p
V _{IN} II**	Minimum Input Voltage @ 250MHz ⁽³⁾	20	10		40	20		mVp-p
V _{IN} III	Minimum Input Voltage @ 1GHz	250	100			NA		mVp-p
V_{CM}	Input Common Mode Range		-2.0/+3.0			-2.0/+3.0		V
f	Max Clock Frequency ⁽⁴⁾	1000	2000		250	300		MHz
	Size	1.3 x 2.9 x 3.9			1.3 x 2.9 x 3.9			in.
	Weight	7			7			Oz

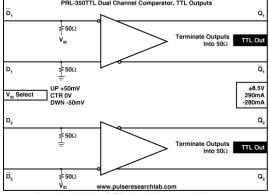


Fig. 1A PRL-350ECL Block Diagram

Fig. 1B PRL-350TTL Block Diagram

- (1) If the switch is set to the center position (0 V threshold) a non-driven channel will oscillate and induce jitter in the driven channel. Connect any output to any input to stop the oscillation.
- (2) 20%-80% for ECL outputs, 10%-90% for TTL outputs. For the PRL-350ECL, an unused complementary output must be either terminated into 50 Ω/V_{TT} or AC coupled into a 50 Ω load; otherwise, output waveform distortion and rise time degradation will occur. Use the PRL-ACT-50, Dual Channel AC-Coupled 50 Ω Termination, for terminating unused complementary outputs. Use the PRL-550NQ/PQ4X, Four Channel NECL/PECL Terminators, respectively, for the 50 Ω/V_{TT} termination and for connection of NECL/PECL signals to 50 Ω input oscilloscopes. If preservation of DC levels is not required, then the PRL-SC-104, 0.1 μ f DC block or the PRL-ACX-12dB, 12 dB AC-coupled attenuator may be used to connect the NECL/PECL outputs to 50 Ω input instruments.

For the PRL-350TTL, very slight output waveform distortion and rise time degradation will occur when an unused complementary output is not terminated. For optimum performance, however, all outputs should be terminated.

- (3) In order to reduce jitter near f_{MAX}, terminate the non-driven input into 50 Ω when the input voltage is less than 20 mV_{P-P}.
- (4) Although the PRL-350ECL typically operates up to 2 GHz, the internal device is specified at 1 GHz by the device manufacturer; therefore the guaranteed f_{MAX} is 1 GHz.

1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 sales@pulseresearchlab.com www.pulseresearchlab.com Document modified 10/25/07