
PRL-220A ÷2, ÷4, ÷8 and ÷16 TTL FREQUENCY DIVIDER PRL-240A +2 and +10 TTL FREQUENCY DIVIDER

APPLICATIONS

- Count down signal for 'scope trigger
- Control Signal for split cycle timing
- Counter Output simulation
- Square Wave Generator (Except ÷10 Output)
- An Essential Lab Tool for Working with TTL/CMOS Circuits

FEATURES

- 100 MHz Toggle Frequency
- 50 Ω Outputs deliver > 2.2V into 50 Ω loads
- TTL/CMOS Compatible Input Levels
- 50 Ω or 500 Ω Input Resistance
- **BNC I/O Connectors**
- Ready-to-Use 1.3 x 2.9 x 2.9-in. Module includes AC/DC Adapter

DESCRIPTION

The PRL-220A and PRL-240A are self-contained high-speed TTL frequency dividers capable of operating at clock frequencies in excess of 100 MHz. The PRL-220A has $\div 2$, $\div 4$, $\div 8$ and $\div 16$ outputs. The PRL-240A has $\div 2$ and $\div 10$ outputs. The input resistance of each unit can be selected to be 500Ω or 50Ω by a toggle switch. Functional block diagrams of the PRL-220A and PRL-240A are shown in Fig.1 and Fig.2, respectively.

The back-matched 50Ω outputs of these frequency dividers can drive long lines and deliver greater than 2.2V into 50Ω loads. Except for the division ratios, the performance characteristics of both units are identical.

The outputs of these frequency dividers are square waves, except for the ÷10 output in the PRL-240A, and they are useful for testing High and Low pass filters. The divider outputs are useful as 'scope triggers for viewing multifrequency signals. The $\div 2$ signal is often needed as a control signal for split-cycle timing applications.

Each unit is housed in an attractive 1.3 x 2.9 x 2.9-in. extruded aluminum enclosure and has BNC I/O connectors. A ± 8.5 V AC/DC Adapter is supplied with each unit.

If mounting is desired, a pair of 35001420 mounting brackets can accommodate two PRL modules of the same length. A number of PRL modules can also share a single ±8.5V AC/DC adaptor using the PRL-730 or PRL-736 voltage distribution module. Please see the Accessories Section for more detail.

1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 Email: sales@pulseresearchlab.com www.pulseresearchlab.com

*SPECIFICATIONS ($0^{\circ} C \le T_A \le 35^{\circ}C$)

SYMBOL	PARAMETER	Min	Тур	Max	UNIT	Comments
R _{in (Lo)}	Input Resistance	49.5	50	50.5	Ω	
R _{in (Hi)}	Input Resistance	495	500	505	Ω	
I _{DC}	DC Input Current		200 135	225 180	mA	PRL-220A PRL-240A
V _{DC}	DC Input Voltage	7.5	8.5	12	V	
V _{AC}	AC/DC Adaptor Input Voltage	103	115	127	V	
V _{IH}	Input HI Level	2	2.5	5	V	
V _{IL}	Input LO Level	-0.5	0	0.5	V	
V _{OH}	Output Hi Level	2.2	2.5		V	50Ω
		4.8	5		V	1MΩ
V _{OL}	Output Lo Level		0.15	0.25	V	50Ω
			0.3	0.5	V	1MΩ
T _{PLH}	Propagation Delay to f/n output \uparrow		10	13	ns	
T _{PHL}	Propagation Delay to f/n output \downarrow		10	13	ns	
t_r/t_f	Rise/Fall Times (10%-90%)		2/1.8	3	ns	
T _{SKEW}	Skew between outputs		1	2	ns	
F _{MAX}	Max clock frequency	100			MHz	$Rin = 50 \Omega$
	Size		1.3 x 2.9 x 2.9		in.	
	Shipping weight, incl. AC adapter		3		lb.	

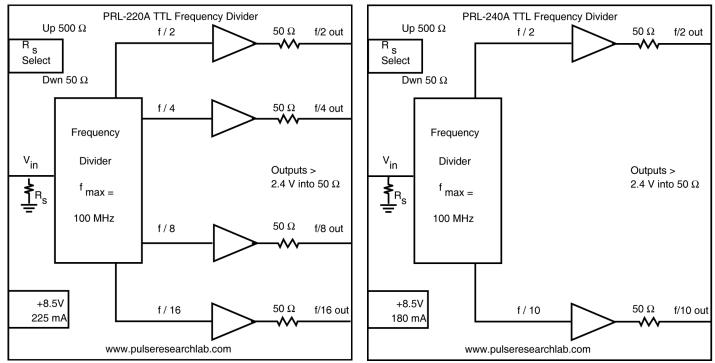


Figure 1A PRL-220A Block Diagram

Figure 2A PRL-240A Block Diagram

1234 Francisco Street, Torrance, CA 90502 Tel: 310-515-5330 Fax: 310-515-0068 Email: <u>sales@pulseresearchlab.com</u> <u>www.pulseresearchlab.com</u>