THE NEW STANDARD FOR QUALITY

INFCS and INFCS-xxxB INFINITY ${ }^{\circledR}$ C Strain Meter/Controller

Operator's Manual

NEWPORTElectronics, Inc.

http://www.newportUS.com/manuals

Counters
Frequency Meters
PID Controllers
Clock/Timers
Printers
Process Meters
On/Off
Controllers
Recorders
Relative
Humidity
Transmitters
Thermocouples
Thermistors
Wire

Rate Meters Timers

Totalizers
Strain Gauge Meters

Voltmeters
Multimeter
Soldering Iron
Testers
pH pens
pH Controllers
pH Electrodes
RIDs
Thermowells
Flow Sensors

For Immediate Assistance
In the U.S.A. and Canada: 1-800-NEWPORT ${ }^{\circledR}$
In Mexico: (95) 800-NEWPORT ${ }^{\text {sM }}$
Or call your local NEWPORT Office.

NEWPORTnet ${ }^{\text {sm }}$ On-Line Service http://www.newportUS.com

It is the policy of NEWPORT to comply with all worldwide safety and EMC/EMI regulations that apply. NEWPORT is constantly pursuing certification of its products to the European New Approach Directives. NEWPORT will add the CE mark to every appropriate device upon certification.

The information contained in this document is believed to be correct but NEWPORT Electronics, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications without notice.

WARNING: These products are not designed for use in, and should not be used for, patient connected applications.
 Case Bezel Design" are trademarks of NEWPORT Electronics, Inc.

PATENT NOTICE: This product is covered by one or more of the following patents: U.S. Pat. No. Des. 336,895; 5,274,577; 6,243,021 / Canada 2052599; 2052600 / Italy 1249456; 1250938 / France Brevet No. 9112756 / Spain 2039150; 2048066 / UK Patent No. GB2 249 837; GB2 248954 / Germany DE 4134398 C2. Other International Patents Pending.

This device is marked with the international caution symbol. It is important this device as it contains important information relating to safety and EMC.

PREFACE

Manual Objectives

This manual shows you how to set up and use the Programmable Digital Meter.

Standard Procedures:

* Checking voltage jumpers, or changing voltage power
* Mounting the panel
* Selecting the input type
* Selecting a decimal point position
* Scaling with known loads (on-line calibration)
* Scaling without known loads
* Selecting ratiometric/non-ratiometric operation
* Displaying the filtered/unfiltered input signal
* Selecting a display color
* Setting the setpoint's active band
* Selecting a latched or unlatched operation
* Setting setpoint deadbands
* Enabling/disabling setpoint changes
* Enabling/disabling the RESET button in the Run Mode

Optional Procedures:

* Setting input resolution
* Enabling/disabling analog output
* Selecting analog output as current or voltage
* Assigning the output to net/gross reading
* Scaling analog output

NEW
Features with $\sqrt{\sqrt{\underline{N u s}}}$ are for the "B" version which has three-color programmable "Big" LED display - All segment characters shown are for the " B " version.

Tipres For first-time users: Refer to the QuickStart Manual for basic operation and setup instructions.

Table A-1. Sections of the Manual

If you want to read about:	Refer to section	
Unpacking; safety considerations	1	Introduction
Meter description and features	2	About the Meter
Main board power jumpers; panel mounting, sensor input, main power and analog and relay output	3	Getting Started
Input type; decimal point position; reading scale \& offset; reading configuration; display color; setpoint configuration; setpoint deadbands; output configuration (analog output); analog output scaling; lock out configuration; display brightness	4	Configuring the Meter
Display messages	5	Display Messages
Meter menu/sub-menu messages	6	Menu Configuration
Setpoint configuration messages	7	Setpoint Configuration Displays
Specifications	8	Specifications
Factory Preset Values	9	Factory Default Setup as Shipped

Table of Contents

Table of Contents

Section Page
SEC 1 INTRODUCTION 1
1.1 Unpacking 1
1.2 Safety Considerations 2
SEC 2 ABOUT THE METER 3
2.1 Description 3
2.2 Features 3
2.3 Available Accessories 4
2.4 Front of the Meter 5
2.5 Back of the Meter 8
2.6 Disassembly 10
SEC 3 GETTING STARTED 11
3.1 Rating/Product Label 11
3.2 Main Board Power Jumpers 11
3.3 Panel Mounting 14
3.4 Connecting Sensor Inputs 15
3.5 Connecting Main Power 17
3.6 Connecting External Tare Switch 19
3.7 Connecting Analog and Relay Outputs 19
SEC 4 CONFIGURING THE METER 21
4.1 Selecting the Input Type 21
4.2 Selecting a Decimal Point Position 22
4.3 Selecting Reading Scale and Offset 22
4.3.1 Scaling with Known Loads 23
4.3.2 Scaling without Known Loads 26
4.4 Using Reading Configuration 27
4.4.1 Selecting Ratiometric/Non-Ratiometric Operation 28
4.4.2 Setting Input Resolution 28
4.4.3 Displaying the Filtered/Unfiltered Input Signal 29
4.4.4 Selecting Gross/Net or Peak Display 29

Table of Contents

Table of Contents

Section Page
4.5 Selecting a Display Color 30
4.6 Using Setpoint 1 Configuration 30
4.6.1 Setting Setpoint 1's Active Band 31
4.6.2 Selecting if Setpoint 1 is Latched or Unlatched 31
4.6.3 Assigning Setpoint 1 Values to Net or Gross Readings 32
4.7 Using Setpoint 2 Configuration 32
4.7.1 Setting the Setpoint 2's Active Band 32
4.7.2 Selecting if Setpoint 2 is Latched or Unlatched 33
4.7.3 Assigning Setpoint 2 Values to Net or Gross Readings 33
4.8 Setting the Setpoint 1 Deadband 34
4.9 Setting the Setpoint 2 Deadband 35
4.10 Using Output Configuration 37
4.10.1 Enabling or Disabling the Analog Output 37
4.10.2 Selecting Analog Output as Current or Voltage 38
4.10.3 Selecting Analog Output or Proportional Control 38
4.11 Using Output Scale and Offset 39
4.11.1 Examples of Output Scale and Offset 41
4.12 Using Lock Out Configuration 42
4.12.1 Enabling or Disabling the RESET Button in the Run Mode 42
4.12.2 Enabling or Disabling Setpoint Changes 42
4.12.3 Setpoint Display Function: Firmware Version or Setpoint Value 43
4.13 Using Display Brightness Configuration 43
4.13.1 Changing Brightness Level 43
SEC 5 DISPLAY MESSAGES 44
SEC 6 MENU CONFIGURATION DISPLAYS 45
SEC 7 SETPOINT CONFIGURATION DISPLAYS 49
SEC 8 SPECIFICATIONS 50
SEC 9 FACTORY PRESET VALUES 55
SEC 10 CE APPROVAL INFORMATION 56

Table of Contents

List of Figures

Figure
Page
2-1 Front-Panel with "Big" LED Display 5
2-2 Front Panel with Standard LED Display 5
2-3 Connectors (AC-Powered and DC-Powered) 8
3-1 Main Board Power Jumpers (W1, W2, W3) 11
3-2 Main Board Jumper Positions 12
3-3 Upper Isolated Analog Output Option Board Installation 12
3-4 Meter - Exploded View 14
3-5 Panel Cut-Out 14
3-6 Meter-powered Bridge Input 15
3-7 Externally-powered Bridge Input 15
3-8 4-Wire DC Input Connections with External Excitation 16
3-9 Current Input Connections with Internal Excitation 16
3-10 Current Input Connections with External Excitation 17
3-11 Main Power Connections - AC 17
3-12 Main Power Connections - DC 18
3-13 External Tare Connections 19
3-14 Analog Output Connections 19
3-15 Relay Output Connections 20
3-16 Isolated Analog Output Connections 20
4-1 Alarm Example 36
8-1 Meter Dimensions/Panel Cutout 54

Table of Contents

List of Tables

Table Page
A-1 Sections of the Manuals ii
2-1 Accessories and Add-Ons 4
2-2 Connector Description 9
2-3 DIP Switch Positions/Input Range \& Excitation 10
3-1 S3 Jumper Functions 13
3-2 AC-Power Connections 18
4-1 Range Selection Dip Switch Positions for Regular Voltage Input 23
4-2 Range Selection Dip Switch Positions for Millivolt/Milliamp Input 23
4-3 Natural Gain 26
4-4 Input Resolution Multiplier 26
5-1 Display Messages 44
6-1 Menu Configuration Displays 45
6-2 Run Mode Displays 48
7-1 Setpoint Configuration Displays 49
8-1 Color Chart for DC Power 53
9-1 Factory Preset Values 55

Notes, Warnings and Cautions

NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by three labels:

- NOTE
- WARNING
- CAUTION
- IMPORTANT

Note 1×3
NOTE: provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: tells you about the risk of electric shock.

CAUTION, WARNING or IMPORTANT: tells you of circumstances or practices that can effect the meter's functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad $\xrightarrow{2}$
\qquad
\qquad
\qquad
\qquad
\qquad

Introduction

SECTION 1. INTRODUCTION

1.1 UNPACKING

Remove the Packing List and verify that all equipment has been received. If there are any questions about the shipment, use the phone numbers listed on the back cover to contact the Customer Service Department nearest you.

Upon receipt of shipment, inspect the container and equipment for any signs of damage. Take particular note of any evidence of rough handling in transit. Immediately report any damage to the shipping agent.

Note

The carrier will not honor any claims unless all shipping material is saved for their examination. After examining and removing contents, save packing material and carton in the event reshipment is necessary.

Verify that you receive the following items in the shipping box:

QTY DESCRIPTION

1 Programmable Digital Meter indicator/controller with all applicable connectors attached.

1 Owner's Manual

1 Set Mounting brackets

If you ordered any of the available options (except the "BL" Blank Lens option), they will be shipped in a separate container to avoid any damage to your indicator/controller.

1.2 SAFETY CONSIDERATIONS

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is a panel mount device protected in accordance with EN 610101:2001, electrical safety requirements for electrical equipment for measurement, control and laboratory. Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuit-breaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall not interrupt the Protective Conductor (Earth wire), and it shall meet the relevant requirements of IEC 947-1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

- Do not exceed voltage rating on the label located on the top of the instrument housing.
- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!!

About The Meter

SECTION 2. ABOUT THE METER

2.1 DESCRIPTION

The Digital Programmable Strain meter is a value packed indicator/controller. Four full digits and broad scaling capability allow for display in virtually all engineering units.
A wide variety of DC current and voltage input ranges cover typical strain applications. Standard features include sensor excitation and front panel or remote tare. Your meter may be a basic indicator or it may include analog output or dual relay output. Analog or dual relay output must be ordered at time of purchase. Analog output is fully scalable and may be configured as a proportional controller, or to follow your display. Dual 5 amp , form C relays control critical processes. A mechanical lockout has been included to guard against unauthorized changes.

2.2 FEATURES

The following is a list of standard features:

* 4-digit, three color Programmable, Big LED display or 4-digit, Standard LED display
* NEMA 4/Type 4 Front Bezel
* ± 0.03 \% accuracy
* 8 DC input ranges: $0-100 \mathrm{mV}, \pm 50 \mathrm{mV}, 0-5 \mathrm{~V}, 1-5 \mathrm{~V}$, $0-10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-20 \mathrm{~mA}$, and $4-20 \mathrm{~mA}$
* $5,10,12$, or 24 Vdc sensor excitation
* Peak detection
* Front panel and remote tare function
* Nonvolatile memory-no battery backup
* 115 or $230 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ power supply or $10-32 \mathrm{Vdc}$ or $26-56 \mathrm{Vdc}$

The following is a list of optional features:

* Dual 5 amp , form C relay outputs
* Scalable analog output
* Proportional control
* Easy setup for proportional control

About The Meter

2.3 AVAILABLE ACCESSORIES

Table 2-1. Accessories and Add-Ons

Add-On Options

FS	Special Calibration/Configuration
SPC4	NEMA-4 Splash Proof Cover
SPC18	NEMA-4 Splash Proof Cover, NEW

Accessories

TP1A Trimplate panel adaptor.
Adapts DIN1A/DIN2A cases to larger panel cutouts

RP18	19-In. Rack Panel for one (1) 1/8 DIN instrument
RP28	19-In. Rack Panel for two (2) 1/8 DIN instruments
RP38	19-In. Rack Panel for three (3) 1/8 DIN instruments

About The Meter

2.4 FRONT OF THE METER

Figure 2-1 shows each part of the front of the three-color programmable "Big" LED display meter (Version B).

Digital LED Display:

-1.9.9.9 or 9.9.9.9 4-digit three color programmable, 21 mm (0.83 ") high LED display with programmable decimal point.

Figure 2-1. Front-Panel with Big Display

Figure 2-2 shows each part of the front of the standard LED display meter.

Digital LED Display:

-1.9.9.9. or 9.9.9.9.
14 segment, 13.8 mm (0.54 ") high LED display with programmable decimal point.

Figure 2-2. Front-Panel wtih Standard Display

These meter display windows (both versions) light when appropriate:
1 Setpoint 1 status
2 Setpoint 2 status

5 Pushbuttons for programming the meter.

About The Meter

METER BUTTONS

SETPTS Button

In the Run Mode, this button will sequentially recall the previous setpoint settings. As necessary, use the $\triangle / N T / G R S$ and $/ T A R E$ buttons to alter these settings, then press the SETPTS button to store new values.

Unless you press the SETPTS, $/$ /TARE, or $\mathbf{A} / \mathbf{N T} /$ GRS button within 20 seconds, the meter will scroll to setpoint 2 and then to the Run Mode.

Note res If the dual relay option is not installed or if $L . \exists=1$ is displayed on the $L \kappa, C F$ menu, pressing the SETPTS button will display the meter's firmware version.

A/NT/GRS Button

In the Run Mode, this button will toggle between net/gross readings or peak readings depending upon setup.

In the Configuration Mode, press this button to change the value of the flashing digit shown on the display and/or toggle between menu choices, such as $R, i=R$ or $R . i=N$ on Rd.CF menu. When configuring your setpoint values, press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to advance the flashing digit's value from 0 to 9 by 1 .

/TARE Button

In the Run Mode press the /TARE button to tare your reading (zeroing).

In the Configuration Mode, press the this button to scroll to the next digit.

About The Meter

MENU Button

In the Run Mode, press the MENU button to terminate the current measuring strain and enter you into the Configuration Mode.

Note ers Only if you have not installed the lock out jumpers on the main board.

In the Configuration Mode, press the MENU button to store changes in the nonvolatile memory and then advance you to the next menu item.

RESET Button

If you hard reset (press the MENU button followed by the RESET button) or power off/on the meter, it shows RSt, followed by 5tRid.

In the Run Mode, press the RESET button to reset the latched setpoints. The meter shows SP.RS and returns to the Run Mode.

In the Configuration Mode, press the RESET button once to review the previous menu. Press the RESET button twice to perform a hard reset and return to the Run Mode.

In the Peak Mode, press the RESET button to reset peak values. The meter shows PK.RS and returns to the Run Mode.

In the Setpoint Mode, press the RESET button to reset the latched setpoint. The meter shows SP.RS and enters the Run Mode.

In the Tare Mode, press the RESET button to reset. The meter shows E.RSE.

When in setpoint or Configuration Mode, if the meter shows 9999 or -1999 with all flashing digits, the value has overflowed. Press the $\mathbf{\Delta / N T / G R S}$ button to start a new value.

About The Meter

2.5 BACK OF THE METER

Figure 2-3 shows the label describing the connectors on the back of the meter. Table 2-2 on the following page gives a brief description of each connector at the back of the meter.

Figure 2-3. Connectors (AC-Powered and DC-Powered Detail)

About The Meter

2.5 BACK OF THE METER (Continued)

Table 2-2. Connector Description

Connector	Description
TB1-1	Setpoint 1: Normally open (N.O.1) connection
TB1-2	Setpoint 1: Normally closed (N.C.1) connection
TB1-3	Setpoint 1: Common (COM1) connection
TB1-4	Setpoint 2: Normally open (N.O.2) connection
TB1-5	Setpoint 2: Normally closed (N.C.2) connection
TB1-6	Setpoint 2: Common (COM2) connection
TB1-7	AC line connection (no connections on DC-powered units)
TB1-8	AC neutral connection (+ Input on DC-powered units)
TB1-9	AC earth ground (DC-power return on DC-powered units)
TB1-10	Analog voltage output
TB1-11	Analog current output
TB1-12	Analog return
TB2-1	-E: Negative excitation connection from meter (5, 10, 12 V)
TB2-2	+E: Positive excitation connection from meter (5, 10, 12 V$)$
TB2-3	+20 mA connection for analog input
TB2-4	+R (Not used)
TB2-5	+24 V output connection
TB2-6	+S: Positive signal input
TB2-7	-S: Negative signal input and return for +20 mA or +24 V
TB2-8	-R (Not used)
TB5-1	Isolated Analog Voltage Output
TB5-2	Isolated Analog Current Output
TB5-3	Isolated Analog Output Return
J1 (1-2)	Remote tare connection with a momentary switch

About The Meter

The DIP switches are located at the S1 position (refer to Figure 3-2). Use a small instrument, such as a paper clip, to change the switches from open to closed. Table 2-3 lists DIP switch settings at the S1 position required to complete the setup of your meter.

Table 2-3. DIP Switch Positions/Input Range \& Excitation

Function	S1 DIP Switch Positions							
$\begin{aligned} & \mathrm{C}=\text { Closed } \\ & \mathrm{O}=\text { Open } \end{aligned}$	1	2	3	4	5	6	7	8
Settings for Excitation Voltage								
Internal 5/10/12 excitation	C	-	-	-	-	-	-	-
External 5/10/12 excitation	0	-	-	-	-	O	O	-
Internal 12 Vdc excitation	C	-	-	-	-	O	O	-
Internal 10 Vdc excitation	C	-	-	-	-	C	0	-
Internal 5 Vdc excitation	C	-	-	-	-	C	C	-
Settings for Input Ranges								
0-100 mV DC	-	O	C	0	0	-	-	0
$\pm 50 \mathrm{mV} \mathrm{DC}$	-	0	C	0	C	-	-	0
$\pm 5 \mathrm{Vdc}$	-	C	0	0	C	-	-	C
$0-10 \mathrm{Vdc}$	-	C	0	0	0	-	-	C
0-20 mA DC	-	0	C	C	0	-	-	0

The display must also be configured to the selected input type after setting the DIP switches (see Section 4.1, Selecting the Input Type)

2.6 DISASSEMBLY

You may need to open up the meter for one of the following reasons:

- To check or change the 115 or 230 Vac power jumpers.
- To install or remove jumpers on the main board.

Note ere Disconnect the power supply before proceeding.
To remove and access the main board, follow these steps:

- Disconnect the main power from the meter.
- Remove the back case cover.
- Lift the back of the main board upwards and let it slide out of the case.

Getting Started

SECTION 3. GETTING STARTED

\Leftrightarrow
Caution: The meter has no power-on switch, so it will be in operation as soon you apply power.

If you power off/on the meter, or perform a hard reset (press the RESET button twice), the meter shows RSE, followed by SERN.

3.1 RATING/PRODUCT LABEL

This label is located on top of the meter housing (refer to Figure 3-4).

3.2 MAIN BOARD POWER JUMPERS (refer to Figure 3-1)

Important: If you want to change the Factory preset jumpers, do the following steps; otherwise go to Section 3.3.

Warning: Disconnect the power from the unit before proceeding. This device must only be reconfigured by a specially trained electrician with corresponding qualifications. Failure to follow all instructions and warnings may result in injury!

1. Remove the main board from the case. Refer to Section 2.6.
2. Locate the solder jumpers W1, W2, and W3 (located near the edge of the main board alongside the transformer).
3. If your power requirement is $\mathbf{1 1 5} \mathbf{~ V a c , ~ s o l d e r ~ j u m p e r s ~ W 1 ~ a n d ~ W 3 ~ s h o u l d ~ b e ~}$ wired, but jumper W2 should not. If your power requirement is $\mathbf{2 3 0} \mathbf{~ V a c ,}$ solder jumper W2 should be wired, but jumpers W1 and W3 should not.

Note: W4 jumper is not used.
Figure 3-1 shows the location of solder jumpers W1 through W3.

Figure 3.1 Main Board Power Jumpers

Getting Started

3.2 MAIN BOARD POWER JUMPERS (Continued)

Figure 3-2 shows the location jumper positions on the main board.

Figure 3-2. Main Board Jumper Positions

Figure 3-3. Upper Isolated Analog Output Option Board Installation

Getting Started

3.2 MAIN BOARD POWER JUMPERS (Continued)

S2 jumpers are used for testing purposes. Do not use as reading errors may result.
S3 jumpers are used for the following (refer to Figure 3-2):

* To enable or disable the front panel push-buttons
* To allow for an extremely low resistance load for analog output
* To disable the MENU button
* To perform factory calibration procedure

Test pins TP1 - TP11 are for testing purposes. Do not use as reading errors may result. S4-A Factory default jumper is removed.

Table 3-1. S3 Jumper Functions

Jumper	Description
S3-A	Install to enable front panel push-buttons. Remove to disable all front panel push-buttons.
S3-B	Removed. For factory calibration only.
S3-C	Removed. Not used.
S3-D	Installed for external ratiometric.
S3-E	If installed without S3-B, the MENU button locks out. If you press the MENU button, the meter shows LOC.

Getting Started

3.3 PANEL MOUNTING

FRONT BEZEL

Figure 3-4. Meter - Exploded View

1. Cut a hole in your panel, as

NOTE: Dimensions in Millimeters (Inches)
Figure Figure 3-5. Panel Cut-Out

Getting Started

3.4 CONNECTING SENSOR INPUTS

Figures 3-6 shows excitation supplied from the meter's internal supply (50 mA maximum) Select 5, 10, or 12 volt excitation at DIP switch.

Connections with "typical wire colors"
+E = Positive Excitation (red)
-E = Negative Excitation (black)
+S = Positive Signal Input (green)
-S = Negative Signal Input (white)

Figure 3-6. Meter-powered Bridge Input

Figures 3-7 shows the connections required for an externally-powered bridge input: the external supply is brought to the meter's buffer circuits to permit ratiometric readings. Set S1 DIP switch for external excitation for Figure 3-7 and 3-8.

Connections with "typical wire colors"
+E = Positive Excitation (red)
-E = Negative Excitation (black)
+S = Positive Signal Input (green)
-S = Negative Signal Input (white)

Figure 3-7. Externally-powered Bridge Input

Getting Started

3.4 CONNECTING SENSOR INPUTS (Continued)

Figure 3-8. 4-Wire DC Input Connections with External Excitation

Figure 3-9. Current Input Connections with Internal Excitation

Getting Started

3.4 CONNECTING SENSOR INPUTS (Continued)

Figure 3-10. Current Input Connections with External Excitation

3.5 CONNECTING MAIN POWER

Connect the AC main power connections as shown in Figure 3-11.

WARNING: Do not connect AC power to your device until you have completed all input and output connections. This device must only be installed by a specially trained electrician with corresponding qualifications. Failure to follow all instructions and warnings may result in injury!

Figure 3-11. Main Power Connections - AC

Getting Started

3.5 CONNECTING MAIN POWER (Continued)

Table 3-2 shows the wire color and respective terminal connections for both USA and Europe.

Table 3-2. AC-Power Connections

		WIRE COLORS	
TB1	AC POWER	EUROPE	USA
7	\sim AC Line	Brown	Black
8	\sim AC Neutral	Blue	White
9	\sim AC Earth	Green/Yellow	Green

Connect the DC main power connections as shown in Figure 3-12.

When using DC power, refer to the Table 8-1 Color Chart in the Specifications Section for Display Color, Intensity, Excitation Voltage and Current, and Analog Output Isolated Option. Failure to use proper ratings may result in damaging the unit.

Figure 3-12. Main Power Connections - DC

Getting Started

3.6 CONNECTING EXTERNAL TARE SWITCH

Connect external tare connections as shown in Figure 3-13.

Figure 3-13. External Tare Connections

3.7 CONNECTING ANALOG AND RELAY OUTPUTS

If you have purchased a meter with analog or dual relay or isolated analog output, refer to the following drawings for output connections.

Figure 3-14. Analog Output Connections

Getting Started

3.7 CONNECTING ANALOG AND RELAY OUTPUTS (Continued)

Figure 3-15. Relay Output Connections.

Figure 3-16. Isolated Analog Output Connections.

Configuring The Meter

SECTION 4．CONFIGURING THE METER

Note rex Refer to Table 6－1 for a summary list of menu configuration．

For first－time users：Refer to the QuickStart Manual for basic operation and set－up instructions．

4．1 SELECTING THE INPUT TYPE INPE

To select your appropriate input type signal，follow these steps：

Before proceeding，set the input DIP switch settings at the back of your meter．（Refer to Table 2－3）．

1．Press the MENU button．The meter shows INPE

2．Press the - TARE button．The meter flashes one of the following：
－I00m（for 0－100 mV dc）（Default）
－E50円（for $\pm 50 \mathrm{mV} \mathrm{dc}$ ）
－IOM（for 0－10 Vdc）
－ES＇（for $\pm 5 \mathrm{Vdc}$ ）
－日－e日（for 0－20 mA dc）

3．Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to scroll through available choices．

4．Press the MENU button to store your choice．The meter momentarily shows SERd，followed by dE［．P（Decimal Point）．

Configuring The Meter

4.2 SELECTING A DECIMAL POINT POSITION dEC. \mathcal{F}

Note rब Refer to Table 6-1 for a summary list of menu configuration.

To select a decimal point display position, follow these steps:

1. Press the MENU button until the meter shows $\mathbb{D E [. F}$.
2. Press the \quad TARE button. The meter shows one of the following:

- FFF.F
- FF.FF
- F.FFF
- FFFF (Default)

3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to scroll between available choices.
4. Press the MENU button to store your choice. The meter momentarily shows 5ERd, followed by the next menu Rd.5.0 (Reading Scale and Offset). Or you can press the RESET button to abort and go back to the dEC.P menu.

4.3 SELECTING READING SCALE AND OFFSET Rd.5.0

Note erse Refer to Table 6-1 for a summary list of menu configuration.
To scale the meter to show readings in engineering units. There are two methods. One method is to scale with known inputs. Another method is to scale without known inputs: you calculate input values based on the transducer specifications and manually enter them through the keyboard.

Configuring The Meter

4.3.1 Scaling with Known Loads (On-Line Calibration)

Note 1
For maximum resolution, find the maximum signal that will be applied to the meter input.

- For regular voltage input, refer to the main body of Table 4-1.
- For millivolt or milliamp input, refer to the main body of Table 4-2.

Set the DIP switch positions as indicated at the top of either Table 4-1 or 4-2. The numbers 1 through 8 in the top row of either table represent dip switches 1 through 8, and the O, C or X directly below the number indicates the correct position of each switch.

- 'O' Switch should be open or up.
- 'C' Switch should be closed or down.
- ' X ' Switch is used to control excitation (refer to Table 2-3 to determine correct position of these switches).
Once Dip switches have been positioned correctly, apply power. Proceed to the Rd.CF (Reading Configuration) and set R2 equal to the value in the right hand column of the chart.

Table 4-1. Range Selection Dip Switch Positions For Regular Voltage Input

12345678	12345678	RD.CF*
XCOOOXXC	XCOOCXXC	R.2=
$0-10 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	4
$0-5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	3
$0-3 \mathrm{~V}$	$\pm 3 \mathrm{~V}$	2
$0-2 \mathrm{~V}$	$\pm 2 \mathrm{~V}$	1
$0-1 \mathrm{~V}$	$\pm 1 \mathrm{~V}$	0

Table 4-2. Range Selection Dip Switch Positions For Millivolt/ Milliamp Input

12345678	12345678	12345678	RD.CF*
XOCOOXXO	XOCOCXXO	XOCCOXXO	R.2=
$0-100 \mathrm{mV}$	$\pm 50 \mathrm{mV}$	$0-20 \mathrm{~mA}$	4
$0-50 \mathrm{mV}$	$\pm 50 \mathrm{mV}$	$0-10 \mathrm{~mA}$	3
$0-30 \mathrm{mV}$	$\pm 30 \mathrm{mV}$	$0-6 \mathrm{~mA}$	2
$0-20 \mathrm{mV}$	$\pm 20 \mathrm{mV}$	$0-4 \mathrm{~mA}$	1
$0-10 \mathrm{mV}$	$\pm 10 \mathrm{mV}$	$0-2 \mathrm{~mA}$	0

[^0]
Configuring The Meter

4.3.1 Scaling with Known Loads (On-Line Calibration) (Continued)

To scale with known inputs: apply known loads to a transducer connected to a meter, or simulate the transducer output with a voltage or current simulator. To scale with known inputs, follow these steps:

1. Apply a known load equal to approximately 0% of the transducer range.
2. Press the MENU button until the meter shows Rd.5.D.
3. Press the TARE button. The meter shows IN (Input 1).

Note nes IN: (Input 1) is the unscaled display reading at minimum input.
4. Press the \downarrow TARE button again. The meter shows last stored value for Input 1.
5. Press the - TARE button once more. The meter shows the actual signal being received.
6. Press the MENU button to store this value as IN (Input 1). The meter shows RdI (Read 1).

Note Res (Read 1) is the desired display reading at Input 1.
7. Press the - TARE button. The meter shows the last stored value for Read 1.
8. Press the $\Delta / \mathbf{N T} /$ GRS button to change the value of your digits.
9. Press the - TARE button to scroll horizontally to the next digit.
10. Press the MENU button to store value as Rd. The meter shows IM (Input 2).

Note ne in e (Input 2) is the unscaled display reading at maximum input.

Configuring The Meter

4.3.1 Scaling with Known Loads (On-Line Calibration) (Continued)

11. Apply a known load equal to approximately 100% of the transducer range.
12. Press the $/$ TARE button again. The meter shows the last stored value for Input 2.
13. Press the - TARE button once more. The meter shows the actual signal being received.
14. Press the MENU button to store Input 2 value. The meter shows Rd (Read 2).

Note Red 已(Read 2) is the desired display reading at input 2.
15. Press the - TARE button. The meter shows the last stored value for Read 2 .
16. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the value of your digits.
17. Press the - TARE button to scroll horizontally to the next digit.
18. Press the MENU button to store value as Rd (Read 2). The meter momentarily shows GtRd, followed by Rd.EF. Meter scaling is now complete.

Configuring The Meter

4.3.2 Scaling Without Known Loads

To scale without known inputs, calculate input values based on the transducer specifications and manually enter them on the front-panel push buttons. The following example assumes load cells with these specifications:

Maximum Load:	100.0 lbs
Output:	$3.1 \mathrm{mV} / \mathrm{V}$
Sensor Excitation:	10 Vdc
Output:	$31 \mathrm{mV}=(3.1 \mathrm{mV} / \mathrm{V}) \times(10 \mathrm{~V})$

1. Determine the correct values for IN and IIN based on the load cell specifications. In most cases, Rd and Rd $\mathrm{R}_{\text {are }}$ arual to the minimum and maximum of the transducer output span. The example assumes Rdt and Rd Eare equal to the
 loadcell output span and the following equation:

IN = (Sensor Output) \times (Natural Gain) \times (Multiplier).
Table 4-3. Natural Gain

Input Range	Span Units	Natural Gain
0 to 100 mV	Millivolts	$100 \mathrm{cts} / \mathrm{mV}$
$\pm 50 \mathrm{mV}$	Millivolts	$40 \mathrm{cts} / \mathrm{mV}$
0 to 10 V	Volts	$1000 \mathrm{cts} / \mathrm{V}$
$\pm 5 \mathrm{~V}$	Volts	$400 \mathrm{cts} / \mathrm{V}$
0 to 20 mA	Milliamps	$500 \mathrm{cts} / \mathrm{mA}$

2. Determine the multiplier by the Input Resolution setting (R.E in the Rd.EF menu) and the input range selected. Typically $R . 己=4$ is suitable for most applications.

Table 4-4. Input Resolution Multiplier

Input Range	R.2=4	R.2=3	R.2=2	R.2=1	R.2=0
0 to 100 mV	1.000	2.000	3.333	5.000	10.00
0 to 10 V	1.000	2.000	3.333	5.000	10.00
0 to 20 mA	1.000	2.000	3.333	5.000	10.00
$\pm 50 \mathrm{mV}$	1.000	1.000	1.667	2.500	5.000
$\pm 5 \mathrm{~V}$	1.000	1.000	1.667	2.500	5.000

Configuring The Meter

3. Determine IN: and IN IN input range and resolution. The example selects the 0 to 100 mV range and 10 uV resolution ($\mathrm{R}, \mathrm{E}^{2}=4$).

Example: IN: $=(0 \mathrm{mV}) \times(100 \mathrm{cts} / \mathrm{mV}) \times(1.000)=0$
In $\mathrm{E}=(31 \mathrm{mV}) \times(100 \mathrm{cts} / \mathrm{mV}) \times(1.000)=3100$
Rd $=0000$
Rd E= 100.0
4. Press MENU button until the meter shows Rd.5.0.
5. Press the TARE button. The meter shows IN:
6. Press the - TARE button again, the meter shows the last Input 1 value, with the fourth digit flashing.
7. Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to change the value of your digits.
8. Press the -/TARE button to scroll horizontally to the next digit.
9. Press the MENU button to store this value. The meter shows Rdi.
10. Press the \quad TARE button. The meter shows the last value for Read 1.

Repeat steps 7, 8 and 9 until Rd: IN Eand Rd have been displayed, verified, changed (if necessary) and stored.

4.4 USING READING CONFIGURATION Rd.CF

Note 1
Refer to Table 6-1 for a summary list of menu configuration.

You may use Reading Configuration Rd.[F to configure your meter for the following:

- To select ratiometric or non-ratiometric operation
- To set the input resolution of your meter
- To display the filtered/unfiltered signal input value
- To select gross/net vs. peak reading

Configuring The Meter

4.4.1 Selecting Ratiometric/Non-Ratiometric Operation

1. Press the MENU button until Red.CF displays.
2. Press the - TARE button. The meter shows one of the following:

- R. $\quad R=R$ (Ratiometric reading) (Default - for strain meters)
- R.i=N (Non-ratiometric reading - typically for voltage \& current transducers)

3. Press the $\Delta / \mathbf{N T} / \mathbf{G R S}$ button to view last stored selection. Press the $\Delta / \mathbf{N T} / \mathbf{G R S}$ button to toggle between selections.
4. Press the $>$ TARE button to select input resolution or press the MENU button to store your selection and shows COLR menu.

4.4.2 Setting Input Resolution

To set the input resolution of your meter, follow these steps:

1. Press the MENU button until Rd.[F displays, then press the \rightarrow TARE button twice. or
Press the \rightarrow TARE button from R.I.
One of the following displays (default is $R . E=4$):
$R . 己=4=10 \mu V$ for Unipolar inputs. $25 \mu V$ for Bipolar inputs
R.E $=0=1 \mu \mathrm{~V}$ for Unipolar inputs. $5 \mu \mathrm{~V}$ for Bipolar inputs.
R.E $=1=2 \mu \mathrm{~V}$ for Unipolar inputs. $10 \mu \mathrm{~V}$ for Bipolar inputs
R.E $=$ E $=3 \mu \mathrm{~V}$ for Unipolar inputs. $15 \mu \mathrm{~V}$ for Bipolar inputs.
R.E $=3=5 \mu \mathrm{~V}$ for Unipolar inputs. $25 \mu \mathrm{~V}$ for Bipolar inputs

Example: $3 \mu \mathrm{~V}$ resolution means that if you input $0-30 \mathrm{mV}$, at 30 mV the display shows 9999.
2. Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to scroll through available selections.
3. Press the $/$ TARE button to display the filtered/unfiltered signal input or press the MENU button to store your selection and shows COLR menu.

Configuring The Meter

4.4.3 Displaying the Filtered/Unfiltered Input Signal

To display the filtered/unfiltered signal input, follow these steps:

1. Press the MENU button until Rd.CF displays, then press the $>$ /TARE button three times.
or
Press the $/$ TARE button from R.E.
One of the following displays:

- R.ヨ=F (Filtered value) (Default)
- R. $3=\mathrm{B}$ (Unfiltered value)

2. Press the $\Delta / \mathbf{N T} /$ GRS button to toggle between available choices.
3. Press the MENU button to store your selections. EFRd momentarily displays, followed by EOLR Menu.

4.4.4 Selecting Gross/Net or Peak Display

To select gross/net or peak display:

1. Press the MENU button until Rd.[F displays, then press the \rightarrow TARE button three times.
or
Press the $\boldsymbol{\sim}$ TARE button from R. \mathcal{B}.
One of the following displays:

- R.4=G Gross/Net Display (Default)
- R.4=P Peak Display

2. Press the $\Delta / \mathbf{N T} /$ GRS button to toggle between available choices.
3. Press the MENU button to store your selections. EERd momentarily displays, followed by EOLR Menu.

Configuring The Meter

4.5 SELECTING A DISPLAY COLOR [DLR $\frac{\sqrt{N E W}}{V}$

Note एब Refer to Table 6-1 for a summary list of menu configuration.

Selecting Display Color is not active unless your meter is a Version "B".
To select a display color, follow these steps:

1. Press the MENU button until the meter shows EOLR.
2. Press the - TARE button. The meter shows one of the following:

- GRN
- REd
- ambr

3. Press the $\mathbf{\Delta / N T / G R S}$ button to scroll between available choices.
4. Press the MENU button to store your choice. The meter momentarily shows StRd, followed by the next menu 5 1.[F (Setpoint 1 Configuration). Or you can press the RESET button to abort and go back to the Rd.CF menu.

4.6 USING SETPOINT 1 CONFIGURATION 5 I. [F

Note ne Refer to Table 6-1 for a summary list of menu configuration.
Setpoint 1 Configuration 5 I.EF is not active unless your meter has dual relay output capabilities. The LED's will display whether the S I.CF is active or not. You may use Setpoint 1 Configuration E i.टF for the following:

- To set the setpoint's active band above or below your chosen value
- To select whether the setpoint operation is latched or unlatched
- Assigning setpoint values to the net or gross reading

Configuring The Meter

4.6.1 Setting Setpoint 1's Active Band

1. Press the MENU button until the meter shows 5 I.[F.
2. Press the - TARE button. The meter shows one of the following:

- 5. 1:A (Active above the setpoint) (Default)
- \quad. $1=\mathrm{B}$ (Active below the setpoint)

3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
4. Press the - TARE button to select if Setpoint 1 is latched/unlatched or press the MENU button to store your selection. The unit shows Ee.CF.

4.6.2 Selecting if Setpoint 1 is Latched or Unlatched

1. Press the MENU button until 5 I.CF displays, then press the $>/$ TARE button twice. or
Press the - TARE button from S.I.
The meter shows one of the following:

- S.E = U Setpoint 1 to be unlatched (Default)
- 5.2=1 Setpoint 1 to be latched

2. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
3. Press the TARE button to assign Setpoint 1 values to net or gross reading or press the MENU button to enter 5e.[F (Setpoint 2 Configuration).

Configuring The Meter

4.6.3 Assigning Setpoint 1 Values to Net or Gross Readings

1. Press the MENU button until 5 I. CF displays, then press the - TARE button twice. or
Press the - TARE button from 5.E.
The meter shows one of the following:

- 5.3=N Setpoint 1 assigned to net reading (Default)
- 5.3=G Setpoint 1 assigned to gross reading

2. Press the $\Delta / \mathbf{N T} /$ GRS button to toggle between available choices.
3. Press the MENU button to store your selection(s). The meter momentarily shows SERd, followed by EE.CF (Setpoint 2 Configuration).

4.7 USING SETPOINT 2 CONFIGURATION Eट.[F

Note ns Refer to Table 6-1 for a summary list of menu configuration.

Setpoint 2 Configuration SE.[F is not active unless your meter has dual relay output capabilities. The LED's will display whether the SE.EF is active or not. You may use Setpoint 2 Configuration SE.[F for the following:

- To set the setpoint's active band above or below your chosen value
- To select whether the setpoint operation is latched or unlatched
- To assign setpoint values to the net or gross reading

4.7.1 Setting Setpoint 2's Active Band

1. Press the MENU button until the meter shows E己.EF. or
2. Press the TARE button. The meter shows one of the following:

- 5. 1=A (Active above the setpoint) (Default)
- 5. 1=b (Active below the setpoint)

3. Press the $\boldsymbol{\Delta} / \mathbf{N T} /$ GRS button to toggle between available choices.
4. Press the \quad TARE button to select if Setpoint 2 is latched/unlatched or press the MENU button to store your selection. The meter shows 5i.db.

Configuring The Meter

4.7.2 Selecting if Setpoint 2 is Latched or Unlatched

1. Press the MENU button until 5e.ct displays, then press the - TARE button twice. or
Press the - TARE button from E.I.
The meter shows one of the following:

- 5.ezU Setpoint 2 to be unlatched (Default)
- 5.e $=\mathbf{L}$ Setpoint 2 to be latched

2. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
3. Press the MENU button to store your selection(s). The meter momentarily shows EERd, followed by 5idb (Setpoint 1 Deadband).

4.7.3 Assigning Setpoint 2 Values to Net or Gross Readings

1. Press the MENU button until ER.CF displays, then press the $>$ /TARE button twice. or
Press the - TARE button from E.E.
The meter shows one of the following:

- 5.3:N Setpoint 2 assigned to net reading (Default)
- 5.E=0 Setpoint 2 assigned to gross reading

2. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
3. Press the MENU button to store your selection(s). The meter momentarily shows EERd, followed by 5i.db (Setpoint 1 Deadband).

Configuring The Meter

4.8 SETTING THE SETPOINT 1 DEADBAND E i.db

Note г
Refer to Table 6-1 for a summary list of menu configuration.

Setpoint 1 Deadband 5 I.db is not active unless your meter has dual relay output capabilities. The LED's will display whether the 5i.db is active or not. The Setpoint 1 Default deadband is 0003. To change the deadband (hysteresis) of Setpoint 1, follow these steps:

1. Press the MENU button until the meter shows 5 i.db.
2. Press the /TARE button. The meter shows the last previously stored 4-digit number (0000 through 9999) with flashing 4th digit.
3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the value of the flashing digit. If you continue to press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button, the flashing digit's value continues to change.
4. Press the - TARE button to scroll to the next digit.
5. Press the MENU button to store your selection. The meter momentarily shows 5ERd, followed by 5己.db (Setpoint 2 Deadband).

Configuring The Meter

4.9 SETTING THE SETPOINT 2 DEADBAND Ee.db

Refer to Table 6-1 for a summary list of menu configuration.

Setpoint 2 Deadband 5E.dB is not active unless your meter has dual relay output capabilities. The LED's will display whether the 5e.db is active or not. The Setpoint 2 default deadband is 0003. To change the deadband (hysteresis) of Setpoint 2, follow these steps:

1. Press the MENU button until the meter shows Se.db.
2. Press the $/$ TARE button. The meter shows the last previously stored 4-digit number (0000 through 9999) with flashing 4th digit.
3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the value of the flashing digit. If you continue to press the $\Delta /$ NT/GRS button, the flashing digit's value continues to change.
4. Press the - TARE button to scroll to the next digit.
5. Press the MENU button to store your selection. The meter momentarily shows 5ERd, followed by DE.CF (Output Configuration) if you have analog output capabilities.

Configuring The Meter

NOTE: DEADBAND WORKS AS HYSTERISIS

Figure 4-1. Alarm Example

Note ese To reset latched alarms you must:

1. Input a signal $\mathbb{Q E}$ of the alarm zone
2. Then press SETPTS and then, RESET button

Configuring The Meter

4.10 USING OUTPUT CONFIGURATION DE.LF

Note 1
Refer to Table 6-1 for a summary list of menu configuration.
Output Configuration DE. [F is not active unless your meter has analog output capabilities. The menu will display whether analog output is present or not. Analog output must be ordered at the time of purchase.

Use Output Configuration DE.LF to select the following:

- To enable or disable the analog output
- To select if the analog output is current or voltage
- To assign te output to the net or gross reading

4.10.1 Enabling or Disabling the Analog Output

To enable or disable the analog output, follow these steps:

1. Press the MENU button until the meter shows DE.[F.
2. Press the $>$ TARE button. The meter shows one of the following:

- D. I=E (Analog output enabled) (Default)
- \quad. $i=d$ (Analog output disabled)

3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
4. Press the TARE button to select analog output as current or voltage or press the MENU button to store your selection and enter DE.5.0 (Output Scale and Offset).

Configuring The Meter

4.10.2 Selecting Analog Output as Current or Voltage

1. Press the MENU button until it shows DE.LF, then press the \rightarrow TARE button twice. or
Press the $/$ TARE button from ©. 1 .
The meter shows one of the following:

- $\quad . \mathcal{E}^{2}=\Gamma$ (Analog output = current) (Default)
- \quad-. 己 $=$ ' (Analog output = voltage)

2. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
3. Press the $>$ TARE button to select analog output or proportional control or press the MENU button to store your selection and enter DE.5.D (Output Scale and Offset).

4.10.3 Selecting Analog Output or Proportional Control

1. Press the MENU button until it shows $\mathbb{B E}, \mathcal{C F}$, then press the \rightarrow TARE button twice. or
Press the $/$ TARE button from ©. $\boldsymbol{\text { B. }}$
The meter shows one of the following:

- \quad B. $3=N$ (Net Reading) (Default)
- \quad. $3=$ (Gross Reading)

2. Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to toggle between available choices.
3. Press the MENU button to store your selection. The meter momentarily shows SERd, followed by DE.S.D (Output Scale and Offset).

Configuring The Meter

4．11 USING OUTPUT SCALE AND OFFSET DE．5．0

Note ex Refer to Table 6－1 for a summary list of menu configuration．
Output Scale and Offset DE．5．B is not active unless your meter has analog output capabilities．The menu will display whether analog output is present or not．Output Scale and Offset $⿴ 囗 十$ ． $5 . \square$ scales your analog output to be equal to the meter＇s display and／or any engineering units you require．You may scale the output for direct（ $4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$ ， etc）or reverse acting（20－4 mA，10－0 V，etc）．

1．Press the MENU button until DE．5．D displays．
2．Press the TARE button．Rd（Read 1）displays．
Note The This is your first point of display reading．
3．Press the TARE button again．The meter shows the last previously stored 4－digit number（－1999 through 9999）with flashing 4th digit．

4．Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the digits．
5．Press the \quad TARE button to scroll to the next digit．
6．Press the MENU button to store your selection．DUE．I（Output 1）displays．
Notere This starting analog signal corresponds to your Read 1 display．
7．Press the TARE button．Selected output displays．
If you select $\square . \mathcal{Z}=$＇for voltage，the maximum signal you may select is
10.00 for an $0-10 \mathrm{Vdc}$ signal output．If you select $\square . 己=\square$ for current，the
maximum signal you may select is 20.00 ．

8．Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to enter the Output 1 signal selection．If you continue to press the $\Delta / \mathbf{N T} / \mathbf{G R S}$ button，the flashing digit＇s value continues to change．

9．Press the \quad TARE button to scroll to the next digit．
10．Press the MENU button to store your selection．Rd $\boldsymbol{\text { R（Read 2）}}$ ）displays．
Note ers This is your second point of display reading．

Configuring The Meter

4.11 USING OUTPUT SCALE AND OFFSET DE. 5.0 (Continued)

11. Press the $>$ TARE button. The meter shows last previously stored 4-digit number (-1999 through 9999) displays with flashing 4th digit.
12. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the value of the flashing digit. If you continue to press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button, the flashing digit's value continues to change.
13. Press the $>$ TARE button to scroll to the next digit.
14. Press the MENU button to store your selection. The meter shows Qut. 3 (Output 2).

Note ers This analog signal should correspond to your Read 2 display.
15. Press the - TARE button. The meter shows selected output.

If you select $\boldsymbol{Q} . \boldsymbol{Z}=\mathbb{V}$ for voltage, the maximum signal you may select is 10.00 for an $0-10 \mathrm{Vdc}$ signal output. If you select $\mathbb{D . E}=\mathbb{C}$ for current, the maximum signal you may select is 20.00 for a $0-20$ or $4-20 \mathrm{~mA} \mathrm{DC}$ signal output.
16. Press the $\boldsymbol{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to change the value of the flashing digit. If you continue to press the $\boldsymbol{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button, the flashing digit's value continues to change.
17. Press the $>$ /TARE button to scroll to the next digit.
18. Press the MENU button to store your selection. The meter momentarily shows SERD, followed by LR.CF (Lockout Configuration).

WARNING: If the meter displays all flashing values on any item, the value has overflowed. Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to start new values.

Configuring The Meter

4.11.1 Examples for Output Scale and Offset

Example: You want to send $4-20 \mathrm{~mA}$ output for 0 to 100.0. The meter has 0.1 degree resolution. Complete the following steps:

1. Press the MENU button until the meter shows Bt.5.D.
2. Press the $/$ TARE button. The meter shows Rd. (Read 1).
3. Press the - TARE button to show the existing value.
4. Change the value of Read 1 to 000.0 by pressing the $\Delta /$ NT/GRS and \downarrow TARE buttons.
5. Press the MENU button to store your selection. The meter shows DUE. (Output 1).
6. Press the - TARE button to show the existing value.
7. Change the value of Output 1 to 04.00 by pressing the $\mathbf{\Delta / N T / G R S}$ and \downarrow TARE buttons.
8. Press the MENU button to store your selection. The meter shows Rd.E (Read 2).
9. Press the - TARE button to show the existing value.
10. Change the value of Read 2 to 100.0 by pressing the $\mathbf{\Delta} /$ NT/GRS and $>$ /TARE buttons.
11. Press the MENU button to store your selection. The meter shows DUE.E (Output 2).
12. Press the - TARE button to show the existing value.
13. Change the value of Output 2 to 20.0 by pressing the $\mathbf{\Delta} /$ NT/GRS and $>$ TARE buttons.
14. Press the MENU button to store your selection. The meter shows LK.CF (Lock Out Configuration).

Configuring The Meter

4.12 USING LOCK OUT CONFIGURATION LK.CF

Note res Refer to Table 6-1 for a summary list of menu configuration.
Use Lock Out Configuration LK.[F for the following:

- To enable or disable setpoint changes
- To enable or disable the RESET button in the Run Mode
- To enable or diable displaying meter firmware version

4.12.1 Enabling or Disabling the RESET button in the Run Mode

1. Press the MENU button until the meter shows LK,CF (after DE.S.B).
2. Press the - TARE button. The meter shows one of the following:

- RS.EE To enable the RESET button in the Run Mode (Default)
- RS.Ed To disable the RESET button in the Run Mode

4. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
5. Press the MENU button to store the changes. The meter shows GERd if the new value is different otherwise the meter shows GR, it and returns to the Run Mode.

4.12.2 Enabling or Disabling SETPOINT Changes

1. Press the MENU button until the meter shows LK.CF (after DE.5.D).
2. Press the $/$ TARE button twice. The meter shows one of the following:

- SP. \quad E To enable setpoint changes (Default)
- 5P.Ed To disable setpoint changes

3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
4. Press the MENU button to store the changes. The meter shows GERd if the new value is different otherwise the meter shows GR, E and returns to the Run Mode.

Configuring The Meter

4.12.3 SETPOINT Display Function: Firmware version or Setpoint value

1. Press the MENU button until the meter shows LK.CF (after DE.5.D).
2. Press the \quad TARE button three times. The meter shows one of the following:

- $\quad . \exists=0$ SETPTS button will display setpoint values.
- $L . \exists=1$ SETPTS button will display the meter's firmware version.

3. Press the $\mathbf{\Delta} / \mathbf{N T} /$ GRS button to toggle between the choices above.
4. Press the MENU button to store the changes. The meter shows EtRd if the new value is different otherwise the meter shows bR it and returns to the Run Mode.

Note
If your meter does not have the relay option, setpoint menu items above will not be available and SETPTS button will always display the meter's firmware version. These units will have FOL (overload) or FOPN memory indicated by Alarm 1 \& 2 LED displays. LEDs can be reset by pressing MENU then RESET button or by Power OFF then ON.

4.13 USING DISPLAY BRIGHTNESS CONFIGURATION NVW

4.13.1 Changing Brightness Level

Changing Display Brightness is not active unless your meter is a Version "B".

1. Press the MENU button until the meter shows bR, (after LKCF).
2. Press the \rightarrow TARE button from $G R, E$. The meter shows one of the following:

- m.brt Medium Brightness
- L.brt Low Brightness
- H.brt High Brightness (Default)

3. Press the $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ button to toggle between available choices.
4. Press the MENU button to store your selection. The meter momentarily shows SERd followed by 5tRd, RSE, SERN, then measured value.

Display Messages

Table 5－1．Display Messages

MESSAGE	DESCRIPTION
EtRN	Strain Meter
R5E	Hard（power on）Reset
IINPE	Input Type
EEC．P	Decimal Point Position
Rd．5．］	Reading Scale and Offset
Rd．cF	Reading Configuration
COLR	Display Color 気閚
51.5	Setpoint 1 Configuration
5e．ch	Setpoint 2 Configuration
51.86	Setpoint 1 Deadband
52．db	Setpoint 2 Deadband
DE．CF	Output Configuration
DE．5．0	Output Scale and Offset
LK．CF	Lock Out Configuration
BRE	Display Brightness 気馬
FOL	＋Overload Signal
－0．	－Overload Signal
R5．0F	Resolution Overflow
F999	Value Overflow in Setpoint／Menu Routines
F1999	Value Overflow in Setpoint／Menu Routines
WE．DF	Net Value Overflow
Gt．OF	Gross Value Overflow
ERI	2 Coordinate Format Programming Error
PEAN	Peak Value
PKRS	Peak Reset
E．RS	Tare Reset
EP．RS	Setpoint Reset
WEE	Net Value
CROS	Gross Value
EPI	Setpoint 1 Value
EPE	Setpoint 2 Value
R．OM． 5	Resolution Over Scale
W．－日．${ }^{\text {a }}$	Firmware Version（where 8 is 0 ～9）
RUN	Operating Mode

Menu Configuration Displays

SECTION 6. MENU CONFIGURATION DISPLAYS

Not all menu items display on standard meters.

Table 6-1. Menu Configuration Displays

(Defaults in Bold and Italics)

MENU	- TARE	- NT/GRS
1HPE	Show input choices:	100 m 150 mefault) 100 050 $0-20$
GEF.P	Show current decimal point position	FFFF (Default) F.FFF FF.FF FFF.F
(Reading Scale \& Offset) $\text { Rd. } 5.0$	Shows IN: 1 Shows prior value entered and flashing digit. Scrolls to the next digit. - If - TARE is pressed, actual input is shown and can not be changed with $4 /$ NT/GRS. - If $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ is pressed, unit can scroll through digits with - TARE.	Changes the value of the flashing digit
2 Enter new value and show	3 Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit
4 Enter new value and show IW?	Shows prior value entered and flashing digit. Scrolls to the next digit. - If - TARE is pressed, actual input is shown and can not be changed with $\mathbf{\Delta} /$ NT/GRS. - If $\mathbf{\Delta} / \mathbf{N T} / \mathbf{G R S}$ is pressed, unit can scroll through digits with - TARE.	Changes the value of the flashing digit
6 Enter new value and show Rde	Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit

Menu Configuration Displays

SECTION 6. MENU CONFIGURATION DISPLAYS (Continued)

Table 6-1. Menu Configuration Displays (Continued)

(Defaults in Bold and Italics)

Menu Configuration Displays

SECTION 6. MENU CONFIGURATION DISPLAYS (Continued)

Table 6-1. Menu Configuration Displays (Continued)

(Defaults in Bold and Italics)

MENU	- TARE	-/NT/GRS
Setpoint 1 Deadband 51.06	Press to scroll to the next digit to the right	Press to change the value of the flashing digit
Setpoint 2 Deadband 5e.db	Press to scroll to the next digit to the right	Press to change the value of the flashing digit
Output Configuration BE.LF	$\begin{aligned} & 0.1= \\ & 0.2= \\ & 0.3= \end{aligned}$	Q. $\quad 1=\mathrm{E}$ (Analog output is enabled) D. i=d (Analog output is disabled) D. $2=[$ (Analog output is current) D.E = 囫 (Analog output is voltage) $0.3=\mathrm{N}$ (Net reading) ©. $3=0$ (Gross Reading)
Output Scale \& Offset BE.5.0 (Shown if $\mathrm{B} . \boldsymbol{\exists}=\mathrm{A}$ in Output Configuration Menu DEE,CF)	1 Shows Rd: Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit
2 Enter new value and show DUE !	3 Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit
4 Enter new value and show RdE	5 Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit
6 Enter new value and show Dute	7 Shows prior value entered and flashing digit. Scrolls to the next digit.	Changes the value of the flashing digit

Menu Configuration Displays

SECTION 6. MENU CONFIGURATION DISPLAYS (Continued)

Table 6-1. Menu Configuration Displays (Continued)

(Defaults in Bold and Italics)

	MENU	-TARE	(/NT/GRS
	Lock Out Configuration $L K . \Sigma F$	$\begin{aligned} & \mathrm{RS}= \\ & \mathrm{SP}= \\ & \mathrm{L}= \end{aligned}$	(Enable RESET button in the Run Mode) (Disable RESET button in the Run Mode) $5 P=E$ $5 P=-8$ (Enable setpoint changes) (Disable setpoint changes) - $3=0$ (SETPTS button display setpoint values) L $3=1$ where 8 is $0 \sim 9$)
$\frac{\Sigma N E W}{V}$	Brightness Configuration 日R, E	Shows input choices	M.brt (Medium Brightness) L.brt (Low Brightness) H.brt (High Brightness)

Table 6-2. Run Mode Displays

Display	-/TARE	-/NT/GRS	RESET	Description
		Displays NET or GROSS reading. Once reading shows, respective value shows.		Peak Reading Toggle between Net and Gross values.
E.ESE	Press to activate.		Will reset your tare when viewing this function.	Tare Reset
				Reset Latched Alarms Pressing the RESET button resets your latched alarms.

Setpoint Configuration Displays

SECTION 7. SETPOINT CONFIGURATION DISPLAYS

Table 7-1. Setpoint Configuration Displays

MENU	-/TARE	-/NT/GRS	Description
EP1	Press to scroll to the next digit to the right	Press to change the value of the flashing digit	SETPOINT 1 Select from -1999 through 9999
58	Press to scroll to the next digit to the right	Press to change the value of the flashing digit	SETPOINT 2 Select from -1999 through 9999

Specifications

SECTION 8. SPECIFICATIONS

SIGNAL INPUT

Input Ranges:
Isolation:
$0-100 \mathrm{mV}, \pm 50 \mathrm{mV}, 0-10 \mathrm{~V}, \pm 5 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}$
Dielectric strength to 2500 V transient per 3 mm spacing based on EN 61010 for 260Vrms or DC working voltage

Normal Mode Rejection $(N M R)=60 \mathrm{~dB}$
Common Mode Rejection (CMR) $=120 \mathrm{~dB}$
Resistance:

"Big" Display:
Symbol:
Standard Display:
Symbol:

100 Meg ohms for 100 mV or $\pm 50 \mathrm{mV}$ input range
1 Meg ohm for 10 V or +5 V input range
5 ohms for 20 mA current input range
4-digit, three color programmable 9-segment, LED 21 mm (0.83")

4-digit, 14-segment LED, 13.8 mm (0.54 ")

ANALOG TO DIGITAL

Technique:
Internal resolution:
Read Rate:

Dual slope
15 bits
3/sec Polarity Automatic

ACCURACY AT $25^{\circ} \mathrm{C}$

Max Error Strain: $\quad \pm 0.03 \%$ of reading, ± 1 count
Span Tempco:
Step Response:
Warm Up to Rated Accuracy: 30 min

Excitation Voltage:	AC power units 24 V @ 25 mA , 12 V @ 50 mA , 10 V@ 120 mA , 5 V @ 60 mA	DC power units Refer to Table 8-1 Color chart for DC Output Excitation
Load Regulation:	1.1\%	
Line Regulation:	0.02\% per Vac	

AC power units \quad DC power units 24 V @ $25 \mathrm{~mA}, \quad$ Refer to Table 8-1 12 @ 50 mA,

Color chart for DC Output 10V@120mA, Excitation 5 V @ 60 mA

Load Regulation:
0.02\% per Vac

Specifications

SECTION 8. SPECIFICATIONS (Continued)

ALARM OUTPUTS (if applicable)

2 Form "C" on/off relays. Configurable for latched and unlatched by software.
Max current: 5 AMPS, resistive load Max voltage: 250 Vac or 30 Vdc

ANALOG OUTPUT (if applicable)

Signal Type:
Signal Level:

Function:

Linearity:
Step Response Time:

Current or voltage
Current: 10 V max compliance at 20 mA output Voltage: 20 mA max for $0-10 \mathrm{~V}$ output

May be assigned to a display range or proportional control output with Setpoint \#1 when used as a control output.

ISOLATED ANALOG OUTPUT (TB5, if applicable)

Same as non-isolated analog output except isolated.

Signal Type:
Signal Level:

Function:

Linearity:
Step Response Time:
Isolation

Current or voltage
Current: 10 V max compliance at 20 mA output Voltage: 20 mA max for $0-10 \mathrm{~V}$ output

May be assigned to a display range or proportional control output with Setpoint \#1 when used as a control output.
0.2\%

2-3 seconds to 99% of the final value
130 Vrms working voltage, 1000 V/60sec Dielectric test

Note 1 裙

- Only one analog output is available on each unit and it must be factory installed.

Specifications

SECTION 8. SPECIFICATIONS (Continued)

INPUT POWER INFORMATION

AC units

DC units

External Fuse Required:

IEC 127-2/III	
Power	Fuse
115 V	125 mA @ $250(\mathrm{~T})$
230 V	63 mA @ $250(\mathrm{~T})$
UL 248-14 (Listed Fuse)	
Power	Fuse
115 V	175 mA @ 250 V Slow-Blow
230 V	$80 \mathrm{~mA} @ 250 \mathrm{~V}$ Slow-Blow

ENVIRONMENT

Operating temperature:
Storage temperature:
Relative humidity:

MECHANICAL

Panel cutout:
Weight:
Case material:
Protection:
$115 / 230 \mathrm{~V} \sim(\mathrm{AC}) \pm 10 \%, 50 / 60 \mathrm{~Hz}$
9.5 W max, power consumption (Non-Isolated Analog Out) 11.0 W max, power consumption (Isolated Analog Out)
$10-32 \mathrm{Vdc}$ or $26-56 \mathrm{Vdc}, 8 \mathrm{~W}$
Do not use a combination of dc power and internal excitation
or Isolated Analog Out, unless using dc power of 20-32 Vdc.
Refer to Table 8-1 below.

Operating temperature
0° to $50^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
-40° to $85^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
90% at $40^{\circ} \mathrm{C}$ (non-condensing)

1/8 DIN $3.62 \times 1.78^{\prime \prime}(45 \times 92 \mathrm{~mm})$
$1.27 \mathrm{lb}(575 \mathrm{~g})$
Polycarbonate, 94 V-O UL rated
NEMA-4/Type 4 Front Bezel

Specifications

SECTION 8. SPECIFICATIONS (Continued)

Table 8-1. COLOR CHART FOR DC POWER

COLOR	HIGH BRIGHTNESS	MEDIUM \& LOW BRIGHTNESS
RED	Sensor Excitation: 24 V @ 25 mA, 12 V, 10 V, 5 V @ 35 mA Max Analog Output: Non-Isolated option only	Any combination of Sensor Excitation and Analog Output 24 V@ 25 mA , 12 V@ 35 mA Max 10 V @ 35 mA Max 5 V @ 35 mA Max
GREEN	Warning: - Do not use Internal Excitation. Use External Excitation. - Do not use Isolated Analog Output. Use Non-Isolated Analog Ouput.	
		Analog Output: Non-Isolated options or Isolated Analog option
AMBER		

HIGH/LOW Brightness and AMBER are only available on Version "B" meters. Standard display meters are MEDIUM Brightness.

Specifications

SECTION 8. SPECIFICATIONS (Continued)

Figure 8-1 Meter Dimensions/ Panel Cutout

Factory Preset Values

SECTION 9. FACTORY PRESET VALUES

Table 9-1. Factory Preset Values

CE APPROVALS INFORMATION

C
This product conforms to the EMC directive 89/336/EEC amended by 93/68/EEC, and with the European Low Voltage Directive 72/23/EEC.

Electrical Safety EN61010-1:2001

Safety requirements for electrical equipment for measurement, control and laboratory.
Double Insulation

Pollution Degree 2

Dielectric withstand Test per 1 min

- Power to Input/Output:
- Power to Input/Output: (Low Voltage dc Power Option*)
- Power to Relays Output:
- Relay 1 to Relay 2:
- Isolated Analog to Inputs:
- Analog to Inputs:

Measurement Category I

Category I are measurements performed on circuits not directly connected to the Mains Supply (power). Maximum Line-to-Neutral working voltage is $50 \mathrm{Vac} / \mathrm{dc}$.
This unit should not be used in Measurement Categories II, III, IV.

Transients Overvoltage Surge (1.2 / 50uS pulse)

- Input Power:

2500 V

- Input Power:

500 V
(Low Voltage dc Power Option*)

- Isolated Analog:

500 V

- Input/Output Signals:

500 V
Note: *Units configured for external low power dc voltage, 10-32 Vdc (Basic Insulation)

EMC EN61326:1997 + and A1:1998 + A2:2001

Immunity and Emissions requirements for electrical equipment for measurement, control and laboratory.

- EMC Emissions Table 4, Class B of EN61326
- EMC Immunity** Table 1 of EN61326

Note: **I/O signal and control lines require shielded cables and these cables must be located on conductive cable trays or in conduits. Furthermore, the length of these cables should not exceed 30 meters

Refer to the EMC and Safety installation considerations (Guidelines) of this manual for additional information.

Warranty/Disclaimer

NEWPORT Electronics, Inc. warrants this unit to be free of defects in materials and workmanship for a period of one (1) year from the date of purchase. In addition to NEWPORT's standard warranty period, NEWPORT Electronics will extend the warranty period for four (4) additional years if the warranty card enclosed with each instrument is returned to NEWPORT.
If the unit should malfunction, it must be returned to the factory for evaluation. NEWPORT's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by NEWPORT, if the unit is found to be defective it will be repaired or replaced at no charge. NEWPORT's WARRANTY does not apply to defects resulting from any action of the purchaser, including but not limited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of NEWPORT's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.
NEWPORT is pleased to offer suggestions on the use of its various products. However, NEWPORT neither assumes responsibility for any omissions or errors nor assumes liability for any damages that result from the use of its products in accordance with information provided by NEWPORT, either verbal or written. NEWPORT warrants only that the parts manufactured by it will be as specified and free of defects. NEWPORT MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of NEWPORT with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall NEWPORT be liable for consequential, incidental or special damages.
CONDITIONS: Equipment sold by NEWPORT is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, or used on humans, or misused in any way, NEWPORT assumes no responsibility as set forth in our basic WARRANTY / DISCLAIMER language, and additionally purchaser will indemnify NEWPORT and hold NEWPORT harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

Return Requests/Inquiries

Direct all warranty and repair requests/inquiries to the NEWPORT Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO NEWPORT, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM NEWPORT'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence.
The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit.

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting NEWPORT:

1. P.O. number under which the product was PURCHASED,
2. Model and serial number of the product under warranty, and
3. Repair instructions and/or specific problems relative to the product.

FOR NON-WARRANTY REPAIRS, consult

NEWPORT for current repair charges. Have the following information available BEFORE contacting NEWPORT:

1. P.O. number to cover the COST of the repair,
2. Model and serial number of product, and
3. Repair instructions and/or specific problems relative to the product.

NEWPORT's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in technology and engineering.
NEWPORT is a registered trademark of NEWPORT Electronics, Inc.
© Copyright 2006 NEWPORT Electronics, Inc. All rights reserved. This document may not be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of NEWPORT Electronics, Inc.

For immediate technical or application assistance please call:
T:800-8:

Newport Electronics, Inc. 2229 South Yale Street • Santa Ana, CA • 92704 • U.S.A. TEL: (714) 540-4914 • FAX: (203) 968-7311 Toll Free: 1-800-639-7678•www.newportUS.com •e-mail:info@newportUS.com ISO 9001 Certified
Newport Technologies, Inc. 976 Bergar • Laval (Quebec) • H7L 5A1 • Canada TEL: (514) 335-3183 • FAX: (514) 856-6886 Toll Free: 1-800-639-7678•www.newport.ca •e-mail:info@newport.ca
Newport Electronics, Ltd. One Omega Drive • River Bend Technology Centre Northbank, Irlam • Manchester M44 5BD • United Kingdom Tel: +44 1617776611 • FAX: +44 1617776622 Toll Free: $0800488488 \cdot w w w . n e w p o r t u k . c o . u k \cdot e-m a i l: s a l e s @ n e w p o r t u k . c o . u k ~$

Newport Electronics spol s.r.o.
Frystatska 184, 73301 Karviná • Czech Republic
TEL: +420 596311899 • FAX: +420 596311114
Toll Free: 0800-1-66342•www.newport.cz • e-mail: info@newport.cz

Newport Electronics GmbH
Daimlerstrasse $26 \cdot$ D-75392 Deckenpfronn• Germany
TEL: 497056 9398-0 • FAX: 497056 9398-29
Toll Free: 0800 / 6397678 • www.newport.de • e-mail: sales@newport.de

Mexico and Latin America
FAX: 001 (203) 359-7807
En Español: 001 (203) 359-7803

NEWPORTnet ${ }^{\text {sw }}$ On-Line Service
Internet e-mail
www.newportUS.com
info@newportUS.com

[^0]: * Reading Configuration

