features

- 3.5 Digit 12.7 mm character height LCD
- 200 mV full scale sensitivity
- Automatic zeroing and polarity indication
- Low battery indication (For 9V option only)
- 10 selectable annunciators
- Easy to use decimal point selection
- Display Hold as standard

ELECTRICAL CHARACTERISTICS T ${ }_{\text {A }}=25^{\circ} \mathrm{C}$					
CHARACTERISTIC	CONDITION	MIN	TYP	MAX	UNITS
Supply voltage (VDD)	9 volts 5 volts	$\begin{gathered} 7 \\ 4.8 \end{gathered}$	$\begin{aligned} & 9 \\ & 5 \end{aligned}$	$\begin{gathered} 10 \\ 6 \end{gathered}$	Volts Volts
Supply Current (IDD)	9 Volts 5 Volts		$\begin{gathered} 500 \\ 5 \end{gathered}$	900	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Full scale				199.9	mV
Input impedance		100			$\mathrm{M} \Omega$
Ref voltage ROH	9 Volts		100		mV
Overload voltage				20	Volts
Zero I/P Reading			0	± 1	Count
Accuracy at FSD	9 volts 5 volts		± 1 ± 1	+2 +4	Counts Counts
Resolution			100		$\mu \mathrm{V}$
CMRR			70		dB
Temp Coefficient			100	150	ppm $/{ }^{\circ} \mathrm{C}$
Low Battery Ind.	9 Volts only	6.75	7.25	7.75	V
Backlight Volts	OEM24L		5		V
Backlight Current	at 5 V	-	40	60	mA

PIN FUNCTIONS	
PIN	DESCRIPTION
VDD	Positive supply terminal
VSS	Negative supply terminal for 9 Volt mode only
INHI INLO	Positive input terminal Negative input terminal
RFH RFL ROH ROL	Reference input high terminal Reference input low terminal Reference output high terminal Reference output low terminal
HOLD	Con. to VDD for display hold, to TST for normal.
COM	Analogue common
TST	Connect to VDD to test all segments (except annunciators), for a few seconds only. (9V mode) Also negative supply terminal for 5V supply.
XBP	For driving annunciators
BP	LCD back plane.
D1, D2, D3	Decimal point select. The decimal point will energize when these pins are tied to VDD.
AB,B3,E3,G3,	For use with external auto-ranging circuit.
BAT, ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \sim, \mathrm{m}, \mu, \mathrm{M}$,	Annunciators. See user instructions. BAT is auto turn on. Turn it off in 5V mode by adjusting V2.
$\Omega, \mathrm{K} \Omega, \mathrm{V}, \mathrm{A}, \mathrm{HOLD}$	

USER INSTRUCTIONS

The OEM22/24L is designed for $9 / 5 \mathrm{~V}$ supply. Incorrect supply polarity will destroy the module immediately. It is ready for general use when connected as in figure 1, for 9 V supply. For 5 V supply, the module must be calibrated before use as follows. Connect as in figure 2, apply 100 mV to the inputs, from a calibrated source and adjust VR1 until the display reads 1000 .
The input range is $0-200 \mathrm{mV}$. Over-range is indicated by blanking the three least significant digits and displaying a "1" in the most significant digit.
For 9 V operation it is recommended to power from a 9 V battery. The inputs are intended to float with respect to the supply but if they do not float they must be no closer than 1.5V from either VDD or VSS (VDD-1.5V and VSS+1.5V). See the circuits for non-floating inputs below.
The low BAT voltage can be set adjusting VR2 but it is not recommended to operate with a supply voltage below 7 V .

CONNECTION DIAGRAM

All annunciators are connected to BP for suppression purposes. To light up, cut the trace between the selected annunciator pad and BP track and then link with solder the annunciator pad to the XBP pad next to it.
For 5V operation, INLO must be connected to TST for non-floating inputs (as fig. 2) and to the analogue common pin COM for floating inputs. The low BAT annunciator needs to be turned of by adjusting VR2.

APPLICATION CIRCUITS

DC VOLTAGE MEASUREMENT

The input impedance becomes R1+R2. Choose accurate stable resistors. Typically, $\mathrm{R} 1=1 \mathrm{M} \Omega .9 \mathrm{M} \Omega$ is a practical upper limit.

MULTI-RANGE DC VOLTAGE MEASUREMENT

For multi-range, use a 2 pole, 4 way rotary switch. 1 pole for range select and the other to connect the appropriate decimal point to XBP.

DC CURRENT MEASUREMENT

Shunt resistance $R s=\frac{V s}{I \mathrm{IN}} \Omega$
It is important to note the power dissipation in the shunt and choose resistor rating accordingly

Ps $=\frac{\mathrm{Vs}^{2}}{\mathrm{IIN}}=\mathrm{IIN}^{2} \mathrm{Rs} \Omega$
EXAMPLES

Current	Rs	Ps
200 mA	1Ω	0.04 W
2 A	0.1Ω	0.4 W

DC VOLTAGE OFFSET

NON FLOATING INPUTS (a)

Revision 8 17/011/04

MULTI-RANGE DC CURRENT MEASUREMENT

DC VOLTAGE RATIO MEASUREMENT

NON FLOATING INPUTS (b)

