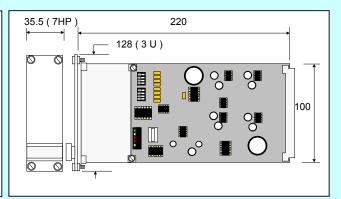
3.5 Amp Bi-polar stepper motor drive MSE570 Evo 2

Features

- Bi-polar drive with pre-set drive currents up to 3.5 Amps per phase
- Increased operating voltage up to 48 V
- ½ step drive option for improved damping
- suitable for size 17, 23 & 34 frame size hybrid stepper motors
- Increased efficiency
- No heatsink required
- Reduced width (7HP)
- Single rail supply for both logic and motor
- Standard Thermal protection & condition monitoring
- Operates from external clock & direction signals
- Optional on-board oscillator circuit can be added for simple manual or PLC interfaced control
- Optional matched motherboards (MSB630 & MSB870) for connection via solder free terminals

Models:	Standard unit	Version with front panel kit		
	MSE570 Evo 2	PM570 Evo 2		


Motherboard options See motherboard data for connections	Version for clock / direction signal input	Version for use with PM600 controller	
	MSB630	MSB870	

Dimensions: mm

MSE570 Evo 2

Minimum rack 160 spacing: 35.5 7 HP) Current 100 Setting switch

PM570 Evo 2

3.5 Amp Bi-polar stepper motor drive

MSE570 *Evo* 2

The MSE570 is a low cost high performance Eurocard Bi-polar drive designed for mounting in 3U high Euro-racks. Ideally suited for use with Nema size 17, 23 & 34 stepper motors, the unit provides a wide range of current options. Designed for use by original equipment manufacturers, the unit provides a reliable and economic in-service proven' drive solution. Furthermore, the MSE570 design enables users to customise the unit to meet their exact requirements by providing a series of up-grade options which can easily be implemented.

Improved Output stage efficiency

The MSE570 Evo 2 features a chopped constant current output stage with on-board current settings from 0.5 to 3.5 Amps per phase to meet the requirements of virtually any 2 or 4 phase hybrid stepper motor in the Nema 17, 23 & 34 frame sizes. The use of chopped constant current drive techniques combined with the latest developments in power stage technology results in significant advances in efficiency. Furthermore, the output current may be reduced via an external input when the motor is at standstill to reduce temperature rise in the drive and the motor. The drive is designed for use with rail voltages from 15 to 48 Vdc such as MSE173 when up to 7 drives can be incorporated in a single rack together with the power supply. For high speed operation the Power supplies type MSE562 & MSE875 are recommended for single and multi axis applications depending on motor current settings.

New Features

- Increased efficiency
- No heatsink required
- Reduces width
- Increased operating voltage
- Single rail supply for both logic and motor
- Standard Thermal protection & condition monitoring

Choice of full or half step drive

The MSE570 may be set to operate in full step or half step drive. Half step drive is recommended since it provides increased resolution (400 steps/rev. using conventional hybrid stepper motors) together with improved smoothness and damping of motor resonance.

Thermal Protection

A thermal sensor is fitted to prevent overheating of the output stages. The drive may be automatically disabled on over-temperature by setting switch SW1-1 on.

Status LED's for condition monitoring

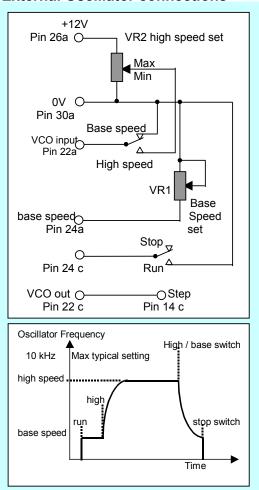
The MSE570 drive board has five status LEDs. The status LEDs provide a visual indication of drive condition. The function of each indicator is shown in the table. Surface-mount types are fitted as standard, with provision for the user to fit throughboard types. These may be soldered into locations at the front edge of the board.

LED 1	Green	Power in on
LED 2	Yellow	Output is disabled
LED 3	Red	Over-temperature fault detected
LED 4	Red	Overload fault detected
LED 5	Yellow	Home phase output

Customising the MSE570 to meet individual application requirements

Choice of external or internal step control

In most applications MSE570 will be operated in conjunction with an external control source consisting of a clock pulse train to determine rate and distance together with a direction signal. Where operation off line from a control processor is required a print on the circuit board is provided for the user to add a simple voltage controlled oscillator to facilitate manual control of the motor drive system.


Specification MSE570

Type without front panel		MSE570 Evo 2	Notes	
Type with front panel		PM570 Evo 2		
Supply Voltage	Vdc	15-48 + 10% max.	Max ripple: 3 V peak/Peak	
Current consumption	Amps	1-2.7 A	Depending on motor selected	
Logic Supply Voltage	Vdc	No separate supply required	Use motor supply	
Output Stage		2 Phase Bi-polar	Chopped constant current	
Output current per phase	Amps	2 Phase Bi-polar	Chopped constant current	
	· ·	0.5 to 3.5	Set by on-board DIP switch	
Step logic		Full step / half step	Open circuit for full step	
Control signals		CMOS Schmitt trigger	@ 12V with 10KΩ pull-up resistors	
			& diode isolation	
Logic 0: (Low)	Volts	0 to 2	or contact closure to 0V	
Logic 1: (high)	Volts	9V to 30V max.	or open circuit	
Monitor Outputs		Open collector NPN transistor	Referenced to 0V	
Low Level	Volts	1 max.	@ 30mA max.	
High Level	Volts	Open Circuit	+ 24V max.	
Auxiliary outputs	Vdc	Regulated +12V @ 50mA max.	For use with on-board oscillator	
	Vdc	Regulated +5V @ 50mA max.		
Thermal Protection		Standard	Automatic shutdown protection	
Condition monitoring		Standard	Via 5 way LED display + outputs	
Up-grade options			User fit options: refer to manual	
On board Oscillator		Optional		
Dimensions	mm	100 high x 160 long x 35.5	Std. Eurocard : Use 7HP wide panel	

Typical Connections

С Motor Supply (15 to 48 Vdc) 2 0-Phase A+ Phase A-Phase B+ Phase B-Sync input/output Home output Direction (cw / ccw) input Step (Clock) input Full/ half step input 16 Q Reset input Output disable input 18 **Q** Current reduction input 20 **Q** Overload output signal Over temperature output Oscillator speed control input * Oscillator clock output * 24 **q** Oscillator base speed input * Oscillator run/stop input * 26 **Q** +12 V output (50mA) + 5 V output (50mA) 28 **o**-30 o-**0V Common** Connector: 32 way a & c DIN41612 type D

External Oscillator connections *

Note* Oscillator connections when circuit is fitted to MSE570 Printed circuit board

Issue 002

Stepper motor drive current settings

MSE570

The motor phase current can be set to suit the motor to be driven by the use of the on-board DIP switch fitted to the MSE570. The table below shows the nominal phase currents for each setting

Switch Setting				Nominal Current per phase	Typical Motor	Motor Connections	Typical Power Supply consumption @	
SW2-1	SW2-2	SW2-3	SW2-4	(Amps)	Wiotor	Connections	36 Vdc (Amps)	
off	off	off	off	0				
off	off	off	on	0.5			1.0	
off	off	on	off	0.9	17HS-020	4 lead	1.1	
off	off	on	on	1.2	23HS-102	parallel	1.2	
off	on	off	off	1.3	23HSX-102	parallel	1.3	
off	on	off	on	1.6			1.4	
off	on	on	off	1.85	17HS-240	4 lead	1.4	
off	on	on	on	2.1	23HS-104	parallel	1.4	
on	off	off	off	2.3	23HS-304	parallel	1.7	
on	off	off	on	2.5	34HS-109	series	1.8	
on	off	on	off	2.7	23HSX-202	parallel	1.9	
on	off	on	on	2.9	34HS-106	parallel	2.0	
on	on	off	off	3.0	34HS-209	series	2.1	
on	on	off	on	3.1	23HS-309	series	2.1	
on	on	on	off	3.3	34HS 109	series	2.3	
on	on	on	on	3.5	23HSX-206	parallel		
					23HS-309	parallel		
					23HSX-306	parallel		
					34HS-109	parallel	2.7	
					34HS-209	parallel		
					34HSX-108	parallel		
					34HSX-208	parallel		
					34HSX-312	series		

Recommended motor-drive-connection combinations shown in BOLD

Rack mounting power supply

The MSE562 is designed for mounting in a 3U high Eurorack and is ideal for use with the MSE570 drive card. The unit will power up to 2 small motor axes or a single axis using a 34HS size motor. For applications requiring multi-axis operation using a combination of motors requiring high current settings the MSE173 Power supply or MSE875 units are recommended to drive up to 4 motors.

MSE562 provides a 35 Vdc motor rail for high speed $\,$ operation using the MSE570 Evo 2 drive.

Alternatively, where a motor is to be used at ultra high speed, the MSE562's 70 Vdc rail can be utilised in conjunction with a PM546 Drive

Specification

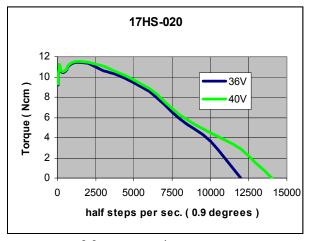
Width 142.2 mm (28E) Depth 220 mm

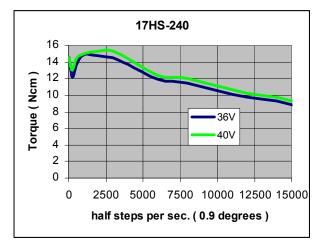
Mounting 3U high rack installation

Connector DIN41612 type D (32 way a & c) AC Supply 230 / 115 Vac 50 or 60 Hz.

Outputs:

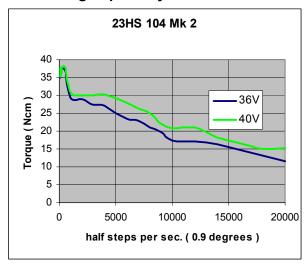
Connections: Refer to handbook


MSE562

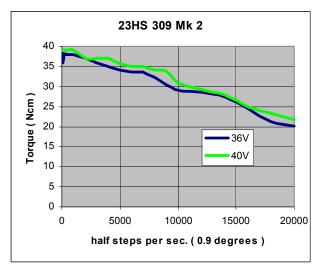


Performance using MSE570 with alternative supply voltages

Size 17 hybrid motors:

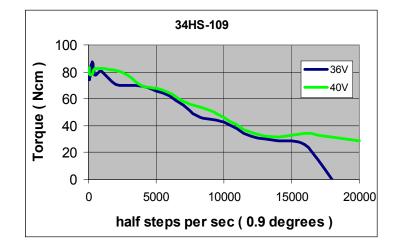


0.9 amps per phase

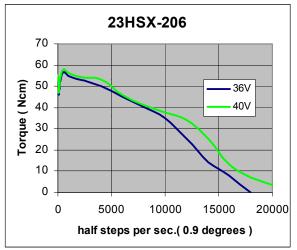


2.3 amps per phase

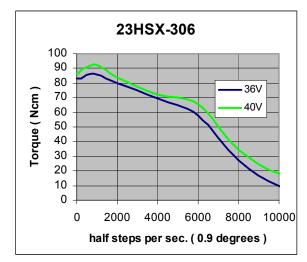
Size 23 high speed hybrid motors:


, Coils in parallel , 2.1 amps per phase

Coils in parallel, 3.5 amps per phase

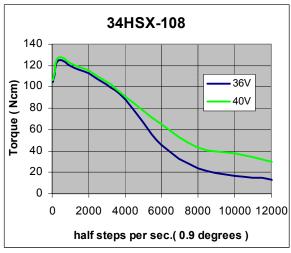

Size 34 high speed hybrid motor:

Coils in parallel, 3.5 amps per phase

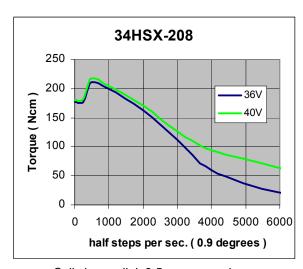


Performance using MSE570 with alternative supply voltages

Size 23 high torque hybrid motors:



Coils in parallel, 3.5 amps per phase



Coils in parallel, 3.5 amps per phase

Size 34 high torque hybrid motors:

Coils in parallel, 3.5 amps per phase

Coils in parallel, 3.5 amps per phase

Quick reference motor guide:

Size 17 motors							
Motor	Frame size	Length	Max Working				
			torque *				
17HS-020	42 mm	34 mm	8 Ncm	Motor	Frame size	Length	Max Working
17HS 240	square	46 mm	12 Ncm				torque *
Size 23 high speed stepper motors			Size 23 high torque stepper motors				
23HS-104	Ø 57 mm	52 mm	20 Ncm	23HSX-206	57 mm	55 mm	40 Ncm
23HS-309		67 mm	30 Ncm	23HSX-306	square	78.5 mm	60 Ncm
Size 34 high speed stepper motor			Size 34 high t	torque stepper	motors		
34HS-109	Ø 86 mm	62.3 mm	50 Ncm	34HSX-108	Ø 86 mm	67 mm	80 Ncm
				34HSX-208		94 mm	125 Ncm

Note* Maximum recommended working torque to allow adequate reserve for acceleration

