Safety and Reliability – Monitoring and Indication LS-Titan[®] Position Switches

<u>xCommand</u>

Command and signalling – ergonomic shape, attractive design. Switching control circuit currents reliably and precisely.

RMQ command and signalling devices

FAK foot and palm switches

SL signal towers

LS-Titan position switches T/P rotary switches ETR timing relays EMR measuring relays ESR safety relays Selection Guide LS-Titan[®] position switch LSE-Titan[®] position switch

LS-Titan[®] Position Switch Quick and Flexible

Metal or plastic versions

The LS-Titan position switches are optionally available in robust metal enclosures or in light insulated enclosures. Exchangeable metal or plastic operating heads make the LS-Titan position switch particularly flexible. Modular design, vibration proof and maintenance-free Cage-Clamp terminations guarantee extremely fast installation.

Electronic position switch with programmable operating point

The highlight is the world's first electronic position switch, the LSE-Titan. Its freely programmable operating point can be set individually at any time: Move to the operating point – press the Set key – ready!

The devices are suitable for use with safety applications designed to protect persons or processes.

LS-Titan [®] Position Swi UL/CSA 4X, 13 IP 66 Contacts		vitch		Contact sequence diagram for plunger and roller plunger	Plunger EN 50 047	Roller plunger EN 50047	Contact sequence diagram for spring rod
	M = Make B = Break → = Safety function with positively opening con- tacts to IEC/EN 60947-5-1		contact sequence contact ■ closed □ open Zw = Positive opening clearance				
plastic version	_	2B∋	0	0 3.0 6.1 11-12 NC 21-22 3.0 Zw = 4.5 mm	LS-02		
	1M	1B∋	0	0 4.3 6.1 13-14 NO 21-22 3.0 Zw = 4.5 mm	LS-11	LS-11/P	
	1M	1B∋	0	0 3.0 6.1 25-26 NC 17-18 NO 2.1 Zw = 4.5 mm	LS-11D		
	1M	1B⊖	0-+/ 14 22	0 3.0 6.1 21-22 13-14 1.5 2w = 45 nm	LS-11S*	LS-11S/P*	$0' 13' 26'$ $21 \cdot 22 \longrightarrow$ $13 \cdot 14 \longrightarrow$ $21 \cdot 22 \longrightarrow$ $13 \cdot 14 \longrightarrow$ $7 2w = 19'$
	2M	-	0-+	0 4.3 6.1 13-14 N0 23-24 N0 2.1	LS-20		
metal version	-	2B∋	o	0 3.0 6.1 11-12 NC 21-22 3.0 Zw = 4.5 mm	LSM-02		
<u> </u>	1M	1B∋	0-++13 + 21 0-++14 + 22	0 4.3 6.1 13-14 NO 21-22 3.0 Zw = 4.5 mm	LSM-11	LSM-11/P	
	1M	1B∋	0	0 3.0 6.1 25-26 NC 17-18 NO 2.1 Zw = 4.5 mm	LSM-11D		
	1M	1B⊖	0	0 3.0 6.1 21-22 13-14 21-22 13-14 1.5 Zw = 4.5 nm	LSM-11S*	LSM-11S/P*	$\begin{array}{c} 0^{0} & 13^{2} & 26^{2} \\ 21+22 & & & \\ 13+14 & & & \\ 21+22 & & & \\ 13-14 & & & \\ 7 & & \\ 2w = 19^{2} \end{array} \longrightarrow$
	2M	-	0-++-++ 14 24	0 4.3 6.1 13-14 N0 23-24 N0 2.1	LSM-20		

* LS/LSM-..S = Snap-Action contact

LSE-Titan[®] electronic position switch Setting a variable operating point

The LSE electronic position switch has an operating point that can be set variably. Two fast and bounce-free PNP switch outputs enable high switching frequencies. They are protected against short-circuit and overload and are equipped with an abrupt switching behaviour. This guarantees a defined and reproducible operating point. The actual operation point is in a range between 0.5 mm to 5.5 mm (supplied ex-works = 3 mm).

The setting to the "new" operating point is performed as follows: The plunger must be moved from the "old" to the "new" operating position. Now the set button should be pressed for a duration of 1 sec. The LED now flashes with a higher pulse frequency and the new operation point is set retentively.

Spring-Rod	Contact sequence	Roller lever	Contact sequence	Rotary lever	Adjustable	Actuating rod
	diagram for roller	EN 50047	diagram for rotary	EN 50 047	roller lever	
	lever		lever, adjustable			
			actuating rod			
			j·		*	
- -		<u>s</u>		in the second se		4
<u> </u>				<u>100</u>	61	ř.
					1	
-						
	0 4.7 9.6 11-12 NC 21-22 NC	LS-02/L				
	4.7 Zw = 7.1 mm 0 6.5 9.6		0" 46" 65"			
	13-14 NO 21-22 4.7 7w = 7 1 mm	LS-11/L	13-14 NO 21-22 NC 32' Zw = 48'	LS-11/RL	LS-11/RLA	
	0 4.7 9.6 15-16 NC 27-28 NO	LS-11D/L				
	3.3 Zw = 7.7 mm					
	0 4.7 9.6 21-22 13-14 →		0° 32° 65° 21-22 13-14 →			
L3-115/3"	21-22 13-14 2.6 2w = 7.1 mm	L3-113/L"	21-22 13-14 17 2w + 48'	L3-115/KL"	L5-115/RLA"	L3-115/KK"
	0 4.7 9.6 11-12 NC 21-22 NC	LSM-02/L				
	4.7 Zw = 7.1 mm 0 6.5 9.6		0° 46° 65°			
	13-14 NO 21-22 4.7 NC 7.1 - 7.1 mm	LSM-11/L	13-14 21-22 32 ⁺ 7w = 48 ⁺	LSM-11/RL	LSM-11/RLA	
	0 4.7 9.6 15-16 NC	ISM-11D/I	217 - 40			
	21-28					
	0 4.7 9.6 21-22 13-14 →		21-22 13-14 →			
LSIVI-115/5*	21-22 13-14 ← 2.6 2W = 7.1 mm	LSIVI-115/L*	21-22 13-14 17 7w = 48'	LSIVI-115/RL*	LSIVI-115/KLA*	LSIVI-TTS/RR*
	ATT - 7.3 0000		L11 - 40			

Simply snap on the RMQ-Titan command device

A further unique feature is the ability to combine a control circuit device from the RMQ-Titan range with the LS-Titan position switches. Pushbutton actuators, selector switches or emergency-stop buttons can be simply snapped on directly as the operating heads on each position switch. The combined unit maintains the degree of protection IP66 on both the front and rear.

LSE-Titan [®] Position Swi	Contact sequence diagram for plunger	Optical status display	LS-Titan [®] operating heads, accessories	Roller lever	Angled roller lever	Roller plunger
Plastic version	+ U_e electron, Q_1 Q_1 Q_2 Q_2 Q_2 Q_2 $Q_$	LSE-02	Plastic version			
	+ U_{e} Q_{1} Q_{1} Q_{2}	LSE-11		LS-XL	LS-XLA	LS-XP
Plastic version	I(mA) 20 4 0 100 [%] 5	LSE-AI 4-20 mA	Metal version			
		LSE-AU 0-10 V		LSM-XL	LSM-XLA	LSM-XP

The operating head can be attached in all four directions $(4 \times 90^{\circ})$ and can be installed quickly and securely with a bayonet fitting.

Rotary lever	Adjustable roller lever d=18mm	Adjustable- roller lever d=30mm	Adjustable roller lever d=40mm	Adjustable roller lever d=40mm (Rubber)	Plastic actuating rod	Metal actuating rod	Spring rod actuator	RMQ-Titan fixing adapter
0								
LS-XRL	LS-XRLA	LS-XRLA30	LS-XRLA40	LS-XRLA40R	LS-XRR	LS-XRRM	LS-XS	M22-LS

Dimensions LS-Titan[®] Position Switches

Position switches LS-..., LSM-..., LSE-..

2 2

≥20

(1) Tightening torque of cover screw: 1.0 Nm \pm 0.2 Nm \quad (2) Only with LS (plastic design)

LS(M)-11(S)/RLA

1 Setting range from 54.5 to 97

LS(M)-XL(A) 33.2

13

₿₿

≧ 8

LS(M)-11S/RR

 $\substack{\textcircled{1} LS.../RR \leq 150 \\ LS.../RRM \leq 210 }$

Technical Data			Complete unit to IP6 LS, LSM	6 LSE-11, LSE-11	LSE-AI	LSE-AU			
General									
Standards and regulations		IEC/EN 60947	IEC/EN 60947, EN 61000-4	IEC/EN 60947, EN 61000-4	IEC/EN 60947, EN 61000-4				
Climatic proofing			Damp heat, constant to IEC 60068-2-3, Damp heat, cyclic to IEC 60068-2-30						
Amhient temperature	°C		-25/+70	-25/+70	-25/+70	-25/+70			
Mounting position			as required	as required	as required	as required			
Degree of protection				IP66	IP66	IP66			
Cage Clamp terminal canacity			1100		100	1100			
solid		mm ²	$1 \times (0.5 - 2.5)$	1 x (0 5 – 2 5)	$1 \times (0.5 - 2.5)$	$1 \times (0.5 - 2.5)$			
flexible with ferrule		mm ²	$\frac{1 \times (0.5 - 2.5)}{1 \times (0.5 - 1.5)}$	$1 \times (0.5 - 1.5)$	$1 \times (0.5 - 1.5)$	$1 \times (0.5 - 1.5)$			
DIN 46228			T X (0.5 – 1.5)	T X (0.5 – 1.5)	1 X (0.3 – 1.3)	1 X (0.3 – 1.3)			
Power Supply									
Rated voltage				12 - 30	24 (-15%/+20%)	24 (-15%/+20%)			
Rated operational current	0 _e	VDC		12 - 50	24 (-13/0/+20/0)	24 (-13/0/+20/0)			
	T	m۸	_	15					
<u>12 v</u>	<u> </u>	mA		10	- 29 45	- 24			
24 V	<u> </u>	A		10	20-45	24			
SUV Conductors/Switching c	1 anacity	IIIA	-	19	-	-			
Conductors/ Switching C	apacity	NAC	4000						
voltage	U/ _{imp}	VAC	4000	_	-	-			
Rated isolation	U _i	V	400	-	-	-			
Overvoltage category/ pollution degree			111/3	III/3	III/3	III/3			
Rated operational current									
AC-15 24 V	Ι.	Α	6	_	_	_			
230 V/240 V	<u>-e</u> I.	A	- 6	_	_	_			
400 V/415 V	- <u>e</u> I	Δ		_	_				
DC-13 24 V	I	Δ	- 10	0.2					
110 V	I	Δ	1	0.2					
220 V	<u>I</u>	Δ	- 0.5	-	-				
Analog output 01	*e		0.5		-	-			
			-			0 10			
		<u>v DC</u>				0-10			
 Decolution		Ctans			4-20	- 100			
Kesolution Sten televence		Steps			100	100			
Step toterance					< 100	< I			
Load Impedance, resistive load		\$2	-		< 400	> 1000			
		M			approx. II	approx. II			
		<u>v</u>							
Foult connerio				-	< 200	< 200			
Fault Scenario		v	-		0	0			
at 24 V DC/5 mA	H _F	Fault-	< 10 ⁻⁷ , < 1 fault in	-	-	-			
at 5 V DC/1 mA	H _F	frequency Fault-	$\frac{10^{7} \text{ operations}}{< 10^{-6}, < 1 \text{ fault in}}$		_				
		frequency	5 x 10 ⁶ operations	_					
Mains frequency Short-circuit rating in closed stat	te	Hz	max. 400	-	-	-			
(IEC/EN 60947-5-1)									
Fuseless		Туре	PKZM 0-10 PXL-B6/1	non-inherently short- circuit proof, after reset switch back on	non-inherently short- circuit proof, after reset switch back on	non-inherently short- circuit proof, after reset switch back on			
Max. fuse		A gG/gl	10	-	-	-			
Short-circuit rating to IEC/EN 60	947-5-1								
Max. fuse		A gG/gl	6	-	-	-			
Repetition accuracy		mm	± 0.02	± 0.02	± 0.02	± 0.02			

Note

The following applies for LSE-11, LSE-02: Ensure that the voltage supply is not interrupted when setting the switching point. Cage-Clamp is a registered trademark of Wago Kontakttechnik, 32423 Minden, Germany. Accessories and actuation tools for the Cage-Clamp connection available from Wago:

Actuation tool, 2-way, Wago article no. 280-432 Screwdriver short, angled, Wago article no. 210-258 Jumper insert, grey, Wago article no. 264-402

Taska incl Data			Complete unit to IP66					
lechnical Data			LS, LSM	LSE-11, LSE-02	LSE-AI	LSE-AU		
March and Frankruss								
Slow action contact	operations	X 106	- 3	-	-			
Snap-action contact	operations	X 10°	3	3 (electronic)	_	-		
Contact temperature of the roller head		ຶ	≦ 100	≦ 100	≦ 100	≦ 100		
Mechanical shock resistance (haif-sinusoida	I snock 20 ms)							
Slow action contact		g	25		-			
Snap-action contact		g	2	-				
Basic unit		g		30	30	30		
Operating frequency	operations/h		≦ 6000	≦ 3000	≦ 3000	≦ 3000		
Switching point				0.5 – 5.5 mm, adjustable	-	-		
Hysterysis		mm	_	0.4	0.4	0.4		
Resolution		mm	_	0.04	0.06	0.06		
Drive								
Mechanical								
Actuating force travel start/end								
Basic unit		N	1.0/8.0	3.5/8.0	3.5/8.0	3.5/8.0		
LS(M)-XP		N	1.0/8.0	1.0/8.0	1.0/8.0	1.0/8.0		
LS(M)-XL		N	1.0/8.0	1.0/8.0	1.0/8.0	1.0/8.0		
LS(M)-XLA		N	1.0/8.0	1.0/8.0	1.0/8.0	1.0/8.0		
Rotary drive actuation torque		Nm	0.2	0.2	0.2	0.2		
Max. operating speed with DIN cams								
Basic unit with angle speed of operation	α = 0°/30°	m/s	1/0.5	1/0.5	1/0.5	1/0.5		
LS(M)-XRL with angle speed of operation	$\alpha = 0^{\circ}$	m/s	1.5	1.5	1.5	1.5		
LS(M)-XRLA with angle speed of operation	lpha = 30°, L = 125 mm	m/s	1.5	1.5	1.5	1.5		
LS(M)-XRR with	L = 130 mm	m/s	1.5	1.5	1.5	1.5		
LS(M)-XL with angle speed of operation	α = 30°/45°	m/s	1	1	1	1		
LS(M)-XLA with angle speed of operation	α = 30°/45°	m/s	1	1	1	1		
LS(M)-XP with angle speed of operation	$\alpha = 0^{\circ}/30^{\circ}$	m/s	1/1	1/1	1/1	1/1		
Electromagnetic Compatibility (EMC)								
Electrostatic discharge (IEC/EN 61000-4-2, L	evel 3. ESD)							
Air discharge			_	8	8	8		
Contact discharge			_	4	4	4		
Electromagnetic fields (IEC/EN 61000-4-3, Level 3, RFI)			_	10	10	10		
Burst Impulse (IEC/EN 61000-4-4, Level 3)								
Supply lines			-	2	2	2		
Signal lines			-	2	2	2		
Surge (IEC/EN 61000-4-5)		kV	-	0.5	0.5	0.5		
Immunity to line-conducted interference (IEC/EN 61000-4-6)			-	10	10	10		

© 2004 by Moeller GmbH Subject to alteration AH1300-31GB MDS/DM 02/04 Printed in the Federal Republic of Germany (04/04) Article No.: 269571

Moeller addresses worldwide: www.moeller.net/address E-Mail: info@moeller.net

