

Limit Switches

High precision micro limit switches with excellent environment proofing Quickly upgraded to limit switches with lamps by mounting an LED lamp socket

L socket type (roller arm)

RoHS Directive compatibility information http://www.nais-e.com/

FEATURES

1. Subminiature design

The size of the actual unit is approximately $1 / 10$ in the case of the plunger model and approximately $1 / 6.5$ in the case of the arm model, that of the vertical type limit switch.
Large-scale miniaturization has been achieved. Ideal for miniaturized machinery designs or highly accurate miniaturized machines.

Vertical type

Approx. 1/10

Plunger model

QL
2. A lamp can be easily added for operations checks

An exposed terminal type model combined with a socket with cord for the built-in LED lamp (sold separately) easily become a limit switch with lamp. Convenient for maintenance such as operations checks.

3. With appropriate O.T. range display The arm model has a convenient appropriate O.T. range display for attachment adjustment work. This should be set so that the operations display board's indicated protrusion winds inside the protrusion on the axle receptor, permitting use under optimum conditions.

4. Terminal uses both solder and tab (\#110)
5. O.P. accuracy of ± 0.2 (O.P. repeated accuracy initially ± 0.03) achieved Attachment accuracy improved greatly The plunger model has achieved a high O.P. repeated accuracy of within 0.03 mm through the development of a unique switch mechanism and a standard attachment surface on the upper surface of the unit (a surface with no slants.)
Also, through a unique mechanism that permits adjustment of the O.P. in each individual product at the time of assem-
bly, an O.P. accuracy of $\pm 0.2 \mathrm{~mm}$.008inch can be safeguarded between lots, so that almost no operating position adjustment is required during either attachment or replacement.
6. A subminiature limit switch with a great stroke margin (O.T./T.T.)
The T.T. has been enlarged by using a switching mechanism by coil spring for QL.
7. Long life

The unit has a long mechanical life of minimum 10^{7} times and a long electrical life of min. 3×10^{5} times ($5 \mathrm{~A}, 250 \mathrm{~V}$ AC resistance load) by means of a silver alloy contact with excellent solvent-proof characteristics and a guaranteed wiping operation that possesses two hinges and switching method by coil spring.
8. A mechanism with excellent environment proofing

- A protective construction equivalent to IEC IP64
The actuator has an axle seal with special packing, and the main case and terminals have both a waterproof ring and an epoxy-sealed mechanism. Also, the entire mechanism is water-proof due to the optional socket.
Socket with cord type... IP64 equivalent
- A sturdy, shockproof construction The body uses die-cast zinc, and the actuator uses stainless steel. Moreover, shock absorbers have been added to lessen the shock during plunger release.

TYPICAL APPLICATIONS

Any application where compactness, density, and robustness, such as subminiaturized machines and plant machinery, is required.

PRODUCT TYPE

1. Switch body

Actuator	Exposed terminal type	L socket type* $^{\text {Socket with cord type* }}$	
Push plunger	AZ4001	AZ4601	
Roller plunger	AZ4002	AZ4701	AZ4602
Cross roller plunger	AZ4003	AZ4603	
Roller arm	AZ4004	AZ4702	
Adjustable rod	AZ4007	AZ4703	
Adjustable roller arm	AZ4008	AZ4704	

[^0]L socket type = Exposed terminal type $+L$ socket, Socket with cord type $=$ Exposed terminal type + Socket with cord type (cord length: 1 m)
3. UL recognized, CSA certified type available. When ordering, add suffix 9 to part No..
(For the socket with cord type, only UL recognized type available with suffix 9 to the part No.)

2. Socket

Applicable limit switches	Specifications	Part No.
Exposed terminal types	L socket	AZ3806
	Socket with cord $(1 \mathrm{~m})$	AZ3807
	Socket with cord $(2 \mathrm{~m})$	AZ3827
	Socket with cord $(3 \mathrm{~m})$	AZ3837
	Socket with cord $(5 \mathrm{~m})$	AZ3857

3. Socket with LED

Applicable limit switches	Lamp connection	Lamp rating	Part No.
Exposed terminal types		6 V D	AZ3807162
		12 V DC	AX3807161
		24 V to 48V DC	AZ380716
		6 V DC	AZ3807362
		12 V DC	AZ3807361
		24 V to 48V DC	AZ380736

Notes) 1. Types with 24 to 48 V DC lamp rating are recommended for PC input use.
2. The following cord lengths are also available and lot-produced upon request.

Cord length	Part No.
2 m 6.562 ft.	AZ38 $27^{*} 6^{*}$
$3 \mathrm{~m} \mathrm{9.843ft}$.	AZ38 $37^{*} 6^{*}$
5 m 16.404 ft.	AZ38 $57^{*} 6^{*}$

The 5th digit (boxed) of product code denotes the length of cord Numerals come in the asterisked (*) digits, which show the lamp specifications.
The 7th digit: 1: N.O. connection, 3: N.C. connection
The 9th digit: None: 24 to 48 V DC, 1: 12 V DC, 2: 6V DC

FOREIGN STANDARDS

Standards		Applicable product	Part No.
UL recognized product	File No. Ratings Product type	E122222 5 A 250 V AC : All products	Add " 9 " to the end of the part No.
CSA certified product	File No. Ratings Product type	: LR55880 : 5A 250V AC : All products excluding socket with cord types.	

SPECIFICATIONS

1. Rating

Rated control voltage	125 V AC	250 V AC	30 V DC	125 V DC
Resistive load $(\cos \phi \doteqdot 1)$	5 A	5 A	5 A	0.4 A
Inductive load $(\cos \phi \doteqdot 0.4)$	3 A	3 A	3 A	0.1 A

2. Characteristics

Contact arrangement		1 From C
Initial contact resistance, max.		$50 \mathrm{~m} \Omega$ (By voltage drop 5 to 6V DC 1A)
Contact material		Ag alloy (Contains cadmium.)
Initial insulation resistance (At 500V DC)		Min. 100M Ω
Initial breakdown voltage	Between non-consective terminals	1000 Vrms for 1 min
	Between dead metal parts and each terminal	1500 Vrms for 1 min
	Between ground and each terminal	1500 Vrms for 1 min
Shock resistance	In the free position	Max. $300 \mathrm{~m} / \mathrm{s}^{2}$ \{Approx. 30G\} (Adjustable rod type and adjustable roller arm type: Min. $100 \mathrm{~m} / \mathrm{s}^{2}$ \{Approx. 10G\}
	In the full operating position	
Vibration resistance		10 to 55 Hz , double amplitude of 1.5 mm
Expected life (min. operations)	Mechanical	10^{7} (at 120 cpm)
	Electrical	3×10^{5} (at $20 \mathrm{cpm}, 5 \mathrm{~A} 250 \mathrm{~V}$ resistive load)
Ambient temperature		-20 to $+60^{\circ} \mathrm{C}-4$ to $+140^{\circ} \mathrm{F}$
Ambient humidity		Max. 95\% R.H.
Max. operating speed		120 cpm

3. Operating characteristics

Characteristics Actuator	Operating Force [O.F.] (N\{gf\}) max.	Release Force [R.F.] (N\{gf\}) min.	Pretravel [P.T.], max. mm inch	Movement Differential [M.D.] max. mm inch	Overtravel [O.T.], min. mm inch	Totaltravel [T.T.], min.
Push plunger	6.86 \{700\}	0.69 \{70\}	1.039	0.15 .006	4.157	-
Roller plunger	$6.86\{700$	0.69 \{70\}	1.039	0.15 .006	4.157	-
Cross roller plunger	6.86 \{700\}	0.69 \{70\}	1.039	0.15 .006	4.157	-
Roller arm	4.41 \{450\}	0.24 \{25\}	$15^{\circ} \pm 3^{\circ}$	3°	-	80°
Adjustable rod	4.41 \{450\} to 1.11 \{113\}	$0.24\{25\}$ to $0.06\{6\}$	$15^{\circ} \pm 3^{\circ}$	3°	-	80°
Adjustable roller arm	4.41 \{450\} to 2.01 \{205\}	$0.24\{25\}$ to 0.11 \{11\}	$15^{\circ} \pm 3^{\circ}$	3°	-	80°

Note) For the operating characteristics, refer to the TECHNICAL INFORMATION.

4. Protective characteristics

Protective construction	Switch body	L socket type	Type with socket and cord
IEC	O	O	O
IP64	O	-	-
IP65	O	-	-
IP66			

5. LED rating

Rated operating voltage	Operating voltage range	Internal resistance
6 V DC	5 to 15 V DC	$2.4 \mathrm{k} \Omega$
12 V DC	9 to 28 V DC	$4.7 \mathrm{k} \Omega$
24 to 48 V DC	20 to 55 V DC	$15 \mathrm{k} \Omega$

Note) For the switch proper, protect its terminals.

DATA

1. Life curve

2. Actual load life curve (relay coil load) WIRING DIAGRAMS

DIMENSIONS

1. L socket type
Push plunger

| $\begin{array}{l}\text { M3 socket } \\ \text { fastening screw }\end{array}$ |
| :--- | :--- |
| $\begin{array}{l}\text { (Set with AZ4003 exposed terminal } \\ \text { type and AZ3806 L socket.) }\end{array}$ |

AZ4601
Weight: 90g type and AZ3806 L socket.)
Cross roller plunger

AZ4603

exposed terminal type and AZ3806 L socket.)

2. Exposed terminal type

Push plunger
 Cross roller plunger: AZ4003 Roller arm: AZ4004
Adjustable rod: AZ4007 Adjustable roller arm: AZ4008

(Set with AZ4002 exposed terminal
type and AZ3806 L socket.)

AZ4001

SOCKETS

L socket

AZ3806

General tolerance: $\pm 0.4 \pm .016$

Socket with LED

LAMP LIGHTING CIRCUIT

1. Load at N.O. side

Use normally open (N.O.) connection terminal. LED will be turned on when switch is in free position, when switch is on, LED will be turned off.

2. Load at N.C. side

Use normally closed (N.C.) connection terminal. LED will be turned off when is in free position, when switch is on, LED will be turned on.

Notes)

1. Keep possible leakage current (see the CAUTIONS) in mind in order to prevent the load from malfunctioning.
2. Types with the 24 to 48 V DC lamp rating are recommended for sequencer input use.
3. Connect the red and black leads to the positive \oplus and negative Θ terminals, respectively, for the N.C. type, and the white and black leads to the positive \oplus and negative Θ terminals, respectively, for the N.O. type

MOUNTING METHOD

1. L socket type

1) After loosening the L socket fastening screws, grasp the terminal cover and pull it away from the switch body.
2) Remove the fastening screw from the terminal block. (Remove with the 3 terminal receptacle.)

3) Loosen the hexagonal nut and remove the rubber bushing and washer from the inside.

4) Select cord from applicable wire table.
5) Decide which direction the cord outlet is to face and strip the sheath accordingly. (See page 43.)
6) After passing the applicable cord through the hexagonal nut, bushing, and washer in that order, pass the cord through the terminal case.

7) After stripping the cord sheath, insert the corresponding wires into the grooves of the terminal body up to the wire stop, then crimp the terminal receptacle over the wires with a pair of pliers.

8) After the terminals have been properly crimped in the terminal body, insert the body into the terminal case. (When inserting the body, be careful not to block the hole for the fastening screw with the wires.)

9) Temporarily screw in the fastening screw through the terminal body, then insert the washer and rubber bushing into the cord opening of L socket. Tighten it with a wrench or pliers.

10) Apply the rubber packing over the terminals, then insert the L socket into the switch body.

11) Tighten the fastening screw into the switch body.

2. Socket with cord (including socket with lamp)
1) Apply the rubber packing over the terminals, then insert the socket with cord into the switch body.

2) Screw the socket fastening screw into the switch body and tighten it.

Mounting

The QL micro limit switch is manufactured with a very small variation in the distance between the datum plane and the operating point. When the operating point has been accurately established and the mounting position clearly determined, two M4 bolts should be used securely fastening the switch.

CORD OUTLET DIRECTION AND SHEATH STRIPPING DIMENSIONS

The cord outlet direction is selected from (1) of the (4) drawings below, and the cord is stripped to match the desired dorection

QL	Note: The stripping of the cord is based on a length for dimension A as standard and should be stripped accordingly.	(2)	(3)	(4)
L socket direction	(A) Terminal (1) and (A) direction are aligned.	Terminal (3) and (A) direction are aligned.	Terminal (1) and (B) direction are aligned.	(A) Terminal (2) and (A) direction are aligned.
Cord sheath stripping dimensions				

Aplicable wire

Wire name	Applicable wire		
	Conductor	Wire strand	Finished outside diameter
Vinyl cabtire cord (VCTF)	$0.75 \mathrm{~mm}^{2}$	2-wire	6.6 mm .268 inch dia.
		3-wire	7.2 mm .283 inch dia.

CAUTIONS

1. Ambient conditions

1) The use of these switches under the following conditions should be avoided. If the following conditions should become necessary, we recommend consulting us first.

- Use where there will be direct contact with organic solvents, strong acids or alkalis, or direct exposure to their vapors.
- Use where inflammable or corrosive gases exist.

2) Because these switchies are not of water resistant or immersion-proof construction, their use in water or oil should be avoided. Also, locations where water or oil can normally impringe upon the switch or where there is an excessive accumulation of dust should be avoided.

2. Wiring

1) Although $Q L$ limit switches have large over-travel (O.T.), excessive O.T. will occur wear and change in its characteristics. Specifically, where there is a need for long life, it is recommended that the proper O.T. should be used.
When the operating object is in the free condition, force should not be applied directly to the actuator.
2) Use their own accessories when mounting and wiring QL limit switches so as to maintain their own characterisrics. 3) In order to maintain the reliability at a high level under practical conditions of use, the actual operating conditions should be checked for the benefit of the quality of the product.
3) Do not use the switch in a silicon
atmosphere. Case should be taken where organic silicon rubber, adhesive, sealing material, oil, grease or lead wire generates silicon.
4) Avoid use in excessively dusty environments where actuator operation would be hindered.
3. Socket with LED
1) The OFF condition leakage current at each voltage is as follows.

Rated operating voltage	6 V	12 V	24 V	48 V
24 to 48 V DC	-	-	1.6 mA	3.2 mA
12 V DC	-	2.6 mA	5.2 mA	-
6 V DC	2.5 mA	5.6 mA	-	-

2) Even the polarity of power source is connected in the opposite way, LED is not broken. However, LED is not lit on.

SELECTOR CHART

Note：Excludes limit switch replacement parts
Actuators

Push plunger	plun	Cross－roller plung	Roller arm		Adjustable rod	Fork
	plung	Cross－roller plung		Adjustable roller arm		
$\text { ค } 月 \text { 白 }$		H 而				

Spring wire	Flexible rod	Hinge lever	Roller lever	One－way roller lever	Roller lever

Classification				Subminiature size vertical type		Compact size vertical type			Vertical type		Touch type	Door switch	
Product name				QL (AZ4) Micro Limit Switches		DL (AZD1) Mini Limit Switches	VL (AZ8) Limit S) Mini witches	Limit S	5 witches	VL-T Mini Touch Limit Switches	Compact Magnelimit	Magnelimit
AppearanceHead code				AZ4		AZD1		AZ8		AZ5	AZ84		AZC1
Feature				- A subminiature, highly accurate limit switch with built-in environment-proof functions. - Cord extraction can be changed in four directions, due to the dedicated L socket. - LED lamp can also be attached.		- Excellent safety even if the contact point is welded, due to the forced contact opening mechanism. - Block mount system makes parts replacement easy. - Contorms to DIN standards.	- In addition characteri stand mou switches, lable, high able, lightw and econo	to the istics of unted limit is comly instalhly reliweight	- Built-in circuit b (1 Form 1 Form - Different actuator able.	dedicated eaker A B). types of avail-	- Operate just by touching lightly. - Comes with sensitivity adjustment function and indicates operations. - VL type touch limit switch	- Secured by magnet - Built-in switch detection Dual-role switch in one unit. - Safe design prevents operator making errors.	- Secured by magnet - Built-in switch detection Dual-role switch in one unit. - Construction possible with 100 V AC power.
	Dust-proof type		IP60	${ }_{\text {L }}^{\text {Locket type }}$		\bigcirc	\bigcirc				\bigcirc	-	-
	旁 Abrasion-proof type		IP64	\bigcirc	\bigcirc	\bigcirc	O				\bigcirc	-	-
	Surge-pro	f type	IP65	\bigcirc	-	\bigcirc	-				-	-	-
	Corrosion-pr	ftype	IP67	-	-	\bigcirc	-				-	${ }^{1)} \mathrm{O}$	-
	Oil-resista	t type	-	\bigcirc	\bigcirc	-	O				\bigcirc	-	-
	Neon			-	-	-	-	\bigcirc	-	\bigcirc	-	-	-
	LED			-	\bigcirc	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	-
Ratings (load resistance)				5A250V AC		6A250V AC 6A380V AC 5A24V DC				With lamp type] [Neon lamptype] 10A 125V AC 6 A 24 V AC [LEDD Damp type] 6 A 24 V DC	Input voltage 12-24V DC Output current 150 mA	$\begin{aligned} & \text { 2) } \\ & 5 \mathrm{~A}(2 \mathrm{~A}) 125 \mathrm{~V} A C \\ & 5 \mathrm{~A}(2 \mathrm{~A}) 250 \mathrm{~V} A C \\ & 5 \mathrm{~A}(2 \mathrm{~A}) 30 \mathrm{VDC} \end{aligned}$	5A 125V AC 5A 250V AC 5A 30VDC
Life (Min.ope.)		Mechanical		10^{7}		10^{7}	10		10		10^{7}	10^{5}	10^{5}
		Electr	rical	3×10^{5}		1.5×10^{5}	3×1		$5 \times$		-	5×10^{4}	5×10^{4}
Operating force (max.) (hinge lever type)				6.86N \{700gf\} (Plunger type) 1.11N \{113gff, $4.41 \mathrm{~N}\{450 \mathrm{gff}\}$ (Arm type)		6.37N \{650gf\} 4.90N \{500gf\} 3.29N \{400gf\}	$\begin{array}{r} 0.88 \mathrm{~N}\{ \\ 5.88 \mathrm{~N}\{ \\ 8.83 \mathrm{~N} \\ 19.16 \mathrm{~N}\{ \end{array}$	90gft, 600gf\}, 900gf\}, 2,000gf\}	$\begin{array}{r} 1.39 \mathrm{~N} \\ 26.67 \mathrm{~N} \end{array}$	$\begin{aligned} & \{142 \mathrm{gf}\} \\ & 2,720 \mathrm{gff} \end{aligned}$	-	-	3.43 N \{350gf $\}$
Available actuators				$\begin{aligned} & \text { R } R \text { M } \\ & \text { م } \end{aligned}$		$\frac{Q}{\infty}$						\cap	\cap
Terminals				- L socket (Solderand quick connect (\#110) terminal) - Socket with code		Screw terminal (Conduit connectors: PF: $1 / 2, \mathrm{PG}$: 13.5 types)	Screw te	erminal	Screw t	erminal	Screw terminal	Tab \#110 terminal Lead wire	Screw terminal
Wiring				Cabtire code		Cabtire code	Cabtire Cap tire	$\begin{aligned} & \text { e cord } \\ & \text { cable } \end{aligned}$	Cabtir (wirin	cable type)	Cabtire cord Cabtire cable	Cabtire cord	Cabtire cord
Mounting pitch (Applicable screw)				$\begin{aligned} & 14 \times 28 \mathrm{~mm} \\ & .551 \times 1.102 \text { inch } \\ & \text { (M4 screws) } \end{aligned}$		$\begin{gathered} 22 \times(47 \mathrm{~mm}) \\ .86 \times 1.850 \text { inch } \\ (\mathrm{M} 4 \text { screws }) \end{gathered}$	$\begin{array}{r} 21 \times 5 \\ .827 \times 2 . \\ (\mathrm{M} 4 \mathrm{si} \end{array}$	56 mm 205inch rews)	$\begin{array}{r} 30.2 \times 2 \\ 1.189 \times \\ \text { (M5 sc } \end{array}$	58.7 mm 2.311 inch rews)	$\begin{gathered} 21 \times 56 \mathrm{~mm} \\ 827 \times 2.205 \mathrm{inch} \\ \text { (M4 screws) } \end{gathered}$	30 mm 1.181 inch (M3)	$\underset{(\mathrm{M} 4)}{52 \mathrm{~mm}} \underset{ }{2.047 \mathrm{inch}}$
Available standards				UL,	CSA	UL, C-UL, TÜV, CE	UL, C-UL,	TÜV, CE	U		-	UL, C-UL	UL, C-UL, CE
Page				P. 38		P. 44	P. 5		P.		P. 68	P. 72	P. 74

Notes: 1) Excludes exposed part of terminals, externally mounted components, and magnet catches.
2) Figures in parentheses () indicate rated current of water-resistant type.

- Other listed products

Product name	PS Hall Sensors
Appearance	
Feature	- Magnetic detector type subminiature sensor - Perfect for slide table limiting - Economical price with operating display lamp attached.
Page	P. 76

ACTUATOR SELECTION

TECHNICAL INFORMATION

Standard glossary

- Fixed rating values

The values that guarantee the standards for the limit switch characteristics and functions. For example, the rated current and rated voltage, which are preset conditions (load type, current, voltage, frequency, etc.)

- Operating object

The mechanism and mountings that operate the limit switch actuator. Used for mechanical operators such as cams and dogs.

- Detective object

The unit other than mechanical mountings that operate the limit switch. Products, parts, jigs, etc.

- Reaction spring (movable spring) The mechanical part that switches the limit switch contact is called either the reaction spring or the moveable spring.
- Contact

When the counter-spring revolves, power is switched on and off through the contact between metal parts

- Contact gap

The effective clearance between the fixed contact and the moveable contact. Also called breaking distance.

- Contact arrangement

The construction of the electrical input/output circuit depending on use. For example, the following two applications:

- Contact type

Used in opposition to a semiconductor switch that has switching characteristics. Fulfills switch functions through a mechanical ON/OFF contact.

- Terminal mold

After wiring, the connecting part is molding by epoxy resin for waterproof, oil-resistant and dust-proof capabilities.

CONSTRUCTION

- Actuator

This part directly detects movement of the dog, cam, and so forth in the operating unit, and transmits external force to the changeover mechanism, thereby engaging the moveable contact and operating the switch.

- Headblock

An independent part of the actuator mechanism of the Limit Switch.

- Wiring vent (cord vent)

The seal on the wiring at the mouth of the wiring vent. Also called the conduit vent for the screw hole used in the wiring.

- Terminals

The part of the wiring work in the wiring that forms the circuit for electrical input and output.

OPERATING CHARACTERISTICS

- Operating Force (O.F.)

The force required to cause contact snap-action. It is expressed in terms of force applied to the actuator.

- Release Force (R.F.)

The force to be applied to the actuator, at the moment contact snaps back from the operated position to unoperated position.

- Pretravel (P.T.)

Distance of the actuator movement from free position to operating position.

- Overtravel (O.T.)

The distance which the actuator is permitted to travel after actuation without any damage to the switching mechanism.

- Total Travel (T.T.)

The distance which the actuator is permitted to travel from free position without any damage to the switching mechanism.

- Movement Differential (M.D.)

The distance from operating to release position of the actuator.

- Operating Position (O.P.)

The position of the actuator when the traveling contact snaps to the fixed contact.

- Release Position (R.P.) The position of the actuator when the traveling contact snaps back from the operating position to its original position.
- Free Position (F.P.)

Position of the actuator when no force is applied to it.

Glossary relating to the EN60947-5-1

- EN60947-5-1

EN standard same as IEC947-5-1

- Utilization categories

The following examples express the classification of switches by category of use.

Current type	Category	Contents
AC	AC-15	Controls electromagnetic loads in excess of 72VA (Volt Amperes.)
DC	DC-12	Controls resistance loads and semiconductor loads.

- Rated operational voltage (Ue) The maximum rated voltage for switch operation. This must never exceed the maximum ratings insulation voltage (Ui).
- Rated operational current (le) The maximum rated current for switch operation.
- Rated insulation voltage (Ui)

The maximum rated current value which guards the switch's insulation functions, forming the parameters for the resistance values and the mounting distance.

- Rated impulse withstand voltage (Uimp)
The peak impulse current value which enables the switch to resist without insulation breakdown.
- Rated enclosed thermal current (Ithe)
The current value that enables current to flow without exceeding the specified maximum temperature in the recharging contact switch. If the pins are made of brass, the maximum temperature limit is $65^{\circ} \mathrm{C} 149^{\circ} \mathrm{F}$.
- Conditional short circuit current The current the switch can resist until the short circuit protection device is activated.
- Short circuit protection device A device that protects the switch from short circuits through a circuit break (breakers, fuses, etc.)
- Switching overvoltage

The surge momentarily generated when a circuit is closed. Must be lower than the Uimp value.

- Pollution degree

Expresses in levels the environment in which the switch is used. The four levels are shown below. Limit switches come under contamination level 3.

Pollution degree	Contents
1	No contamination or, even if conta- mination is present, only non-con- ducting contamination is generated.
2	Normally, only non-conducting cont- amination is generated, but there remains the possibility of temporary conducting contamination when the circuit is formed.
3	Conducting contamination is gener- ated, or else dry non-conducting contamination is generated by cir- cuits which can be anticipated.
4	Permanent conducting contamina- tion is generated by dust, rain, snow, and other conductors.

PROTECTIVE CONSTRUCTION

Protective construction

Expresses the degree of protective construction that guards the level of functionability of the switch against ingress of solid objects, water, and oil. The standards are IEC529 (IEC: International Electrotechnical Commission) standards. IEC standards determine the level of protection against both water and solid objects, but not against oil.

Protection against both water and solid objects

	Level	Protection level	Protection level and test methods		
	4	-	Protection against solid objects exceeding 1 mm .039inch in size.	$\begin{gathered} \frac{8}{0} \\ c_{0}^{0} \\ \frac{1.0}{1} \\ \frac{\downarrow}{\uparrow} .039 \text { dia. } \end{gathered}$	A hard wire 1 mm dia. .039 inch dia. across cannot penetrate the inside.
Protection against solid objects	5	-	Protection against dust		The unit is left for 8 hours in an atmosphere in which 2 kg of talcum powder per $1 \mathrm{~m}^{3}$ is floating. No damage incurred from talcum powder penetrating the inside.
	6	Dust-proof	Protection againt dust (dust does not penetrate)		The unit is left for 8 hours in an atmosphere in which 2 kg of talcum powder per $1 \mathrm{~m}^{3}$ is floating. The talcum powder does not penetrate the inside.

Note: 1. All of the tests cited above were conducted with the cord vent (conduit vent) tightly shut.
2. The above protective constructions are based on IEC standard but major differences may arise due to length of use and operating environment. This should be thoroughly discussed and verified.
3. When the corrosion-proof model is immersed in water for 30 minutes or more, verify that no water has penetrated the inside before use.

DESIGN OF OPERATING DOG AND OPERATING SPEED

Pay attention to the following points when designing the dog for limit switch operation.

1. Make the dog faceplate as smooth as possible.
2. Adjust both the dog angle and the set arm angle as below, depending on the operating speed. 3. The depth (h) of the dog effects the lifespan of the limit switch. Therefore, set the depth to a maximum of 80% of the Total Travel (T.T.)
3. The relationship between the speed of the $\operatorname{dog}(\mathrm{V}=\mathrm{m} / \mathrm{s})$ and the tip angle (α) is as follows:
1) $\mathrm{V} \leqq 0.2 \mathrm{~m} / \mathrm{s}$

α	$V \max (\mathrm{~m} / \mathrm{s})$
45°	0.2
60°	0.1
60 to 90°	0.05

When $\mathrm{V} \leqq 0.2 \mathrm{~m} / \mathrm{s}$, set the arm to perpendicular and set the arm rise angle to between 45° and 90°. If the dog rise angle is reduced, the maximum tolerable speed is increased.
As a rule, $\alpha=45^{\circ}$ is optimum.
2) $V \leqq 0.5 \mathrm{~m} / \mathrm{s}$

Because the arm jiggle is as a minimum at a comparative speed such as $\mathrm{V} \leqq 0.5 \mathrm{~m} / \mathrm{s}$, setting both the dog angle so that it travels perpendicularly and the arm angle to 45° is optimum.
3) $0.5 \mathrm{~m} / \mathrm{s}<\mathrm{V} \leqq 2 \mathrm{~m} / \mathrm{s}$

α	$\operatorname{Vmax}(\mathrm{m} / \mathrm{s})$
40°	0.7
35°	0.9
30°	1.3
25°	2.0

The maximum tolerable speed can be extended by further reducing the dog rise angle from 45° when $0.5 \mathrm{~m} / \mathrm{s}<$ $\mathrm{V} \leqq 2 \mathrm{~m} / \mathrm{s}$. It is necessary to set the arm so that the dog's cutting surfaces are always parallel ($\theta \circ=90^{\circ}-\alpha$)
4) Overriding the $\operatorname{dog}(\mathrm{V} \leqq 0.2 \mathrm{~m} / \mathrm{s})$

α	$\operatorname{Vmax}(\mathrm{m} / \mathrm{s})$
45°	0.2
60°	0.1
60 to 90°	0.05

If overriding the dog, set the arm perpendicularly, so that $\alpha=45^{\circ}$. If the dog angle is reduced, the tolerable speed is increased.
5) Roller plunger type

α	$V \max (\mathrm{~m} / \mathrm{s})$	h
20°	0.5	(0.5 to 0.7) T.T.
30°	0.25	$(0.6$ to 0.8$)$ T.T.

Even if overriding the dog, set the forwards and rearwards motion exactly the same, and avoid any settings that make the actuator accelerate rapidly from the dog
5. Operation speed

1) When the operation (acting and reverting) speed is exceedingly slow, switching of the contacts will become unstable and this could cause problems such as failure to make contact and welding. As a guide, the speed should be at least $1 \mathrm{~mm} / \mathrm{s}$.
2) When the operation (acting and reverting) speed is exceedingly fast, be careful because the violent motion could cause breakage and with increased frequency, contact switching will not be able to keep up. As a guide, the switching frequency should be within 20 times per minute.

PROTECTION CIRCUIT

1. The ON/OFF circuit for the guidance load may suffer contact damage due to surges or inrushes when the power is turned either ON or OFF.
Consequently, insertion of a protective circuit as per the following diagram is recommended, in order to protect the contacts.

2. Do not connect either irregular poles or power sources to a switch contact. Power connection examples (irregular pole connection)

Load connected to same pole
Example of unsuitable power connection (abnormal power connection)

3. Avoid circuits where power may find a way between the contact points (as this may cause welding.)

NO GOOD

4. Using electronic switch circuits (low power, low current)

1) Bouncing and chattering are generated due to collision between the contacts when the limit switch is switching between them, and this sometimes causes such problems as white noises and error pulses in both the electronic circuit and the reverberation equipment.
2) If the generation of bouncing and chattering becomes a problem, it is necessary to consider installing a CR circuit or other absorption circuit given the circuit design.
3) This is particularly necessary when high contact reliability is needed, and is unsuitable for silver contact switches. Switches with gold contacts possess excellent performance.
4) Do not attempt to physically alter any part of the switch itself, such as the actuator, or switch attachment vent, as this may cause alterations to both characteristics and performance, and damage the insulation.
5) Do not pour any lubricants such as oil or grease onto the moving parts of the actuator, as there is a possibility that this will cause a malfunction due to seepage into the inside, and impair the motion. Silicon-based grease in particular affects the contact points badly.
6) If the switches are not to be used for an extended period of time, their contact reliability may be reduced due to oxidation of the contact points.
Because accidents may result from the impaired conductivity, always implement a check beforehand.
7) Prolonged continuous use of the switch hastens deterioration of the parts (especially the seal rubber) and may cause a malfunction in the release. For this reason, always implement a check beforehand.
8) Usage in the vicinity of either the switch operating position (O.P.) or the release position (R.P.) results in unstable contacts. If using the NC contact point, set the actuator to return to the free position (F.P.) Also, is using the NO contact point, hold the ratings values down to 70 to 100% for the overtravel (O.T.)
9) If the actuator is forced beyond its total travel (T.T.), the internal mechanism may be damaged. Always use within the T.T.
10) Do not apply unreasonable force to the actuator, as this may result in damage and impaired movement.
11) The switch, if dropped, may break due to excessive vibration and impact. Therefore, please use extra caution when transporting and installing. 9) Condensation inside the switch may occur if there are rapid ambient temperature changes when the switch is in a high temperature and humidity. Since this occurs easily during marine transport, be extra cautious of what the environment will be when shipping. Condensation is the phenomenon in which water vapor condenses into switch-adhering water droplets when the temperature rapidly drops in a high-temperature, high-humidity atmosphere or when the switch is quickly moved from a low temperature location to a place of high temperature and high humidity. It is the cause of insulation deterioration and of rust. 10) Be careful of freezing in temperatures below $0^{\circ} \mathrm{C}$. Freezing is the phenomenon in which moisture adhering to the switch from condensation or when in unusually high-humidity environments freezes onto the switch when the temperature drops below the freezing point. Please extra caution because freezing can lock moving parts, cause operational delays, or interfere with conductivity when there is ice between the contacts.
12) In low-temperature, low-humidity conditions, plastic becomes brittle and the rubber and grease harden, which may lead to malfunction.
13) Long term storage (including during transport) in high temperature or high humidity environments or where the atmosphere contains organic or sulfide gas, will cause sulfide or oxide membrane to form on the contact surfaces. This in turn will cause unstable or failed contacting that may lead to functional malfunction. Please verify the atmosphere when storing and transporting.
14) Packaging should be designed to reduce as much as possible the potential influence of humidity, organic gas, and sulfide gas, etc.
15) Please avoid sudden changes in temperature. This is a cause of switch deformation and encourages the seal structure to breathe, which may lead to seal failure and operational malfunction.
16) If installing a thermoplastic resin case, the use of a spring washer tightened directly against the case will cause the case to collapse and become damaged. Therefore, please add a flat washer before tightening. Also, be careful not to install if the case is being twisted.
17) For the purpose of improving quality, materials and internal structure may be changed without notice.
18) When used outdoors (in places where there is exposure to direct sunlight or rain such as in multistory car parks) or in ambient temperature environments where ozone is generated, the influence of these environments may cause deterioration of the rubber material. Please consult us if you intend to use a switch in such environments.

PRECAUTIONS RELATING TO THE INSTALLATION ENVIRONMENT

Avoid using in silicon environments such as organic silicon-based rubber, solvents, sealants, oil, grease, or wiring.

IMPROVEMENT EXAMPLES

Explanation

Table of Recommended Substitute Products for Discontinued Products

Products to be discontinued	Recommended substitute products	Page
AZ1 series Limit switches	ML (AZ7) Limit switches	P. 33
AZ2 series Limit switches	ML (AZ7) Limit switches	P. 33
Slitted type Limit switches (AZ6)	ML (AZ7) Limit switches	P. 33
New slitted type Limit switches (AZ66)	ML (AZ7) Limit switches	P. 33

Products to be discontinued	Recommended substitute products	Installation
AZ1*** You cannot use this nut for panel installation.	AZ7***	Please note that installation method and operation characteristics are different.
AZ2***	AZ7***	Please note that installation method and operation characteristics are different.
AZ6***	AZ7***	Please note that installation method and operation characteristics are different.
AZ66***	$A Z 7 * * *$	Please note that installation method and operation characteristics are different.

FOREIGN STANDARDS OVERVIEW

1. International Standards	
IEC standard	International Electrotechnical Commission By promoting international cooperation toward all problems and related issues regarding standardization in the electrical and electronic technology fields, the IEC, a non-governmental organization, was started in October, 1908, for the purpose of realizing mutual understanding on an international level. To this end, the IEC standard was enacted for the purpose of promoting international standardization.

2. North America

UL (Underwiters Laboratories Inc.)
This is a non-profit testing organization formed in 1894 by a coalition of U.S. fire insurance firms, which tests and approves industrial products (finished products). When electrical products are marketed in the U.S., UL approval is mandated in many states, by state law and city ordinances. In order to obtain UL approval, the principal parts contained in industrial products must also be ULapproved parts.
UL approval is divided into two general types. One is called "listing" (Fig. 1), and applies to industrial products (finished products). Under this type of approval, products must be approved unconditionally. The other type is called "recognition" (Fig. 2), and is a conditional approval which applies to parts and materials.

Fig. 3

Fig. 4

Fig. 5

Fig. 6

3. Europe

EN standard
(1) Germany

PRODUCT SERVICE

European Standards/Norme Europeennee (France)/Europaishe Norm (Germany) Abbreviation for European Standards. A unified standard enacted by CEN/CENELEC (European Standards Committee/European Electrical Standards Committee). EU and EFTA member nations employ the content of the EN standards into their own national standards and are obligated to abolish those national standards that do not agree with the EN standards.

VDE (Verband Deutscher Elektrotechniker) The VDE laboratory was established mainly by the German Electric Technology Alliance, which was formed in 1893. It carries out safety experiments and passes approval for electrical devices and parts. Although VDE certification is not enforced under German law, punishment is severe should electrical shock or fire occur; therefore, it is, in fact, like an enforcement.

TÜV (Technischer Überwachungs-Verein) TÜV is a civilian, non-profit, independent organization that has its roots in the German Boiler Surveillance Association, which was started in 1875 for the purpose of preventing boiler accidents. A major characteristic of TÜV is that it exists as a combination of 14 independent organizations (TÜV Rheinland, TÜV Bayern, etc.) throughout Germany. TÜV carries out inspection on a wide variety of industrial devices and equipment, and has been entrusted to handle electrical products, as well, by the government. TÜV inspection and certification is based mainly on the VDE standard.
TÜV certification can be obtained from any of the 14 TÜVs throughout Germany and has the same effectiveness as obtaining VDE certification.

SAFETY STANDARDS RECOGNITION

Limit switches

Product name		UL recognized		CSA certified		TÜV approval	
		File No.	Approved ratings	File No.	Approved ratings	File No.	Approved ratings
SL limit switches		E122222	4A 250V AC	LR55880	4A 250V AC	-	-
HL limit switches	Dies-cast case standard load type	E122222	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	LR55880	$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	J9650514	DC-12 1A 30V-
	Die-cast case low level load type (includes connector type)		0.1A 30V DC		0.1A 30V DC		DC-12 0.1A 30V-
	Plastic case standard load type		$\begin{gathered} \text { 5A 250V AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$		$\begin{gathered} 5 \mathrm{~A} 250 \mathrm{~V} \text { AC } \\ \text { Pilot duty B300 } \\ \hline \end{gathered}$	J9650515	$\begin{gathered} \text { AC-15 2A 250V~ } \\ \text { DC-12 1A 30V- } \\ \hline \end{gathered}$
	Plastic case low level load type		0.1A 30V DC		0.1A 30V DC		DC-12 0.1A 30V-
ML limit switches	Standard type	E122222	10A 250V AC	$\begin{gathered} \hline \text { E122222 } \\ \text { (C-UL) } \\ \hline \end{gathered}$	10A 250V AC	J9551204	AC-15 2A 250V~
	Epoxy-sealed terminal type	-	-	(-	-	-
	With lamp	-	-	-	-	-	-
QL limit switches		E122222	5A 250V AC	LR55880	5A 250V AC	-	-
VL limit	Standard type	E122222	5A 250V AC Pilot duty B300	$\left.\begin{array}{\|c\|} \hline \mathrm{E} 122222 \\ (\mathrm{C}-\mathrm{UL}) \end{array} \right\rvert\,$	5A 250V AC Pilot duty B300	J9551203	AC-15 2A 250V~
switches	With neon lamp					-	-
DL limit switches		E122222	6A 380V AC Pilot duty A300	$\begin{gathered} \text { E122222 } \\ (\mathrm{C}-\mathrm{UL}) \\ \hline \end{gathered}$	6A 380V AC Pilot duty A300	J9551205	AC-15 2A 250V~
Vertical limit switches		E99838	$\begin{array}{r} \text { 10A 1/2HP } 125 \mathrm{~V} \text { AC } \\ 6 \mathrm{~A} 1 / 2 \mathrm{HP} 250 \mathrm{~V} \mathrm{AC} \\ \hline \end{array}$	-	-	-	-
Compact Magnelimit	Standard type	E43149	5A 250V AC	$\begin{aligned} & \text { E43149 } \\ & \text { (C-UL) } \\ & \hline \end{aligned}$	5A 250V AC	-	-
	Water-resistant type		2A 250V AC	$\begin{aligned} & \text { E43149 } \\ & \text { (C-UL) } \end{aligned}$	2A 250V AC	-	-
Magnelimit		E122222	5A 250V AC Pilot duty B300	$\begin{gathered} \text { E122222 } \\ (\mathrm{C}-\mathrm{UL}) \end{gathered}$	5A 250V AC Pilot duty B300	-	-

CE MARKINGS OVERVIEW

Limit switches conforming to EN/IEC standards

The limit switches shown below conform to both EN and IEC standards, and may display the CE markings.

Product classification	Product name	Suitable standard	Approving body	File No.
Limit switches	HL	EN60947-5-1	TÜV	J9650514/J9650515
	ML	EN60947-5-1	TÜV	J 9551204
	VL	EN60947-5-1	TÜV	J 9551203
	DL	EN60947-5-1	TÜV	J 9551205
	Magnelimit	EN60947-5-1	-	-

Note: Refer to the page for each individual product for detailed approval conditions and approved types. Moreover, the HL limit switch alone does not display the CE mark as standard. If the CE mark is necessary, add (CE) to the end of the part No. when ordering.

What are EN standards?

An abbreviation of Norme Europeenne (in French), and called European Standards in English. Approval is by vote among the CEN/CENELEC member countries, and is a unified standards limited to EU member countries, but the contents conform to the international ISO/IEC standards.
If the relevant EN standard does not exist, it is necessary to obtain approval based on the relevant IEC standard or, if the relevant IEC standard does not exist, the relevant standard from each country, such as VDE, BS, SEMKO, and so forth.

CE markings and EC directives

The world's largest single market, the European Community (EC) was born on 1 January 1993 (changing its name to EU in November 1993. It is now always expressed as EU, apart from EC directives.) EU member country products have always had their quality and safety guaranteed according to the individual standards of each member country. However, the standards of each country being different prevented the free flow of goods within the EU. For this reason, in order to eliminate non-tariff barriers due to these standards, and to maximize the merits of EU unification, the EC directives were issued concomitant to the birth of the EU.

The EN standards were established as universal EU standards in order to facilitate EU directives. These standards were merged with the international IEC standards and henceforth reflect the standards in all countries. Also, the CE markings show that products conform to EC directives, and guarantee the free flow of products within the EC.

Appropriate EC directives for control equipment products

The main EC directives that are to do with machinery and electrical equipment are the machinery directive, the EMC directive, the low voltage directive, and the telecom directive. Although these directives have already been issued, the date of their enactment is different for each one. The machinery directive was 1 January 1995. The EMC directive was 1 January 1996, and the low voltage directive was enacted from 1 January 1997. The telecom directive was established by the separate CTR (Common Technology references.)

[^0]: Notes) 1. Cadmium free contact types are available on a custom-made basis. Please add an " F " to the end of the part number when ordering
 2. *L socket type or socket with cord type is combination of;

