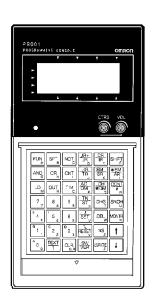
Cat. No. W222-E1-3

# SYSMAC CVM1/CVM1D/CV Series CVM1-PRS21-EV1 Programming Console


## **OPERATION MANUAL**

## OMRON

# **CVM1-PRS21-EV1 Programming Console**

## **Operation Manual**

Revised January 1999



#### Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to property.

/! DANGER

Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

/! WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

∕!\ Caution

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

#### **OMRON Product References**

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.

The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

#### Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

**Note** Indicates information of particular interest for efficient and convenient operation of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

#### © OMRON, 1993

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

## TABLE OF CONTENTS

| PRE                              | CCAUTIONS                                       |  |  |  |  |  |  |
|----------------------------------|-------------------------------------------------|--|--|--|--|--|--|
|                                  | ended Audience                                  |  |  |  |  |  |  |
| 2 Ge                             | neral Precautions                               |  |  |  |  |  |  |
| 3 Sa                             | fety Precautions                                |  |  |  |  |  |  |
| 4 Op                             | 4 Operating Environment Precautions             |  |  |  |  |  |  |
| 5 Ap                             | plication Precautions                           |  |  |  |  |  |  |
| SEC                              | TION 1                                          |  |  |  |  |  |  |
|                                  | oduction                                        |  |  |  |  |  |  |
|                                  |                                                 |  |  |  |  |  |  |
| 1-1<br>1-2                       | Features  Programming Console Capabilities      |  |  |  |  |  |  |
| 1-2                              | Connecting Programming Consoles                 |  |  |  |  |  |  |
| 1-3                              | Lists of Operations                             |  |  |  |  |  |  |
| 1-5                              | Unsupported Operations                          |  |  |  |  |  |  |
| _                                |                                                 |  |  |  |  |  |  |
|                                  | TION 2                                          |  |  |  |  |  |  |
| Com                              | ponent Parts and Installation                   |  |  |  |  |  |  |
| 2-1                              | Nomenclature                                    |  |  |  |  |  |  |
| 2-2                              | Connections                                     |  |  |  |  |  |  |
| 2-3                              | Panel Mounting                                  |  |  |  |  |  |  |
| 2-4                              | Dimensions                                      |  |  |  |  |  |  |
| 2-5                              | Precautions                                     |  |  |  |  |  |  |
| SEC                              | TION 3                                          |  |  |  |  |  |  |
|                                  | Functions and Displays                          |  |  |  |  |  |  |
|                                  |                                                 |  |  |  |  |  |  |
| 3-1<br>3-2                       | Keypad                                          |  |  |  |  |  |  |
| 3-2<br>3-3                       | Initial Displays                                |  |  |  |  |  |  |
| 3-4                              | Display Symbols and Abbreviations               |  |  |  |  |  |  |
| 3-5                              | Display Examples                                |  |  |  |  |  |  |
|                                  |                                                 |  |  |  |  |  |  |
|                                  | TION 4                                          |  |  |  |  |  |  |
| Ope                              | rations                                         |  |  |  |  |  |  |
| 4-1                              | Overview                                        |  |  |  |  |  |  |
| 4-2                              | Layout of Descriptions                          |  |  |  |  |  |  |
| 4-3                              | Inputting Instructions and Operands             |  |  |  |  |  |  |
| 4-4                              | Operations                                      |  |  |  |  |  |  |
| SEC                              | TION 5                                          |  |  |  |  |  |  |
|                                  | or Processing                                   |  |  |  |  |  |  |
| 5-1                              | Reading Errors                                  |  |  |  |  |  |  |
| 5-1<br>5-2                       | Error Messages                                  |  |  |  |  |  |  |
| 5-2<br>5-3                       | Operating Errors                                |  |  |  |  |  |  |
| 5-4                              | PC Errors                                       |  |  |  |  |  |  |
| <b>A</b>                         |                                                 |  |  |  |  |  |  |
| App                              | endices                                         |  |  |  |  |  |  |
|                                  | andard Models                                   |  |  |  |  |  |  |
| B Specifications                 |                                                 |  |  |  |  |  |  |
| C Programming Console Operations |                                                 |  |  |  |  |  |  |
|                                  | D Inputs for Instructions and Operands          |  |  |  |  |  |  |
|                                  | lphabetic List of Instructions by Function Code |  |  |  |  |  |  |
| ΓА                               | lphabetic List of Instructions by Mnemonics     |  |  |  |  |  |  |

## TABLE OF CONTENTS

| Index    | • • • | • • • • | • | <br>• | • | • | • | • • | • | • | • | • | • | • | <br>• | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
|----------|-------|---------|---|-------|---|---|---|-----|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Revision | Hist  | tory    | • | <br>  | • | • |   |     |   | • | • | • | • | • |       | • | • | • | • | • |   | • | • | • |   |   | • | • | • | • |

#### About this Manual:

This manual describes the installation and operation of the CVM1-PRS21-EV1 Programming Console and includes the sections described below. This Programming Console is used for CVM1, CVM1D, and CV-series PCs and cannot be used for C-series PCs.

Please read this manual carefully and be sure you understand the information provided before attempting to install and operate the Programming Console.

Section 1 describes the applications environment required for the Programming Console and lists the operations it does and does not support. Details are provided in following sections.

Section 2 describes the functional parts of the Programming Console and connection procedures for installing the Programming Console.

Section 3 describes the basic functions of the keys on the keypad and the main displays that appear during operation.

Section 4 individually describes the operations that are possible from the Programming Console.

Section 5 describes errors that can occur during Programming Console operation, including both errors directly relation to Programming Console operation and PC errors.

Various appendices are also provided for easy reference. Refer to the table of contents for a list of these.



/!\WARNING Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

### **PRECAUTIONS**

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the Programmable Controller. You must read this section and understand the information contained before attempting to set up or operate a PC system.

| 1 Intended Audience                 |
|-------------------------------------|
| 2 General Precautions               |
| 3 Safety Precautions                |
| 4 Operating Environment Precautions |
| 5 Application Precautions           |

3 Safety Precautions

#### **Intended Audience** 1

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent).

- Personnel in charge of installing FA systems.
- Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

#### **General Precautions** 2

The user must operate the product according to the performance specifications described in the operation manuals.

Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be sure to read this manual before attempting to use the Unit and keep this manual close at hand for reference during operation.



/! WARNING It is extremely important that a PC and all PC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PC System to the above-mentioned applications.

#### 3 **Safety Precautions**



/!\WARNING Do not attempt disassembly a Unit while the power is being supplied. Doing so may result in electric shock.



/!\ WARNING Do not touch any of the terminals while the power is being supplied. Doing so may result in electric shock.



/!\ WARNING Do not attempt to disassemble, repair, or modify the Unit. Any attempt to do so may result in malfunction, fire, or electric shock.



Execute online unit replacement (hot swapping) only after confirming that no adverse effects will be caused to the system. Otherwise, the system may malfunction.

#### **Operating Environment Precautions** 4

#### /!\ Caution

Do not operate the control system in the following places:

- Locations subject to direct sunlight.
- Locations subject to temperatures outside the range 0 to 55°C.
- Locations subject to humidity outside the range 10 to 90%.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to shock or vibration.

#### **∕!**∖ Caution

Take appropriate and sufficient countermeasures when installing systems in the following locations:

- Locations subject to static electricity or other forms of noise.
- Locations subject to strong electromagnetic fields.
- Locations subject to possible exposure to radioactivity.
- Locations close to power supplies.



The operating environment of the PC System can have a large effect on the longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PC System. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

#### 5 **Application Precautions**

Observe the following precautions when using the PC System.



/! WARNING Always heed these precautions. Failure to abide by the following precautions could lead to serious or possibly fatal injury.

- Always connect to a ground of 100  $\Omega$  or less when installing the Units. Not connecting to a ground of 100  $\Omega$  or less may result in electric shock.
- Always turn OFF the power supply to the PC before attempting any of the following. Not turning OFF the power supply may result in malfunction or electric shock.
  - Mounting or dismounting Memory Cassettes.
  - Assembling the Units.
  - · Setting switches.
  - Connecting or wiring the cables.



Failure to abide by the following precautions could lead to faulty operation of the PC or the system, or could damage the PC or PC Units. Always heed these precautions.

• Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes.

Safety Precautions 3

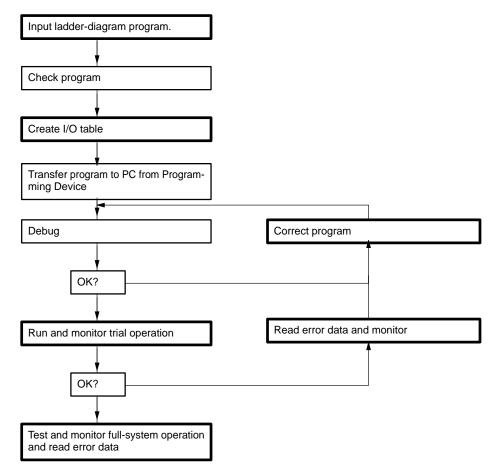
• Interlock circuits, limit circuits, and similar safety measures in external circuits (i.e., not in the Programmable Controller) must be provided by the customer.

- Always use the power supply voltage specified in the operation manuals. An incorrect voltage may result in malfunction or burning.
- In places where the power supply is unstable, take appropriate measures to ensure that the rated power supply is made available. An incorrect power supply may result in malfunction.
- Install external breakers and take other safety measures against short-circuiting in external wiring. Insufficient safety measures against short-circuiting may result in burning.
- Disconnect the functional ground terminal when performing withstand voltage tests. Not disconnecting the functional ground terminal may result in burning.
- Check the connectors before mounting. Not doing so may result in malfunction
- Install the Unit properly as specified in the operation manual. Improper installation of the Unit may result in malfunction.
- Be sure that all the mounting screws, terminal screws, and cable connector screws are tightened to the torque specified in the relevant manuals. Incorrect tightening torque may result in malfunction.
- Use crimp terminals for wiring. Do not connect bare stranded wires directly to terminals. Connection of bare stranded wires may result in burning.
- Double-check all the wiring before turning ON the power supply. Incorrect wiring may result in burning.
- Be sure that the terminal blocks, Memory Units, expansion cables, and other items with locking devices are properly locked into place. Improper locking may result in malfunction.
- Check the user program for proper execution before actually running it on the Unit. Not checking the program may result in an unexpected operation.
- Confirm that no adverse effect will occur in the system before attempting any of the following. Not doing so may result in an unexpected operation.
  - Changing the operating mode of the PC.
  - Force-setting/force-resetting any bit in memory.
  - Changing any set value.
- Resume operation only after transferring to the new CPU Unit the contents of the DM and HR Areas required for resuming operation. Not doing so may result in an unexpected operation.
- Do not pull on the cables or bend the cables beyond their natural limit. Doing either of these may break the cables.
- Do not place objects on top of the cables. Doing so may break the cables.
- Do not hold the cables when transporting the Unit. Doing so may break the cables.
- When replacing parts, be sure to confirm that the rating of a new part is correct.
   Not doing so may result in malfunction or burning.
- Before touching the Unit, be sure to first touch a grounded metallic object in order to discharge any static built-up. Not doing so may result in malfunction or damage.

## **SECTION 1 Introduction**

This section describes the applications environment required for the Programming Console and lists the operations it does and does not support. Details are provided in following sections.

| 1-1 | Feature                         | s                                |  |  |  |  |  |  |  |
|-----|---------------------------------|----------------------------------|--|--|--|--|--|--|--|
| 1-2 | Prograi                         | Programming Console Capabilities |  |  |  |  |  |  |  |
| 1-3 | Connecting Programming Consoles |                                  |  |  |  |  |  |  |  |
|     | 1-3-1                           | CVM1 and CV-series PCs           |  |  |  |  |  |  |  |
|     | 1-3-2                           | CVM1D PCs                        |  |  |  |  |  |  |  |
|     | 1-3-3                           | Connecting Cables                |  |  |  |  |  |  |  |
|     | 1-3-4                           | Priority of Programming Devices  |  |  |  |  |  |  |  |
| 1-4 | Lists of                        | Operations                       |  |  |  |  |  |  |  |
| 1-5 | Unsupported Operations          |                                  |  |  |  |  |  |  |  |


#### 1-1 Features

The CVM1-PRS21-EV1 Programming Console is an on-site Programming Device for SYSMAC CVM1, CVM1D, and CV-series PCs. It can be used together with other Programming Devices, such as the SSS (SYSMAC Support Software), to enable on-site maintenance of user programs and data.

#### 1-2 Programming Console Capabilities

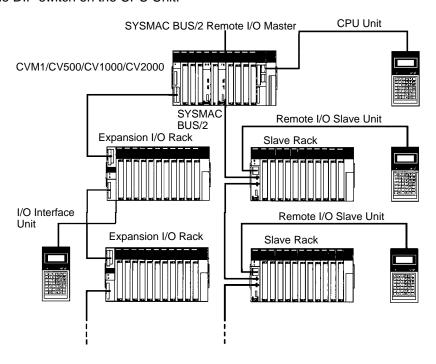
The procedure for programming and operating a PC is illustrated below. All of the operations in bold boxes can be performed from the Programming Console.

First, programs are written into the PC and debugged using another Programming Device. Then, the Programming Console can be used to alter or monitor the ladder program, read error data, or execute online Unit replacement (hot swapping).



#### 1-3 Connecting Programming Consoles

#### 1-3-1 CVM1 and CV-series PCs


It is possible to connect the Programming Console to any of the following:

- CV500, CV1000, CV2000, or CVM1 CPU Units.
- CV500-II201 I/O Interface Units
- SYSMAC BUS/2 Remote I/O Slave Units.

Programming Devices cannot be connected to both the CPU Unit and an I/O Interface Unit at the same time on the same PC. If more than one is connected, only one, at most, will be operative. Refer to 1-3 Programming Devices Restrictions for details.

It is possible to connect a maximum of four Programming Devices to the same PC, i.e., one to either the CPU Unit or I/O Interface Unit and up to three to SYS-MAC BUS/2 Remote I/O Slave Units, or if one is not connected to the CPU Unit or I/O Interface Unit, up to four to SYSMAC BUS/2 Remote I/O Slave Units. A maximum of two Programming Consoles, however, can be connected to Slaves under the same Remote I/O Master Unit.

**Note** The DIP switch of the Unit to which the Programming Console is connected must be set to a baud rate of 50 kbps. The baud rate for the I/O Interface Unit is set on the DIP switch on the CPU Unit.



Programming Device Restrictions

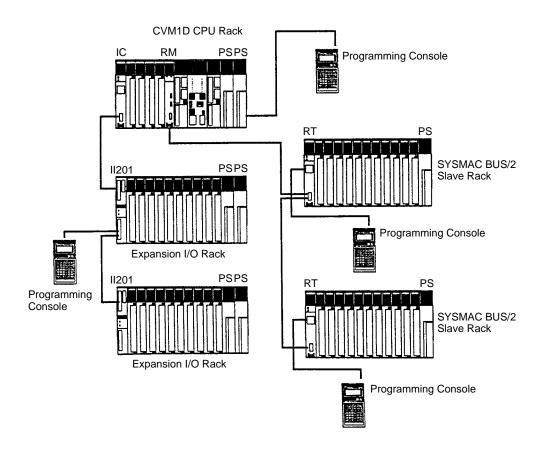
The number of Programming Devices, including Programming Consoles and personal computers running CVSS (CV Support Software), SSS (SYSMAC Support Software), or SYSMAC-CPT (see note) must be within the following limitations for any one PC.

| Connection point               | Maximum nur    | mber of Progran | nming Devices |
|--------------------------------|----------------|-----------------|---------------|
| CPU Unit                       | 1              | 0               | 0             |
| CV500-II201 I/O Interface Unit | 0              | 1               |               |
| SYSMAC BUS/2 Remote I/O        | 3              | 3               | 4             |
| Slave Units                    | (2 max. per Ma | ster)           |               |
| Maximum total                  | 4              |                 |               |

Note The SYSMAC-CPT does not support the CVM1D Duplex System.

#### 1-3-2 CVM1D PCs

Programming Consoles or other Programming Devices cannot be connected directly to the CPU Unit of a CVM1D Duplex System. Connect to the Duplex Unit instead of the CPU Unit.


The CVM1-PRS21-EV1 Programming Console can be used for the CVM1, CVM1D, and CV-series PC, but not for C-series PCs. The Programming Console can be connected to the following Units.

- CVM1D-DPL01 Duplex Unit
- CV500-II201 I/O Interface Unit (Expansion I/O Rack)
- CV500-RT211 Optical SYSMAC BUS/2 Remote I/O Slave Unit CV500-RT221 Wired SYSMAC BUS/2 Remote I/O Slave Unit

Programming Devices cannot be connected to both the Duplex Unit and an I/O Interface Unit at the same time on the same PC. Connect to only one of these at any one time.

It is possible to connect a maximum of four Programming Devices to the same PC, i.e., one to either the Duplex Unit or I/O Interface Unit and up to three to SYS-MAC BUS/2 Remote I/O Slave Units. If one is not connected to the Duplex Unit or I/O Interface Unit, up to four can be connected to SYSMAC BUS/2 Remote I/O Slave Units. A maximum of two Programming Consoles, however, can be connected to Slaves under the same Remote I/O Master Unit.

**Note** A Unit to which a Programming Console is connected must be set to a baud rate of 50 kbps. The baud rate for the I/O Interface Unit is set on the DIP switch on the Duplex Unit.



Note A CVM1D Backplane cannot be used for a SYSMAC BUS/2 Slave Rack.

#### 1-3-3 Connecting Cables

Use one of the following Cables (sold separately) to connect the Programming Console to the PC.

| Model       | Cable length |
|-------------|--------------|
| CV500-CN224 | 2 m          |
| CV500-CN424 | 4 m          |
| CV500-CN624 | 6 m          |

#### 1-3-4 Priority of Programming Devices

If Programming Devices are connected to both the CPU Unit and one or more I/O Interface Units within the same PC, only one, at most, will be operative. The following rules of priority apply.

- If a computer running the CVSS, SSS, or SYSMAC-CPT is connected to the peripheral device connector on the CPU Unit, it will take priority over a Programming Console connected anywhere.
  - 2. If more than one computer running the CVSS, SSS, or SYSMAC-CPT is connected, all will be inoperative.
  - 3. If more than one Programming Console is connected, the first one that is connected will take priority.

The following table is for easy reference when multiple Programming Devices are connected to the CPU Unit and I/O Interface Units.

| Programming Devices         | Programming Devices connected first |                                     |  |  |  |  |  |  |
|-----------------------------|-------------------------------------|-------------------------------------|--|--|--|--|--|--|
| connected later             | CVSS, SSS, or<br>SYSMAC-CPT         | Programming Console                 |  |  |  |  |  |  |
| CVSS, SSS, or<br>SYSMAC-CPT | All stop operating                  | CVSS, SSS, or<br>SYSMAC-CPT         |  |  |  |  |  |  |
| Programming Console         | CVSS, SSS, or<br>SYSMAC-CPT         | Programming Console connected first |  |  |  |  |  |  |

Programming Devices connected to Remote I/O Slave Units do not differ from one another in priority and will all operate as long as the maximum number of Programming Devices is not exceeded. Programming Devices connected to Remote I/O Slave Units and one Programming Device connected to the CPU Unit or an I/O Interface Unit will also have the same priority and operate simultaneously.

Lists of Operations Section 1-4

## 1-4 Lists of Operations

The Programming Console provides the following operations.

| Classification          | Operation                                            | Sub-operations                                                      |
|-------------------------|------------------------------------------------------|---------------------------------------------------------------------|
| Initial settings        | System settings                                      | Response monitor time<br>Message number                             |
|                         | Program designation                                  |                                                                     |
|                         | PC mode change                                       |                                                                     |
| Program editing         | Address set                                          |                                                                     |
|                         | Program read                                         |                                                                     |
|                         | Instruction search                                   |                                                                     |
|                         | Operand search                                       |                                                                     |
|                         | Instruction overwrite                                |                                                                     |
|                         | Instruction insert                                   |                                                                     |
|                         | Instruction delete                                   |                                                                     |
|                         | Timer/Counter SV change                              |                                                                     |
| Monitoring              | Simple I/O monitor                                   | Force reset/set                                                     |
|                         | I/O multipoint monitor                               | PV change<br>— ASCII display                                        |
|                         | 4-word monitor                                       | Decimal display                                                     |
|                         | Word monitor                                         |                                                                     |
|                         | Differential monitor                                 |                                                                     |
| Special operations      | Clock read/change                                    |                                                                     |
|                         | UM protect                                           |                                                                     |
|                         | Active step monitor                                  |                                                                     |
|                         | SFC search                                           |                                                                     |
|                         | Action block change                                  |                                                                     |
|                         | Transition change                                    |                                                                     |
| Online Unit replacement | Online Unit replacement                              |                                                                     |
| PC data read            | Cycle time display                                   |                                                                     |
|                         | Automatic error display                              |                                                                     |
|                         | Error data read                                      | Error display/clear<br>Error history read<br>Message read           |
| PC setup                | Startup mode                                         |                                                                     |
|                         | Execution controls                                   | Duplicate action error (CV Series only)<br>Comparison error process |
|                         | Host link                                            |                                                                     |
|                         | Scheduled interrupt (Except for CVM1D)               |                                                                     |
|                         | Momentary power interruption time (Except for CVM1D) |                                                                     |
|                         | Cycle time                                           |                                                                     |
|                         | Cycle time monitoring time                           |                                                                     |
| Memory card operations  | Memory card format                                   |                                                                     |
|                         | File write                                           |                                                                     |
|                         | File read                                            |                                                                     |
|                         | File compare                                         |                                                                     |
|                         | File delete                                          |                                                                     |
| I/O table operation     | I/O table create                                     |                                                                     |
| •                       | I/O table compare                                    |                                                                     |
| Memory clear            | Memory clear                                         |                                                                     |

#### 1-5 Unsupported Operations

The CVM1, CVM1D, and CV-series Programming Consoles do not support the following operations. The CVSS, SSS, or SYSMAC-CPT must be used instead.

- Inputting or modifying SFC programs.
- Checking programs.
- The following I/O table operations:

I/O table read

I/O table change

I/O table cancel

- Debugging operations
- The following PC Setup settings:

Hold areas

Startup hold

Startup processing

I/O refresh

**Execution controls 1** 

Execution controls 2 (Execute process, I/O interrupts, Power OFF interrupt, Step timer, Startup trace, Indirect DM binary/BCD, JMP(004) 0000 operation)

CPU bus link settings

First words for local racks

First words for group-1 and group-2 Slaves

First words for I/O Terminals

First words for group-3 Slaves

Error history area

Display modes at startup

Scheduled interrupts (Not supported by CVM1D)

Momentary power interruption time (Not supported by CVM1D)

• The following customization settings:

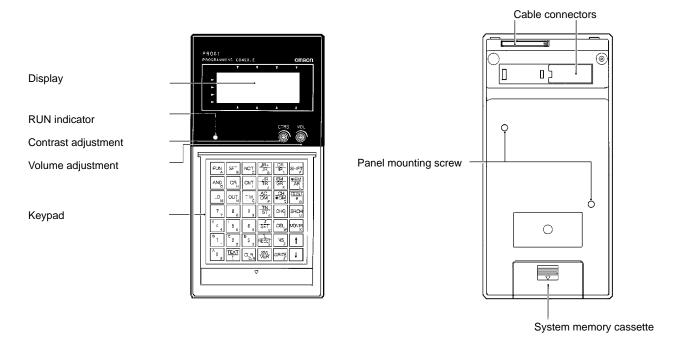
Custom function codes

Custom data area abbreviations (see note 1)

Custom data areas (see note 2)

Operations related to Link Units

**Note** Data area abbreviations changed for the CVSS, SSS, or SYSMAC-CPT cannot be displayed or used with a Programming Console. The normal abbreviations must be used instead. Data area abbreviations for custom data areas can be used along with the normal word/bit addresses.


# **SECTION 2** Component Parts and Installation

This section describes the functional parts of the Programming Console and connection procedures for installing the Programming Console. Details on basic key functions are provided in *Section 3 Key Functions and Displays*.

| 2-1 | Nomenclature   |
|-----|----------------|
| 2-2 | Connections    |
| 2-3 | Panel Mounting |
| 2-4 | Dimensions     |
| 2-5 | Precautions    |

Nomenclature Section 2-1

#### 2-1 Nomenclature



**Displays** Displays programs and other information.

**RUN Indicator** Lights in synchronization with the RUN indicator on the CPU Unit.

**Contrast Adjustment** Used to adjust the contrast of the display.

Volume Adjustment Used to adjust the volume of the buzzer. The buzzer sounds when keys are

pressed or when errors occur.

**Keypad** Used to input programs and data.

System Memory Cassette Includes system memory data used to operate the Programming Console. Do

not remove the System Memory Cassette.

Cable Connectors Used to connect the Programming Console to the PC. Use either one of the con-

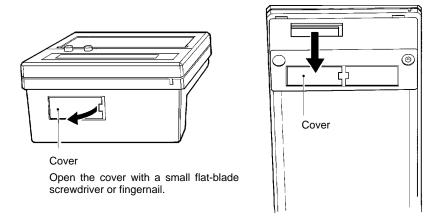
nectors, but not both at the same time.

Panel Mounting Screws Used to mount the Programming Console to a panel using the C200H-ATT01

Mounting Bracket (sold separately).

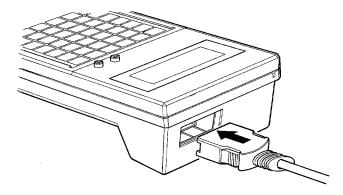
Connections Section 2-2

#### 2-2 Connections


Refer to *Section 1 Introduction* for details on connecting cables, connectable Units, and the maximum number of Programming Devices allowed per PC.

When connecting to the CPU Unit, connect the Programming Console to the peripheral device connector (PERIPHERAL). The Programming Console can be connected to the PC while the PC is turned on, and even while the PC is operating.

#### **Connecting to the Programming Console**


#### 1, 2, 3... 1. Remove the cable connector cover.

The removed cable connector cover should be attached to the rear panel of the Programming Console in order not to lose it.

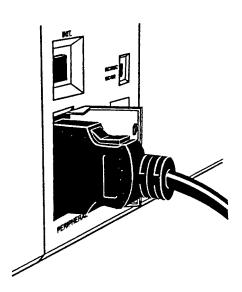


#### 2. Insert the connector.

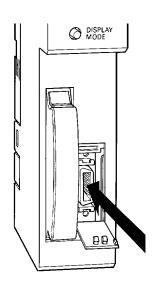
Be sure to check the direction of the connector and insert it correctly. Insert the connector until it locks into place.




Connections Section 2-2

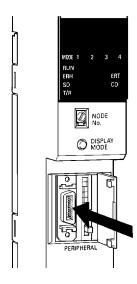

#### Connecting to the PC

Be sure to check the direction of the connector and insert it correctly. Insert the connector until it locks into place.


#### **CPU Unit (CVM1and CV Series)**

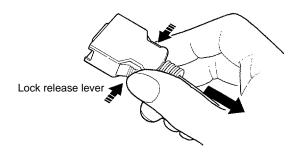


#### **DPL Unit (CVM1D)**




#### I/O Interface Units




Connections Section 2-2

#### Remote I/O Slave Units



#### **Disconnecting the Cable**

Squeeze the lock release levers on the sides of the connector and pull the connector straight out to disconnect.



#### **Switch Settings and Adjustments**

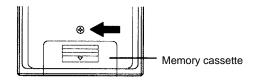
PC Switch Settings Set the DIP switch to a baud rate of 50 kbps. The DIP switch on the CPU Unit is

effective for both the peripheral device connector and the connector on the I/O

Interface Unit. The Remote I/O Slave Unit has its own DIP switch.

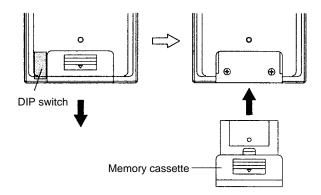
Contrast Turn the contrast adjustment clockwise or counterclockwise to adjust the con-

trast of the display.


Buzzer Turn the volume adjustment clockwise or counterclockwise to adjust the volume

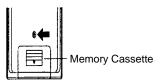
of the buzzer.

#### **Replacing the Memory Cassette**


Use the following procedure to replace the Memory Cassette if you are going to use the CVM1-MP201-V1 Memory Cassette.

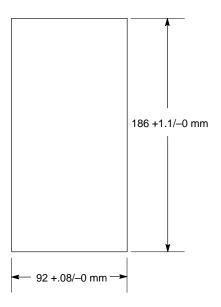
Remove the screw holding the Memory Cassette from the back of the Programming Console.




Panel Mounting Section 2-3

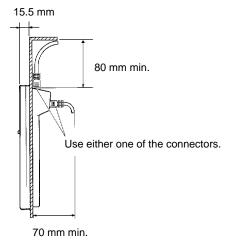
Remove the Memory Cassette and replace it with the new Memory Cassette.



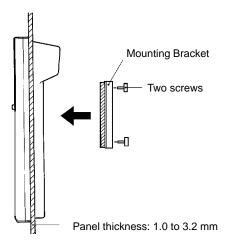

3. Replace the screw removed in the first step.

Note There is a DIP switch on the left of the Memory Cassette that can be accessed when the Memory Cassette is removed. The language displayed on the Programming Console can be switched between Japanese and English by using the pin furthest to the back. Except for this feature, use with the factory settings unchanged. Set the pin towards the base for Japanese display and towards the case for English display.

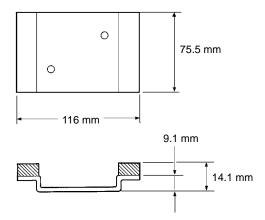



#### 2-3 Panel Mounting

Use the C200H-ATT01 Mounting Bracket (sold separately) to mount the Programming Console to a panel. Cut an opening as shown in the following illustration. The panel cutout conforms to DIN43700.




Panel Mounting Section 2-3

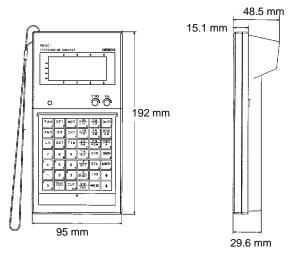

Leave enough space for the connectors as shown by the following illustration.



Insert the Programming Console into the cutout, attach the Mounting Bracket from the rear side of the panel, and secure the Mounting Bracket with screws.



#### **Mounting Bracket Dimensions**




/! Caution

The ambient temperature must be 0 to 55 °C when the Programming Console is used inside a control panel. The Programming Console may not function properly and may be damaged at temperatures outside this range. Provide air conditioning, ventilation, or heating as required to maintain the temperature within this range.

Precautions Section 2-5

#### 2-4 Dimensions



#### 2-5 Precautions

Although the Programming Console does not require regular maintenance, observe the following precautions.

- Do not subject the Programming Console to excessive shock during transportation or operation. Handle the keypad and the display with care.
- Do not remove the System Memory Cassette.
- The Programming Console incorporates two connectors. Use only one of them at a time.
- Connect the cable to the Programming Console securely so that the lock levers of the Programming Console lock firmly into place.
- Do not pull or twist the cable with excessive force.

# **SECTION 3 Key Functions and Displays**

This section describes the basic functions of the keys on the keypad and the main displays that appear during operation.

| 3-1 | Keypad                            |
|-----|-----------------------------------|
| 3-2 | Initial Displays                  |
|     | Sub-operations                    |
|     | Display Symbols and Abbreviations |
| 3-5 | Display Examples                  |

Keypad Section 3-1

#### 3-1 Keypad

The Programming Console's keypad is shown below. The use of individual keys is described in *Section 4 Operation* and in *Appendix D Inputs for Instructions and Operands*.

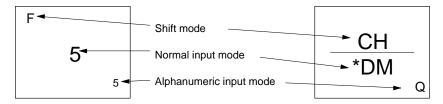
Note On the keys, "CONT" stands for "Bit" and "CH" stands for "Word." Also, the "SFT" Key is used to input the SHIFT instruction only. The "SHIFT" Key is used to toggle in and out of the shift input mode (see below).

| FUN   | SFT<br>B | NOT<br>c | , IR+<br>, IR<br>D | DR IR E     | SHIFT          |
|-------|----------|----------|--------------------|-------------|----------------|
| AND   | OR<br>H  | CNT      | , _IR<br>          | GR K        | AR L           |
| LD M  | OUT      | TIM      | AC DM P            | CH<br>*DM Q | CONT<br>#<br>R |
| 7     | 8 8      | 9        | TN ST s            | CHG<br>T    | SRCH U         |
| E 4 4 | 5<br>5   | 6        | SET v              | DEL<br>w    | MONTR<br>x     |
| B 1 1 | C 2 2    | D 3      | RESET Y            | INS z       | •              |
| A 0 0 | TEXT !   | CLR      | SW<br>VER          | WRITE       | •              |

#### **Input Modes**

There are three input modes used from the keypad: Normal input mode, Shift input mode, and Alphanumeric input mode.

#### **Normal Input Mode**


In normal input mode, the middle or the bottom function of each key is input when the key is pressed.

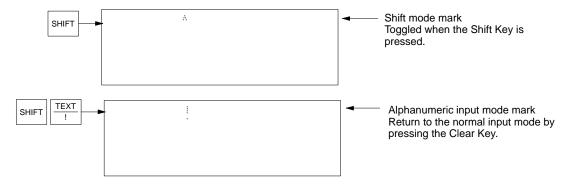
#### **Shift Input Mode**

When the Shift Key is pressed before another key, the function shown at the top or in the upper left-hand corner of the second key is input when the key is pressed.

#### **Alphanumeric Input Mode**

The alphanumeric input mode is a special mode used to input memory card file names or data area abbreviations for custom data areas. Press the Shift–Text Keys to enter Alphanumeric Input Mode.



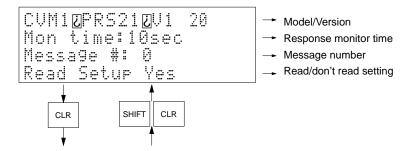

(!) Caution

The Programming Console cannot use custom abbreviations for data areas created on the CVSS or SSS except for abbreviations for custom data areas.

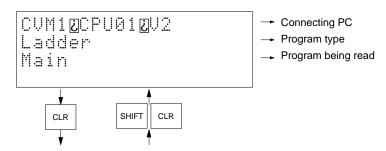
Initial Displays Section 3-2

#### **Mode Displays**

The current input mode is indicated in the upper right-hand corner of the display. If there is nothing displayed, the Programming Console is in normal input mode.




#### 3-2 Initial Displays


The Programming Console is equipped with a series of initial displays that are used to set basic operating parameters and initiate operation. These displays and the key strokes to move between them are shown below. Operational details are provided in *Section 4 Operation*.

#### **Initial Display: Settings**

The following display will appear on the Programming Console after the Programming Console is turned on and connected to the PC. This display is used to set basic operating parameters for the Programming Console. Refer to *4-4-1 System Settings* for the setting methods and details on the response monitor time and message number.



**Program Designation Display** The second display that appears shows the initial values of the program name to be read and the PC that the Programming Console is connected to. Refer to 4-4-2 Program Designation to change the program to be read.



/! Caution

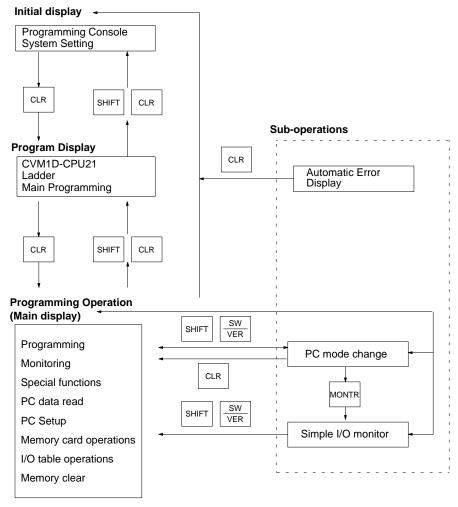
Use version 20 or later of the Programming Console for the CVM1D. Earlier versions do not support online Unit replacement, and will not display error messages unique to the CVM1D.

#### **Programming Display**

The third display that appears shows the program address and the current PC operating mode.

Sub-operations Section 3-3

Error Display: "Cannot Connect"


The following display will appear and Programming Console operation will not be possible in the following cases.

- When the PC (including Expansion I/O Racks) is not turned ON.
- When the baud rate is not 50 kbps.
- When the number of connected Programming Devices exceeds the permissible number.
- When the Peripheral Service Disable Bit (A01704) is ON.



#### 3-3 Sub-operations

Some Programming Console operations are executed directly from the main display for the programming operation and others are executed as sub-operations. The main display is used for main editing purposes (for example, programming). Sub-operations are used for PC mode selection, simple I/O monitor, etc. The overall structure of the initial displays, main display, and the sub-operations is shown below.



Processing on the main display will be interrupted if the display is changed to a sub-operation. If the main display is returned to from the sub-operation, the previous process will continue unless the mode has been changed using the PC mode change operation.

Display Examples Section 3-5

> If an error occurs, an error message will be displayed automatically regardless of the current operation. When an error message is displayed, press the Clear Key to restore Programming Console operation. If the error is not fatal, the operation can be continued. Otherwise the initial display will appear.

#### **Display Symbols and Abbreviations** 3-4

The following symbols and abbreviations appear on the Programming Console.

**PC Operating Modes** PRG: PROGRAM mode

> DBG: **DEBUG** mode MON: MONITOR mode

RUN: **RUN** mode

Instructions Immediate refresh instruction (Do not use in CVM1D Duplex mode.)

> **==** : Differentiate up instruction 0: Differentiate down instruction

M: NOT (The NOT(010) instruction is displayed as NOT.)

I : I/O Displays Input bits

Q: Output bits H: Hold bits

**Data Areas** G: **CPU Bus Link Area** 

> A: **Auxiliary Area** Τ: Timer Area C: Counter Area

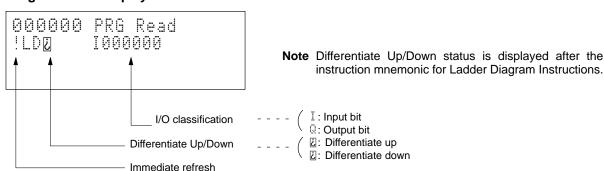
0: Data Memory (DM) Area

Ξ: Expansion Data Memory (EM) Area

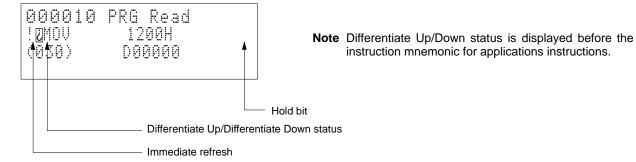
\*D: Indirect DM address ₩<u>E</u>: Indirect EM address

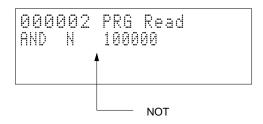
ST: Step AC: Action TN: Transition TR: TR Area IR: Index registers DR: Data registers

ON: Monitoring ON bit status OFF: OFF bit status


0: ON flag status (TIM/CNT/steps) Φ: OFF flag status (Steps) 5: Forced-set bit (ON)

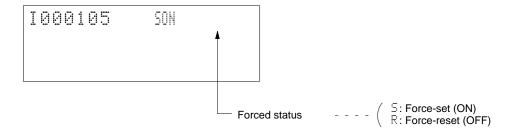
R: Forced-reset bit (OFF)

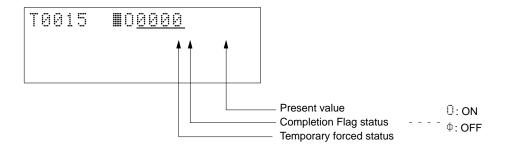

■: Temporary forced set or reset is being executed.


#### **Display Examples** 3-5

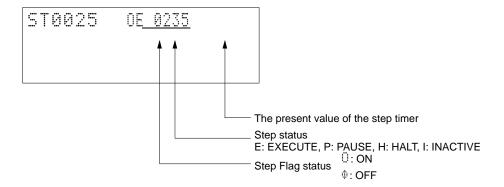
#### **Program Read Displays**

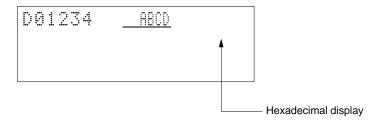


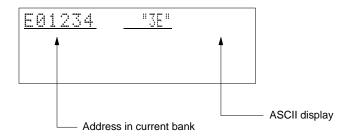

Display Examples Section 3-5

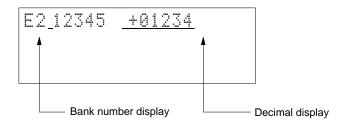


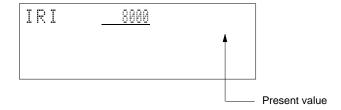




#### **Monitor Displays**





Display Examples Section 3-5











# **SECTION 4 Operations**

This section individually describes the operations that are possible from the Programming Console. Key sequences for inputting ladder-diagram instructions and operands are provided in *Appendix D Inputs for Instructions and Operands*.

| 4-1 | Overvie        | w                                        |
|-----|----------------|------------------------------------------|
| 4-2 |                | of Descriptions                          |
| 4-3 |                | g Instructions and Operands              |
| 4-4 | Operation      | ons                                      |
| T T | 4-4-1          | System Settings                          |
|     | 4-4-2          | Program Designation                      |
|     | 4-4-3          | PC Mode Change                           |
|     | 4-4-3          | Address Set                              |
|     | 4-4-4          | Program Read                             |
|     | 4-4-5<br>4-4-6 | Instruction Search                       |
|     | 4-4-0<br>4-4-7 | Operand Search                           |
|     | 4-4-7          | Instruction Overwrite                    |
|     | 4-4-8<br>4-4-9 |                                          |
|     |                | Instruction Insert                       |
|     | 4-4-10         | Instruction Delete                       |
|     | 4-4-11         | Timer/Counter SV Change                  |
|     | 4-4-12         | Simple I/O Monitor                       |
|     | 4-4-13         | I/O Multipoint Monitor                   |
|     | 4-4-14         | Four-word Monitor                        |
|     | 4-4-15         | Word Monitor                             |
|     | 4-4-16         | Differential Monitor                     |
|     | 4-4-17         | Force-set/Reset                          |
|     | 4-4-18         | PV Change                                |
|     | 4-4-19         | ASCII Display                            |
|     | 4-4-20         | Decimal Display                          |
|     | 4-4-21         | Clock Read/Change                        |
|     | 4-4-22         | UM Protect                               |
|     | 4-4-23         | Active Step Monitor (CV-series PCs Only) |
|     | 4-4-24         | SFC Search (CV-series PCs Only)          |
|     | 4-4-25         | Action Block Change (CV-series PCs Only) |
|     | 4-4-26         | Transition Change (CV-series PCs Only)   |
|     | 4-4-27         | Cycle Time Display                       |
|     | 4-4-28         | Automatic Error Display                  |
|     | 4-4-29         | Error Display/Clear                      |
|     | 4-4-30         | Error History Read                       |
|     | 4-4-31         | Message Read                             |
|     | 4-4-32         | Startup Mode                             |
|     | 4-4-33         | Execution Controls                       |
|     | 4-4-34         | Host Link                                |
|     | 4-4-35         | Scheduled Interrupt                      |
|     | 4-4-36         | Momentary Power Interruption Time        |
|     | 4-4-37         | Cycle Time                               |
|     | 4-4-38         | Cycle Time Monitoring Time               |
|     | 4-4-39         | Memory Card Format                       |
|     | 4-4-40         | File Write                               |
|     | 4-4-41         | File Read                                |
|     | 4-4-42         | File Compare                             |
|     | 4-4-43         | File Delete                              |
|     | 4-4-44         | I/O Table Create                         |
|     | 4-4-45         | I/O Table Compare                        |
|     | 4-4-46         | Memory Clear                             |
|     | 4-4-47         | Online Unit Replacement                  |

Overview Section 4-1

#### 4-1 Overview

This section explains how to use each operation of the Programming Console and the things that must be taken into consideration when operating the Programming Console.

The following table lists all the operations that are explained in this section.

| Classification         | Operation                                      | Page |
|------------------------|------------------------------------------------|------|
| Initial settings       | System settings                                | 27   |
|                        | Program designation                            | 29   |
|                        | PC mode change                                 | 31   |
| Program editing        | Address set                                    | 32   |
|                        | Program read                                   | 33   |
|                        | Instruction search                             | 35   |
|                        | Operand search                                 | 36   |
|                        | Instruction overwrite                          | 38   |
|                        | Instruction insert                             | 39   |
|                        | Instruction delete                             | 41   |
|                        | Timer/Counter SV change                        | 42   |
| Monitoring             | Simple I/O monitor                             | 44   |
|                        | I/O multipoint monitor                         | 48   |
|                        | 4-word monitor                                 | 51   |
|                        | Word monitor                                   | 53   |
|                        | Differential monitor                           | 55   |
|                        | Force set/reset                                | 56   |
|                        | PV change                                      | 59   |
|                        | ASCII display                                  | 59   |
|                        | Decimal display                                | 62   |
| Special operations     | Clock read/change                              | 63   |
|                        | UM protect                                     | 65   |
|                        | Active step monitor (See note 1)               | 67   |
|                        | SFC search (See note 1)                        | 68   |
|                        | Action block change (See note 1)               | 71   |
|                        | Transition change (See note 1)                 | 74   |
| PC data read           | Cycle time display                             | 75   |
|                        | Automatic error display                        | 76   |
|                        | Error display/clear                            | 79   |
|                        | Error history read                             | 80   |
|                        | Message read                                   | 81   |
| PC setup               | Startup mode                                   | 82   |
|                        | Execution controls: Comparison error process   | 84   |
|                        | Host link                                      | 85   |
|                        | Scheduled interrupt (See note 2)               | 87   |
|                        | Momentary power interruption time (See note 2) | 88   |
|                        | Cycle time                                     | 89   |
|                        | Cycle time monitoring time                     | 90   |
| Memory card operations | Memory card format                             | 92   |
|                        | File write                                     | 93   |
|                        | File read                                      | 97   |
|                        | File compare                                   | 99   |
|                        | File delete                                    | 100  |

| Classification                       | Operation               | Page |
|--------------------------------------|-------------------------|------|
| I/O table operations                 | I/O table create        | 102  |
|                                      | I/O table compare       | 104  |
| Memory clear                         | Memory clear            | 107  |
| Online Unit replacement (See note 3) | Online Unit replacement | 111  |

#### Note

- 1. Not possible with the CVM1 or CVM1D.
- 2. Setting not possible with the CVM1D.
- 3. Supported only by the CVM1D.

# 4-2 Layout of Descriptions

Operations are explained under the following headings.

#### Use

Explains the purpose of the operation.

#### Modes

Tells which PC operating modes the operation is supported in.

#### **Key Sequence**

Provides the basic key sequence for the operation.

# Operation

Describes the operation through one or more examples.

#### Remarks

Provides additional information on operation.

#### **Precautions**

Lists points of importance in use of the operation.

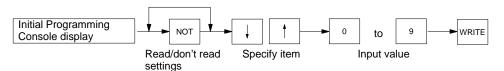
# 4-3 Inputting Instructions and Operands

The key sequences used to specify instructions and operand data areas are provided in *Appendix D Inputs for Instructions and Operands*.

# 4-4 Operations

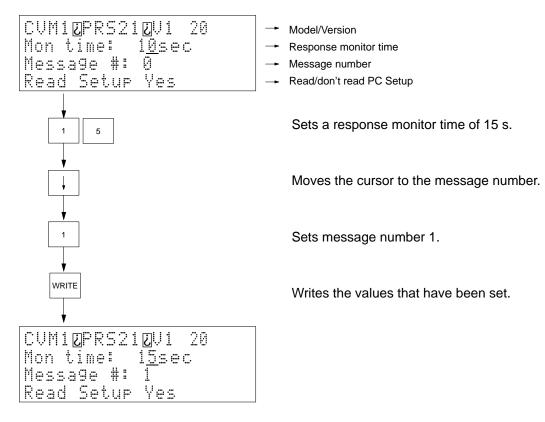
The key sequences and operation examples shown in this section start from either the initial Programming Console display or from a display resulting from a related operation. If the operation does not work as expected, make sure you are inputting from the proper starting point. Press the Clear Key to return to the initial display. You may have to press the Clear Key more than once.

# 4-4-1 System Settings


Use

Used to set the response monitor time and message number.

#### Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

#### **Key Sequence**



#### Operation

The input display for the response monitor time and message number is the initial display produced when the Programming Console is turned on. In this example, a response monitor time of 15 s and message number 1 are set.



#### Remarks

#### Read/Don't Read Setup

The NOT Key can be pressed to toggle between reading and not reading certain information from the PC. If this information is read when the Programming Console is connected to a Remote I/O Slave Unit, at least 30 s will be required to read the information before operation can be continued. If this information is not read, the program read operation will be entered immediately.

If Programming Console operation is begun without reading the above information from the PC, the following Programming Console functionality will be disabled.

- "I," "Q," and "H" will not be displayed to indicate I/O bits and words.
- "H" will not be displayed to indicate holding bits and words.
- All custom settings, including custom data areas and function codes, will be disabled and addresses must be input using their normal default values.

#### **Response Monitor Time**

- Setting range: 2 to 60 s.
- An error message will appear on the bottom of the display if there is no response from the PC within the response monitor time that has been set. The error message will disappear and the previous display will return the moment the Programming Console receives a response. Refer to Section 5 Error Processing for details on error messages.

## **Message Number**

- Setting range: 0 to 7
- The contents of the programmed message will automatically appear when a MESSAGE instruction (MSG(195)) for the designated message number is executed in the PC program.

# 4-4-2 Program Designation

Use

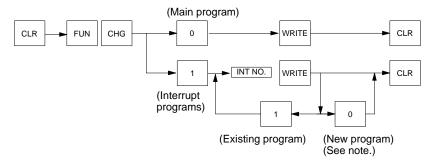
Used to designate the program to be read by the Programming Console. The Programming Console can read the following programs.

## **Ladder-diagram Programming Only**

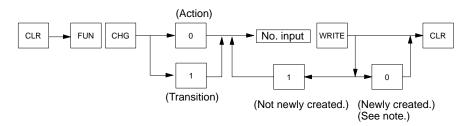
Main program

Interrupt programs 00 to 35

#### SFC + Ladder-diagram Programming


Action programs
Transition programs

Modes


| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |

# **Key Sequence**

The following key sequence is used when only ladder-diagram programming is used in the PC.



The following key sequence is used when SFC programming is being used.



Note New creation not possible in RUN mode.

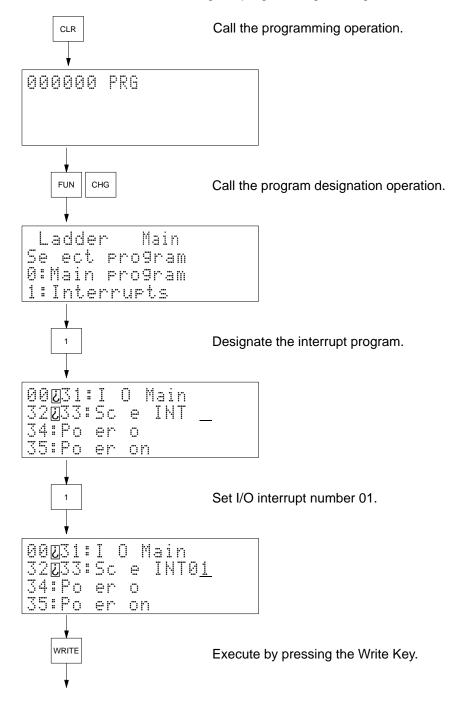
#### Remarks

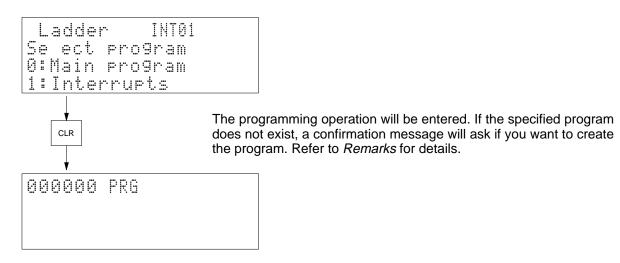
The following displays are used to designate the program.

```
Ladder Main
Se ect program
0:Main program
1:Interrupts
```

```
SFC+Ladd AC0000
Se ect programs
0:Action
1:Transition
```

A display like the following one will appear if the program that has been designated does not exist.


```
INT12 missing
Create
0:Yes
1:No
```


Input 0 to create a new program. Input 1 to abort.

The END(001) instruction will be automatically created when a program is newly created. Use the instruction insert and instruction overwrite operations to complete inputting the program (refer to *4-4-9 Instruction Insert*).

# Operation

The following example shows how to read interrupt program 01 when only ladder-diagram programming is being used.

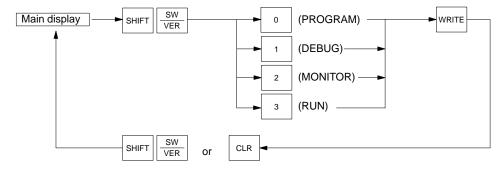




# 4-4-3 PC Mode Change

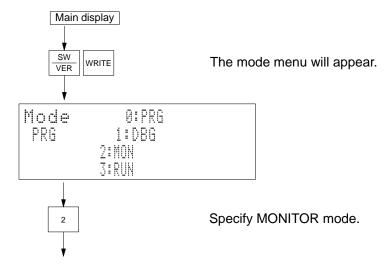
Use

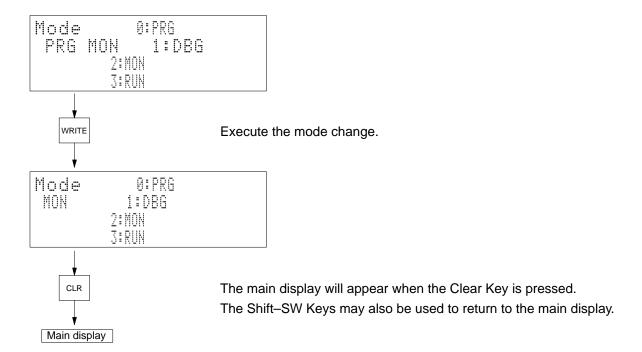
This operation is not executed directly from the main display and instead executed as a sub-operation.


Used to control the PC's operating mode.

**Note** Make sure there will be no adverse effects on the control system before changing the PC's operating mode. Not doing so may result in injury.

#### Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


# **Key Sequence**



## Operation

In this example, the PC is switched to MONITOR.

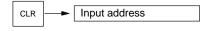




# **PC Operating Modes**

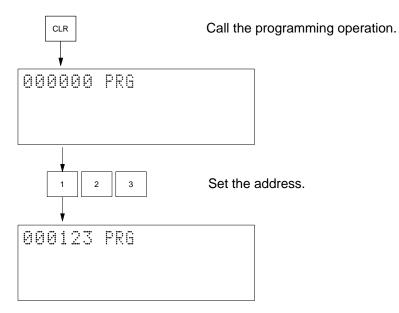
| Operating mode | Function                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROGRAM (PRG)  | Operation of the PC is stopped. Specify this mode when creating or altering the user's program or clearing memory.                                                                                                                                                                                                                                                                  |
| DEBUG (DBG)    | Specify this mode to confirm if the user's program and I/O data operate normally. The Programming Console, however, does not support DEBUG-mode operations.                                                                                                                                                                                                                         |
| MONITOR (MON)  | The PC is in operation. I/O data is processed in this mode and in RUN mode. In MONITOR mode, it is also possible to monitor the PC operation, forcibly control data area contents (i.e., turn bits ON and OFF), change the set value or present value of timers and counters, and change the content of words. This mode is specified when adjusting the system in trial operation. |
| RUN (RUN)      | RUN mode is used for normal PC operation. In this mode, the operation of the PC can be monitored, but it is impossible to forcibly turn bits ON and OFF or change present values or set values.                                                                                                                                                                                     |

# 4-4-4 Address Set


Use

Used to set the program address used for reading, writing, inserting, deleting, and searching programs.

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

# **Key Sequence**



# Operation

In this example program address 000123 is set.



Remarks

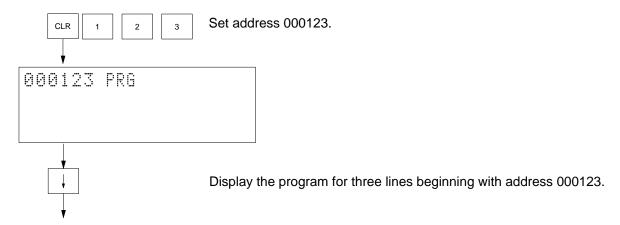
It is not necessary to input leading zeros of the address, e.g., just input 1, 2, and 3 to set 000123.

# 4-4-5 Program Read

Use

Used to read the contents of a program.

**Modes** 

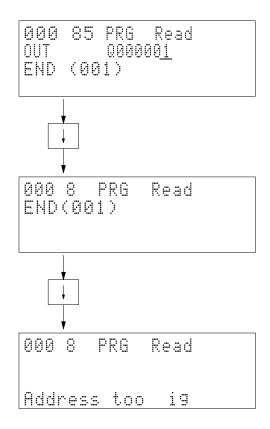

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


# **Key Sequence**



# Operation

In this example, the contents of address 000123 is read.





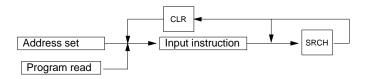

#### Remarks

Addresses will be scrolled downward or upward continuously when the Down Key or Up Key are pressed.

The message "Address too high" will appear when the Down Key is pressed after the last address has been reached.

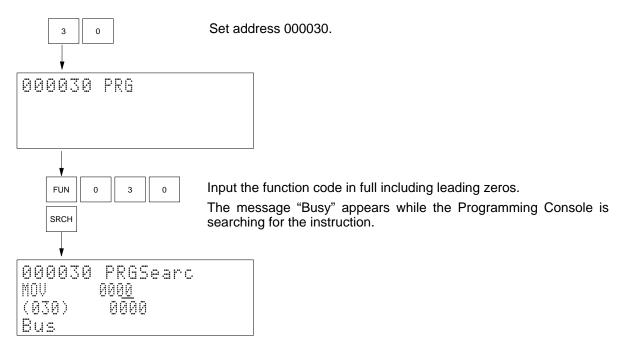


# 4-4-6 Instruction Search

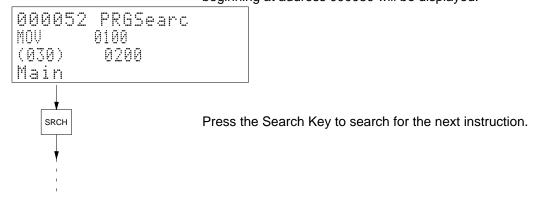

Use

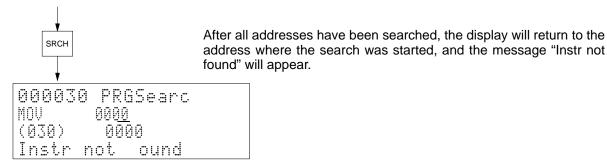
Used to search for an instruction used in the program.

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**





## Operation

In this example MOV(030) is searched starting with address 000030.



The address, instruction, and operands for the first MOV(030) found beginning at address 000030 will be displayed.





#### Remarks

All programs contained in the PC will be searched, e.g., it is impossible to search only the main program or only individual action programs.

When using only ladder programming, the following program names will appear:

Main program: Main

Interruption program: INT \*\* (interrupt number)

When using SFC programming, the following program names will appear:

Action programs: AC \*\*\*\* (action number)

Transition programs: TN \*\*\*\* (transition number)

#### **Search Conditions**

Searches are possible individually for instructions with and without NOT.

Searches are possible individually for different operands for instructions that have only one operand, for example, LD 000000 and LD N 000000 can be distinguished, as can LD 000001 and LD 000002. SBN 001 and SBN 002 can also be distinguished.

Individual searches can be made for instructions with and without immediate refresh specifications (!) and differential treatment ( $\downarrow$ ,  $\uparrow$ ), for example, LD 000000 and ! LD 000000 are distinguished. LD 000000 and  $\downarrow$ LD 000000 are also distinguished.

Searches are possible individually for different operands for the following instructions: FAL(006), FALS(007), CNTR(012), TTIM(120), TCNT(123), TSR(124), TSW(125), and SA(210).

Individual searches are not possible for different operands for other instructions that have more than one operand, for example, MOV 0000 0001 and MOV 0002 0003 are not distinguished.

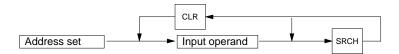
Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions and operands.

**Note** The Up or Down Key can be pressed during the search operation to enter the program read operation.

To cancel the present searching operation and to search for another instruction, press the Clear Key.

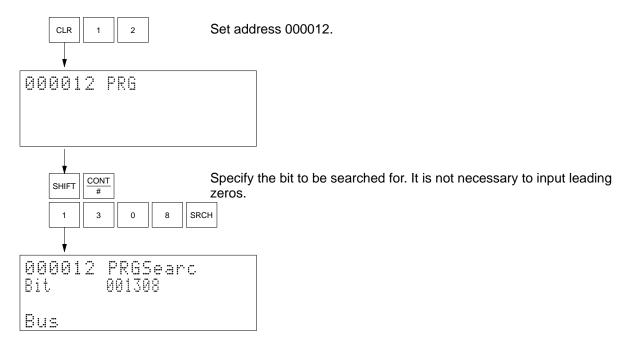
To search for any of the TIM, CNT, and NOT instructions while the program is being read, press the Clear Key first and then input the name of the instruction.

# 4-4-7 Operand Search

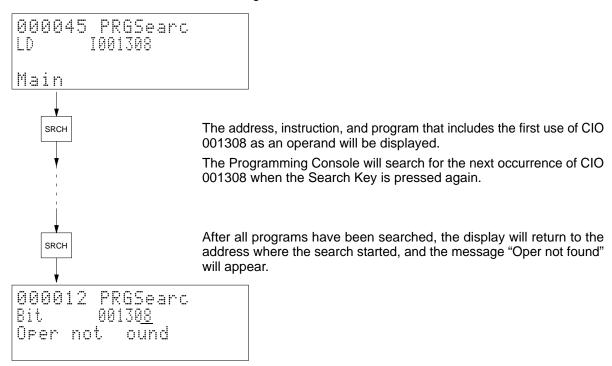

**Use** Used to search for an operand in a program by designating a bit or word address.

Modes

**Precautions** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**




### Operation

In this example CIO 001308 is searched for starting from program address 000012.



The message "Busy" appears while the Programming Console is searching.



#### Remarks

All programs contained in the PC will be searched, e.g., it is impossible to search only the main program or only individual action programs.

When using only ladder programming, the following program names will appear:

Main program: Main

Interruption program: INT \*\* (interrupt number)

When using SFC programming, the following program names will appear:

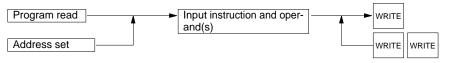
Action programs: AC \*\*\*\* (action number)

Transition programs: TN \*\*\*\* (transition number)

Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions or operands.

**Note** The Up or Down Key can be press during the search operation to enter the program read operation.

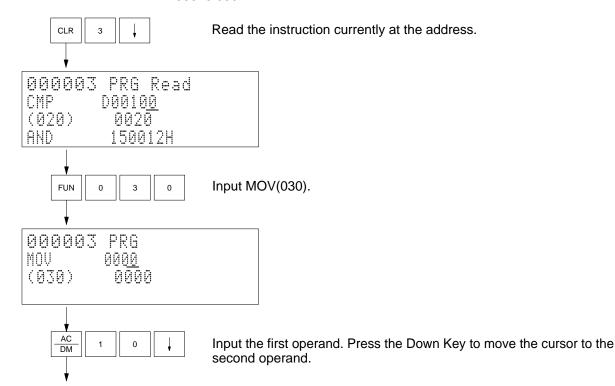
# 4-4-8 Instruction Overwrite

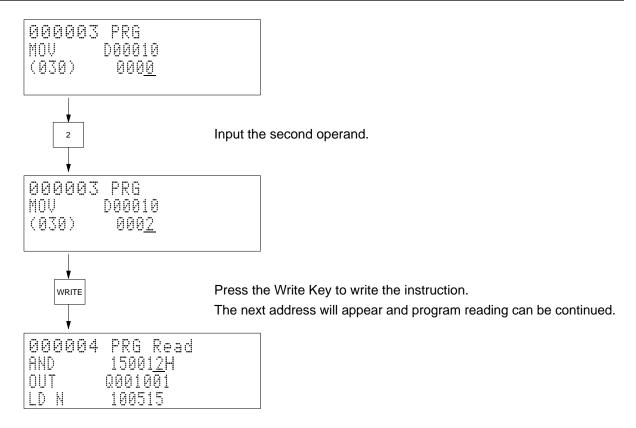

Use

Used to overwrite the instruction at a designated address in a program. If the designated address contains END(001), the END(001) will not be overwritten, but the new instruction will be inserted and END(001) will be moved to the next address. This operation cannot be used to add instructions where they did not exist before, e.g., after END(01).

#### Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


#### **Key Sequence**




When editing on-line (in MONITOR mode or DEBUG mode)

### Operation

In this example, the instruction at address 000003 is replaced by MOV(030) D00010 0002.





#### Remarks

The following display will appear if the Write Key is pressed in MONITOR or DEBUG mode.

| 000003<br>MOV   | MON<br>D00010        |  |
|-----------------|----------------------|--|
| (030)<br>On ine | 000 <u>2</u><br>edit |  |

Press the Write Key to overwrite the current instruction.

or Press the Clear Key to abort.

The next address will appear after overwriting the instruction with the Write Key. Use the Up Key to return to the previous address to check instructions that have been rewritten.

#### **Precautions**

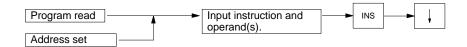
This operation overwrites the previous instruction (except for END(001), see *Use* for details). Use the operation described in the next section to insert instructions.

To write the TIM or CNT instruction when reading the program and the first operand for the current instruction is not a bit, press the Clear Key first and then input the instruction.

The message "Address too high" will appear if the user attempts to write an instruction at an address that currently has no instruction and the write will not be allowed.

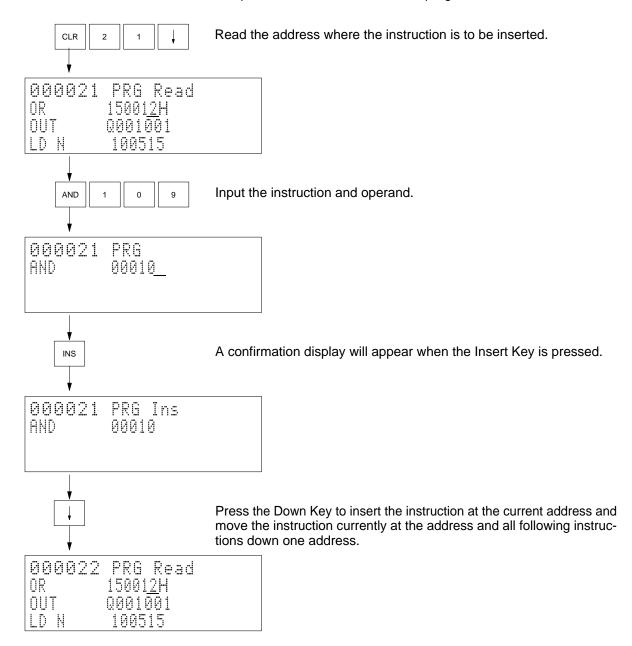
Programs cannot be checked from the Programming Console. Use the GPC, CVSS/SSS, or SYSMAC-CPT.

# 4-4-9 Instruction Insert


Use

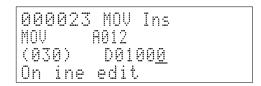
Used to insert an instruction at a designated address in a program. Instructions cannot be inserted after the last instruction.

#### **Modes**


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

## **Key Sequence**




# Operation

In this example, AND 000109 is inserted at program address 000021.



#### Remarks

The following display will appear if the Insert Key is pressed in MONITOR or DEBUG mode. Press the Down Key to insert the instruction at the current address.



The next address will appear after inserting an instruction. Use the Up Key to return to the address to check the instruction that has been inserted.

### **Precautions**

To insert the TIM or CNT instruction while reading the program and the first operand for the current instruction is not a bit, press the Clear Key first and then input the name of the instruction.

Programs cannot be checked from the Programming Console. Use the GPC, CVSS/SSS, or SYSMAC-CPT.

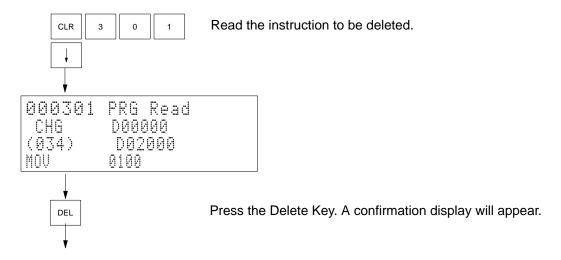
The message "Address too high" will appear if the user attempts to insert an instruction at an address where no instruction currently exists and the insertion will not be allowed.

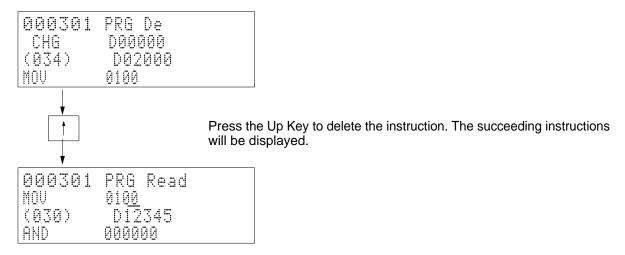
# 4-4-10 Instruction Delete

Use

Used to delete the instruction at a designated address in a program.

#### **Modes**


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


## **Key Sequence**



#### Operation

In this example, XCHG(034) at address 000301 is deleted.





### Remarks

The following display will appear if the Delete Key is pressed in MONITOR or DEBUG mode. Press the Up Key to delete the instruction.

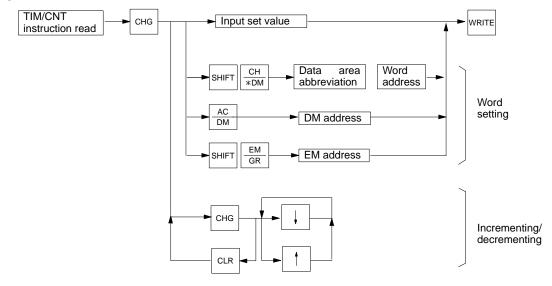
| 000301 | PRE De |
|--------|--------|
|        |        |
| (034)  | 002000 |
| On ine | edit   |

The next address will appear after deleting the instruction with the Up Key. Press the Up Key again to return to the previous address to make sure that the instruction was deleted.

# 4-4-11 Timer/Counter SV Change

Use

Used to change the set value of a timer or counter.

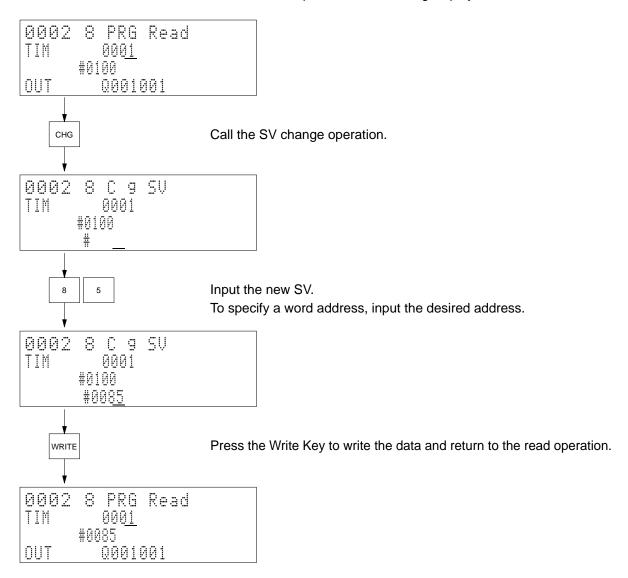



Make sure that there will be no adverse effects on the control system before changing a SV. Not doing so may result in injury.

#### Modes

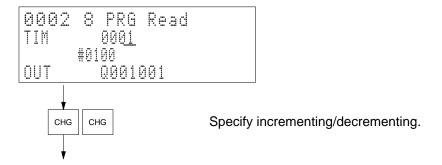
| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

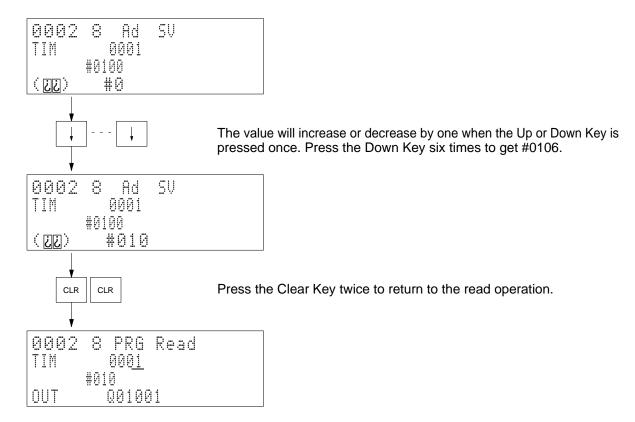
### **Key Sequence**




### Operation

Two examples of operation are provided. The first example shows how to input a new SV. The second example shows how to increment/decrement an existing SV.


## Example 1


In this example, TIM 0001's SV is changed from #0100 to #0085. First, read the TIM 0001 instruction to produce the following display.



#### Example 2

In this example, TIM 0001's SV is incremented from #0100 to #0106.





#### Remarks

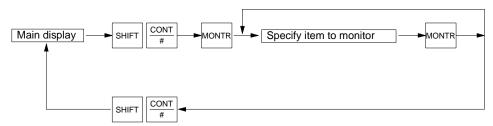
It is possible to change the SV for the TIM, TIMH(015), TTIM(120), TIML(121), CNT, CNTR(012), and TCNT(123) instructions with this operation.

Incrementing and decrementing can be performed only for constants.

# 4-4-12 Simple I/O Monitor

Use

Used to monitor memory status for bits, words, timers (PV), counters (PV), etc. Also used to change word contents or force-set or force-reset bits.


This operation is executed as an interrupt operation (sub-operation) for operations performed from the main display. The process that was interrupted can be continued after returning to the main display.

#### Modes

| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |

**Note** Although monitoring is possible, it is not possible to change contents or force set or force reset status in the RUN mode.

#### **Key Sequence**



#### **Key Functions**

Keys are used as described below.

Monitor Key: Used for one-line scroll.

**Up and Down Keys:** Used to increment or decrement the word and bit address on the first line.

Clear Key: Used to delete the first line.

Change Key, (Data), Write Key: Used to change the PV on the first line. Set/Reset Keys: Used to temporary force-set or force-reset the first line

(while the keys are pressed).

**Shift–Set/Shift–Reset Keys:** Used to force set or force reset the first line. **NOT Key:** Used to release the force-set or force-reset status on the first line.

#### **Monitor Displays**

The following can appear on monitor displays to indicate status.

ON condition of a bit.OFF: OFF condition of a bit.

: ON condition of a flag (TIM/CNT/step).

: OFF condition of a flag (step).

S: Force-set bit.
R: Force-reset bit.

Temporary force-set or force-reset

(appears while Set or Reset Key is pressed).

Remarks

Up to 8 items can be input for monitoring, out of which, 4 will be displayed at any one time.

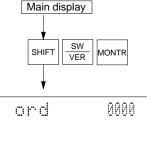
An arrow will be displayed in front of status or word contents to indicate you are in the simple I/O monitor operation and not in the I/O multipoint monitor operation.

Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions and operands.

Operation

Three examples of monitoring are given below. The first one shows how to monitor multiple items; the second one shows how to change the value of a word in memory, and the third one shows how to control bit status while monitoring.

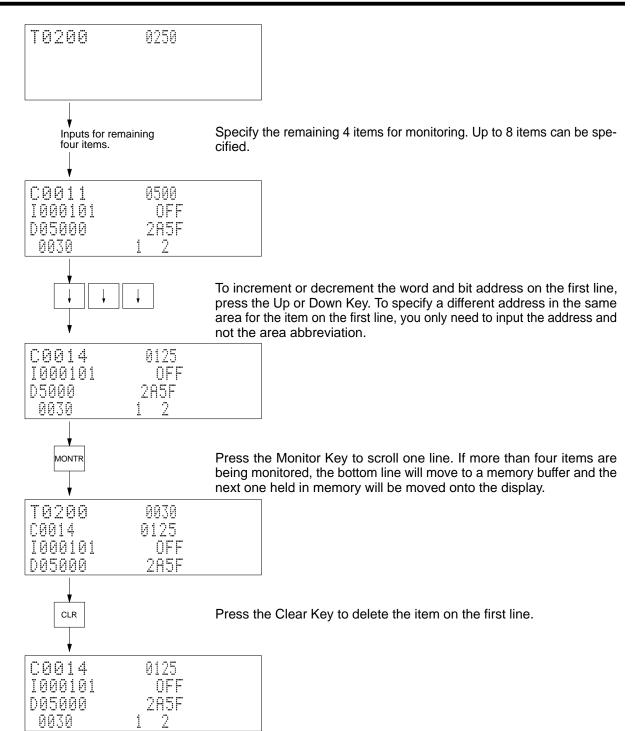
## Example 1


In this example the following five points are monitored.

TIM 0200 CIO 0030

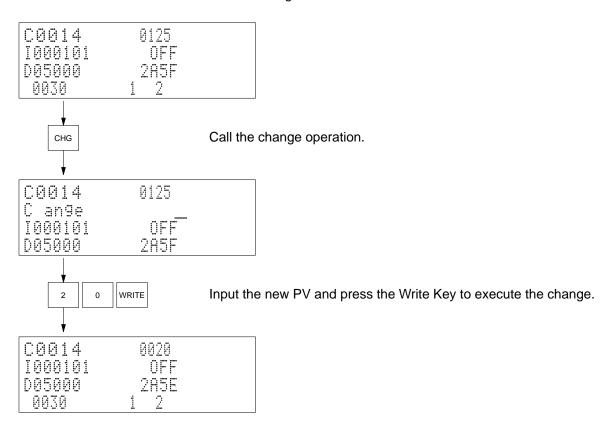
DM 05000


CIO 000101


CNT 0011

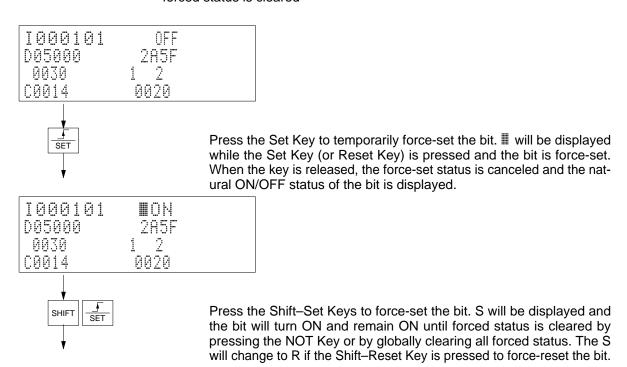


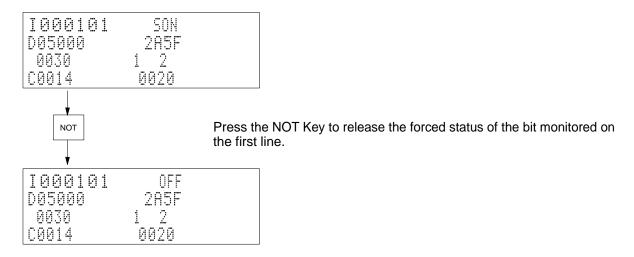
Shift to the simple I/O monitor operation.


If monitor items have been previously designated, they will appear on the monitor display.






#### **Example 2**


In this example the PV of CNT 0014 is changed to #0020. Only the item on the first line can be changed.



# Example 3

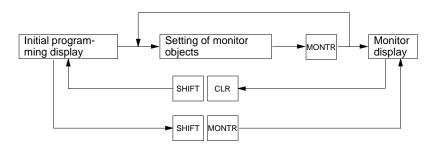
In this example, CIO 000101 is temporary force-set, force-reset, and then the forced status is cleared





# 4-4-13 I/O Multipoint Monitor

Use


Used to monitor memory status for bits, words, timers, counters, etc.

This operation is executed from the programming operation.

Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

#### **Key Sequence**



## **Key Functions**

Keys are used as described below.

Monitor Key: Used for one-line scroll.

**Up and Down Keys:** Used to increment or decrement the word and bit address on the first line.

Clear Key: Used to delete the first line.

#### **Monitor Displays**

The following can appear on monitor displays to indicate status.

ON condition of a bit.OFF: OFF condition of a bit.

ON condition of a flag (TIM/CNT/step).

: OFF condition of a flag (step).

Remarks

Up to 8 items can be input for monitoring, out of which, 4 will be displayed at any one time.

An arrow will **not** be displayed in front of status or word contents to indicate you are in the I/O multipoint monitor operation and not in the simple I/O monitor operation.

Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions and operands.

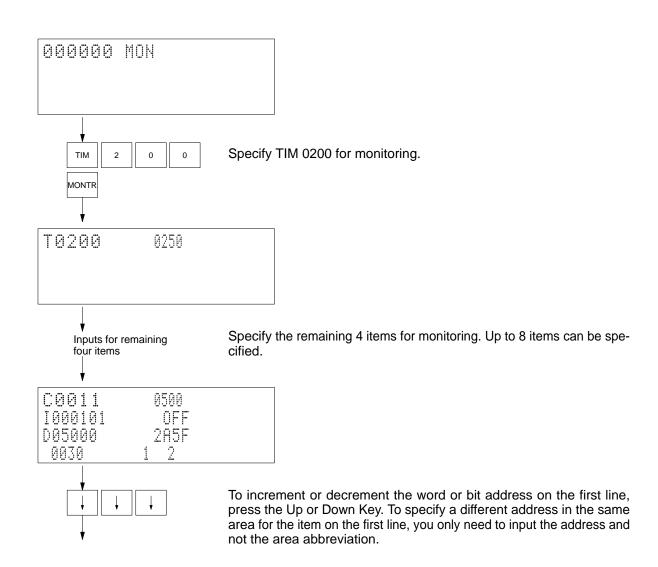
The Shift–Clear Keys can be pressed to return to the program edit operation. The items being monitored will be recorded. Once this has been done, the Shift–Monitor Keys can be pressed to resume monitoring the items that were recorded in memory.

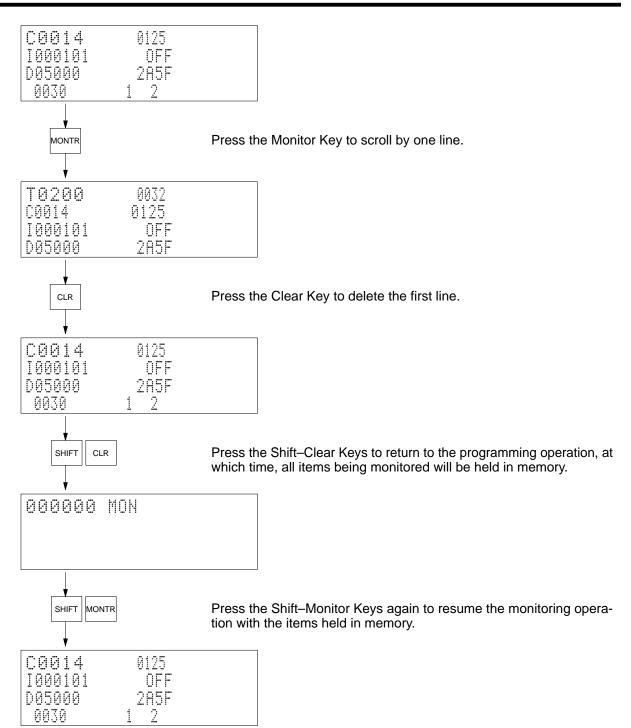
The following operations can be executed from with the I/O multipoint monitor operation:

4-word monitor, word monitor, force-set/reset, PV change, ASCII display, decimal display, and differential monitor

# Operation

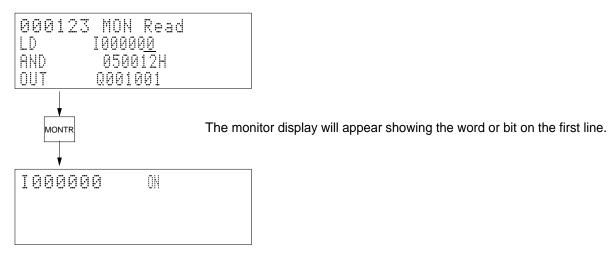
In this example the following five points are monitored.


TIM 0200


CIO 0030

DM 05000

CIO 000101


**CNT 0011** 





#### Remarks

The monitor operation can be entered by pressing the Monitor Key from the program read operation.

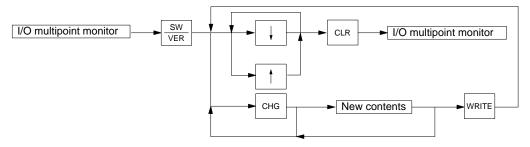


#### **Precautions**

It is possible to return to the monitor operation from the initial programming display by pressing the Monitor Key; however, all the items memorized will be lost.

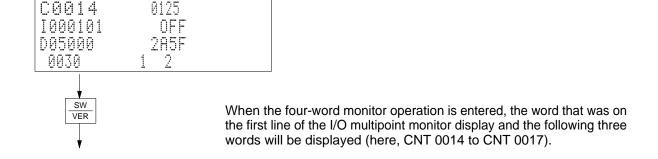
# 4-4-14 Four-word Monitor

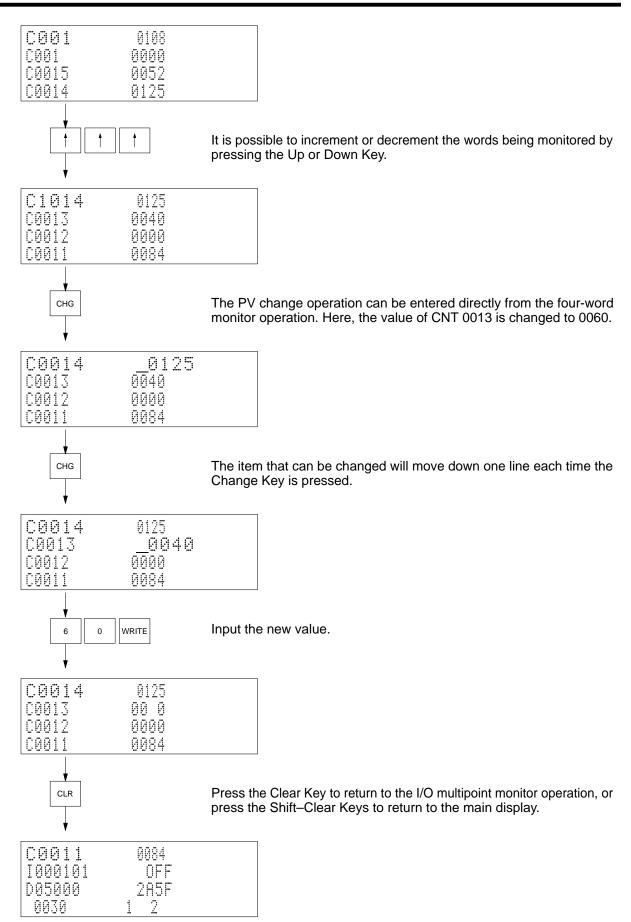
Use


Used to monitor four consecutive words of data. It is possible change the contents of addresses being monitored.

Modes

| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |


**Note** Although monitoring is possible, it is not possible to change memory contents in the RUN mode.


### **Key Sequence**



# Operation

In this example, counters from CNT 0014 to CNT 0017 are monitored. This operation is entered from the I/O multipoint monitor operation, so first CNT 0014 must be monitored on the first line.





#### Remarks

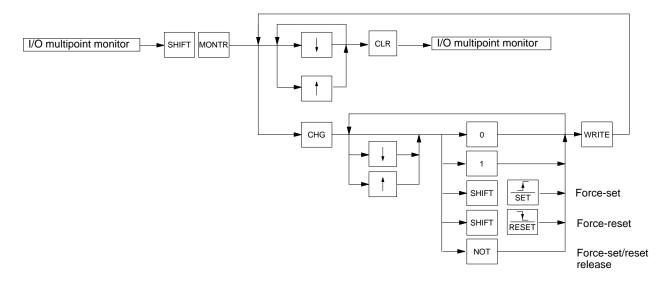
The items being monitored are recorded in memory when the Shift–Clear Keys are pressed. After recording monitor items in memory, the Shift–Monitor Keys can be pressed to recall the same items to the monitor display. If the Monitor Key is pressed after recalling monitor items stored in memory, the initial monitor display will be returned to and the items stored in memory will be displayed.

When monitoring in ASCII, the display will change to hexadecimal the first time the Change Key is pressed.

When monitoring in decimal, contents cannot be changed.

# 4-4-15 Word Monitor

Use


Used to monitor word contents in 16 digits of binary. Also used to set, reset, force-set, and force-reset individual bit status.

#### Modes

| RUN       | MONITOR | DEBUG | Monitoring |
|-----------|---------|-------|------------|
| See note. | OK      | OK    | OK         |

**Note** Although monitoring is possible, it is not possible to change memory contents or force-set/force-reset bits in the RUN mode.

#### Remarks



## **Monitor Displays**

The following can appear on monitor displays to indicate status.

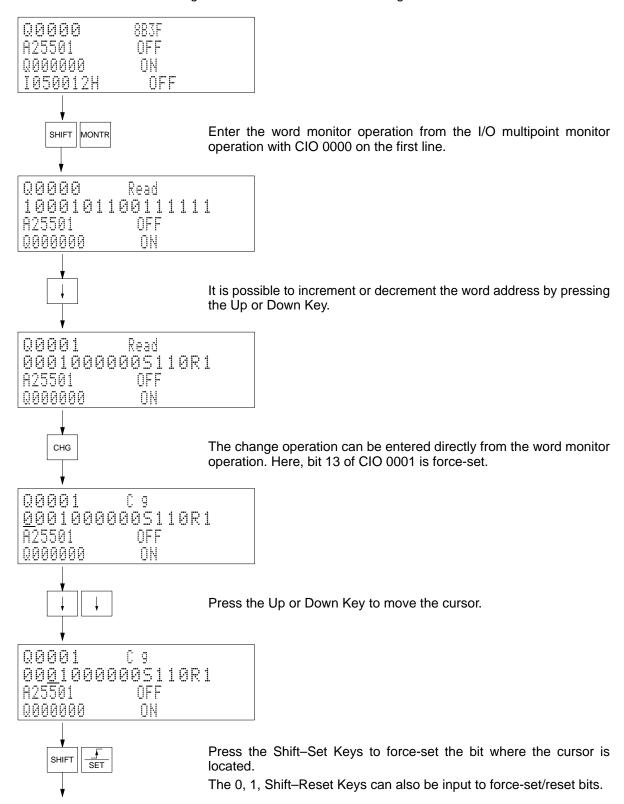
1: ON condition of a bit.

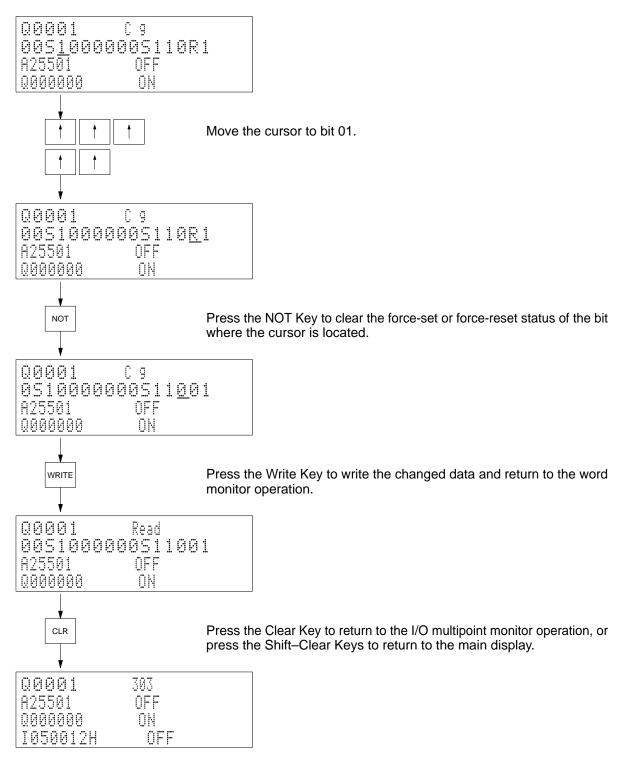
0: OFF condition of a bit.

5: Force-set of a bit or flag.

R: Force-reset of a bit or flag.

#### **Precautions**


This operation cannot be use to monitor timers and counters.


Bits in the following areas can be force-set or force-reset.

CIO Area (Core I/O Area): 0000 to 2555 CPU Bus Link Area: G008 to G255

### Operation

In this example, output word CIO 0000 is monitored and then the monitor is change to CIO 0001 and bit status changed.

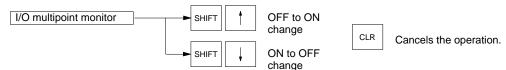




#### Remarks

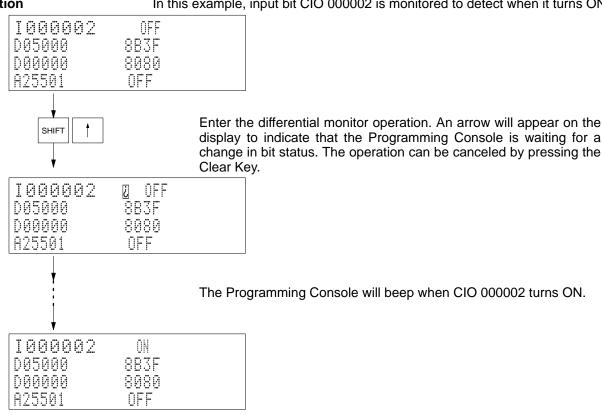
The items being monitored are recorded in memory when the Shift–Clear Keys are pressed. After recording monitor items in memory, the Shift–Monitor Keys can be pressed to recall the same items to the monitor display. If the Monitor Key is pressed after recalling monitor items stored in memory, the initial monitor display will be returned to and the items stored in memory will be displayed.

# 4-4-16 Differential Monitor


Use

Used to detect the OFF-to-ON or ON-to-OFF change in a designated bit. The Programming Console will beep when a change in the status of the designated bit is detected.

#### Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**



### Operation

In this example, input bit CIO 000002 is monitored to detect when it turns ON.



#### Remarks

It is possible to monitor the following areas with this operation:

CIO Area (CIO 000000 to CIO 255515)

CPU Bus Link Area (G)

Auxiliary Area (A)

Timer Area (T)

Counter Area(C)

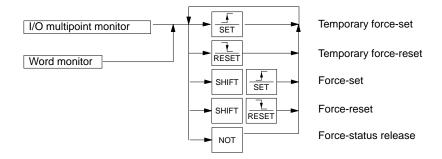
Action Flag Area (AC)

Transition Flag Area (TN).

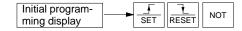
# 4-4-17 Force-set/Reset

Use

Used to control the ON/OFF status of bits/flags in memory. Also used to release forced status for individual bits or all bits at once.




Make sure that there will be no adverse effects on the control system before force-setting or force-resetting bits. Not doing so may result in injury.


#### **Modes**

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

#### **Key Sequence**



## **Global Forced Status Release**



- **Note** a) Press the Shift–Clear Keys to return to the programming operation.
  - b) The buzzer will beep when the Set–Reset–NOT Keys are pressed to indicate that forced status has been cleared. It does not indicate an error in operation.

# **Monitor Displays**

The following can appear on monitor displays to indicate status.

ON: ON condition of a bit.

OFF: OFF condition of a bit.

: ON condition of a flag (TIM/CNT/step).

: OFF condition of a flag (step).

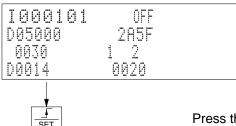
5: Force-set bit.

R: Force-reset bit.

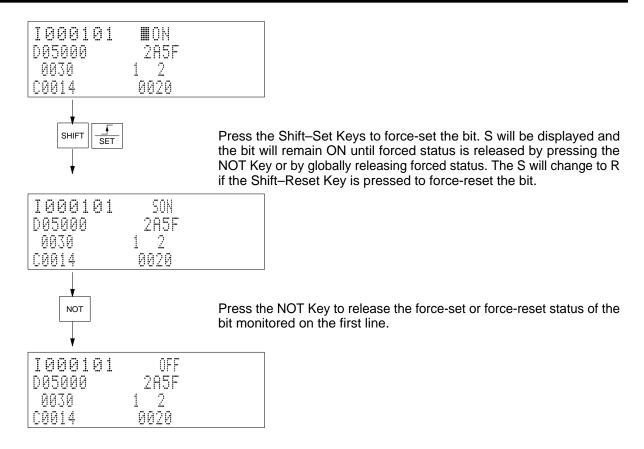
Temporary force-set or force-reset (appears while Set or Reset Key is pressed).

Operation

It is possible to force-set or force-reset bits in the following data areas with this operation.

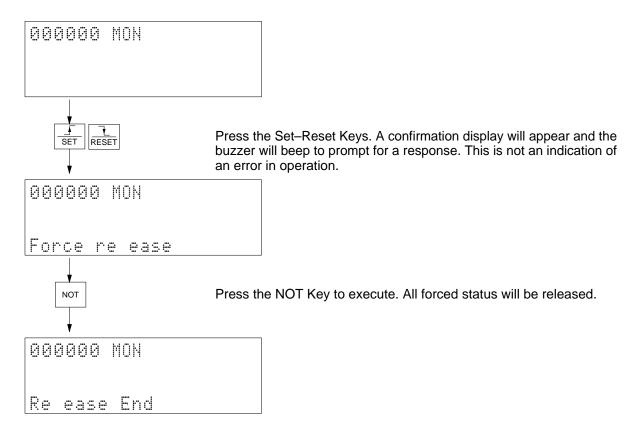

CIO Area (Core I/O Area): 000000 to 255515

CPU Bus Link Area: G00800 to G25515


Timer (T) and Counter (C) Areas

#### Example 1

In this example, CIO 000101 is temporary force-set, force-set, and then the force-set status is released. Start by monitoring CIO 000101 on the top line of the display.




Press the Set Key to temporary force-set the bit.  $\blacksquare$  will be displayed. Forced status will remain in affect only as long as the key is held down. When the key is released, the natural status of the bit will return.



## Example 2

In this example, forced status is globally released. Start by pressing the Shift–Clear Keys to return to the programming operation.



# 4-4-18 PV Change

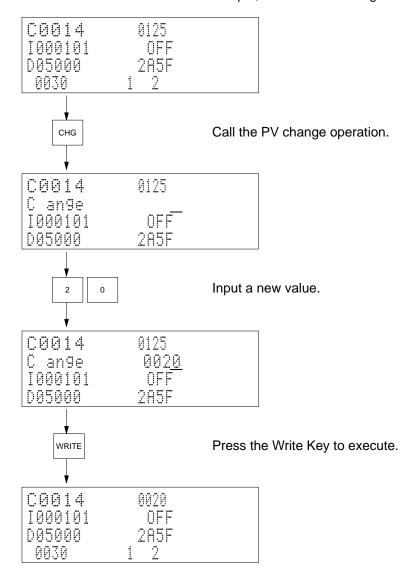
Use

Used to change the content of a word that is being monitored.

∕!\ Caution

Make sure that there will be no adverse effects on the control system before changing a PV. Not doing so may result in injury.

#### **Modes**


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

## **Key Sequence**



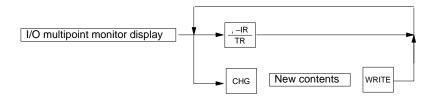
## Operation

In this example, PV C0014 is changed to #0020.



# 4-4-19 ASCII Display

Use

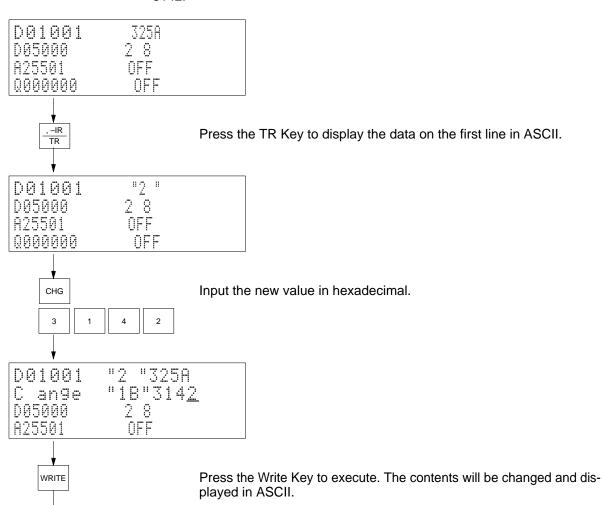

Used to display data in ASCII. It is possible to change data while displaying in ASCII.

### Modes

| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |

**Note** Although monitoring is possible, it is not possible to change values in the RUN mode.

## **Key Sequence**




The form of data display will change in sequence each time the TR Key is pressed.



# Operation

In this example, the contents of D01001 is display in ASCII and then changed to 3142.



| D01001    | "18" |
|-----------|------|
| 005000    | 2 8  |
| A25501    |      |
| 000000000 |      |

# Remarks

It is possible to display data from the following areas in ASCII.

CIO Area (CIO 0000 to CIO 2555)

CPU Bus Link Area (G)

Auxiliary Area (A), DM Area

EM Area

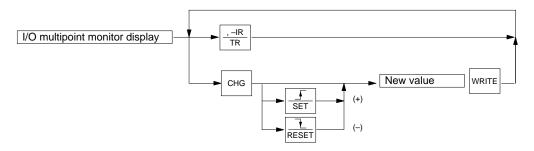
Step timers

Index registers (IR)

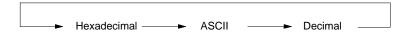
Data registers (DR)

# 4-4-20 Decimal Display

Use


Used to display the contents of a displayed word in signed decimal. It is possible to change the contents in decimal.

Modes


| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |

**Note** Although monitoring is possible, it is not possible to change word content in RUN mode.

### **Key Sequence**



The form of data display will change in sequence each time the TR Key is pressed.

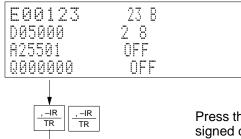


Remarks

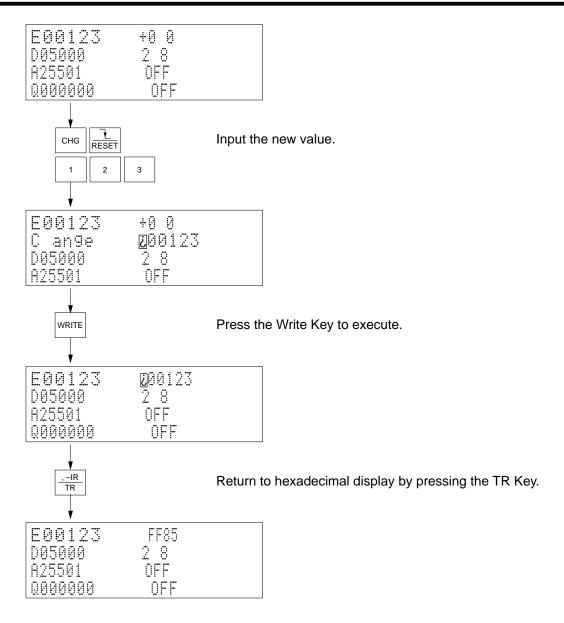
The signed decimal value is determined by using the bit 15 as the sign bit (0 for + and 1 for -). For example, if 003A is the hexadecimal value, the signed-decimal display will be +00058, and if FFFF is the value, it will be -00001.

It is possible to display data from the following areas in ASCII.

CIO Area (CIO 0000 to CIO 2555)


CPU Bus Link Area (G)

Auxiliary Area (A), DM Area


**EM Area** 

# Operation

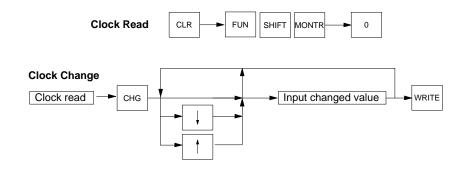
In this example, the contents of E00123 is displayed in signed decimal and then changed to -00123.



Press the TR Key to display the contents of the word on the first line in signed decimal.



# 4-4-21 Clock Read/Change


Use

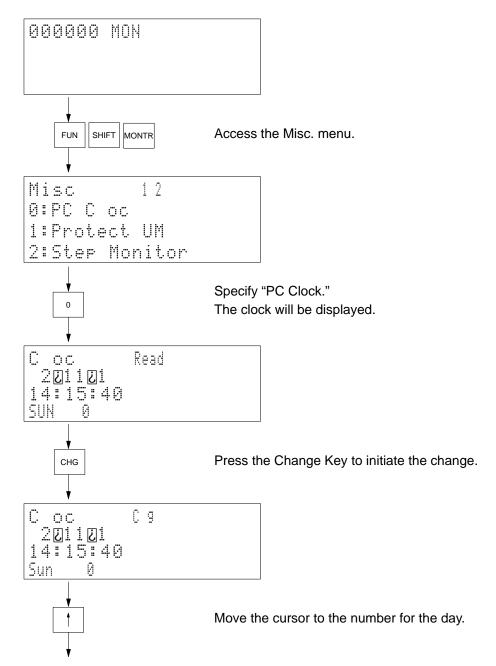
Used to display and change the time, day, and date of the PC's clock.

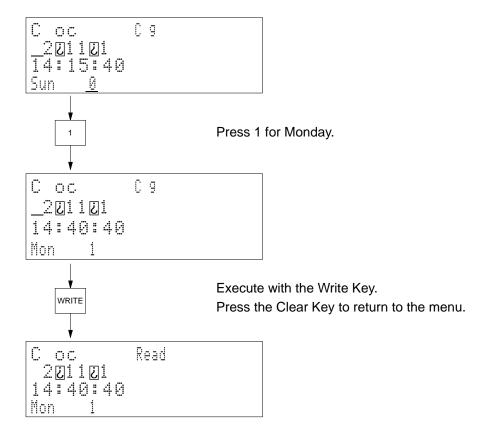
Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**




#### Remarks


The following keys are used to change the day.

- 0: Sunday
- 1: Monday
- 2: Tuesday
- 3: Wednesday
- 4: Thursday
- 5: Friday
- 6: Saturday

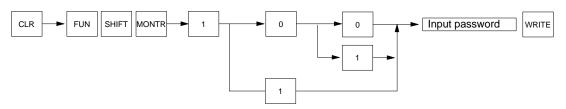
# Operation

In this example, the clock is read and the day is changed to Monday.





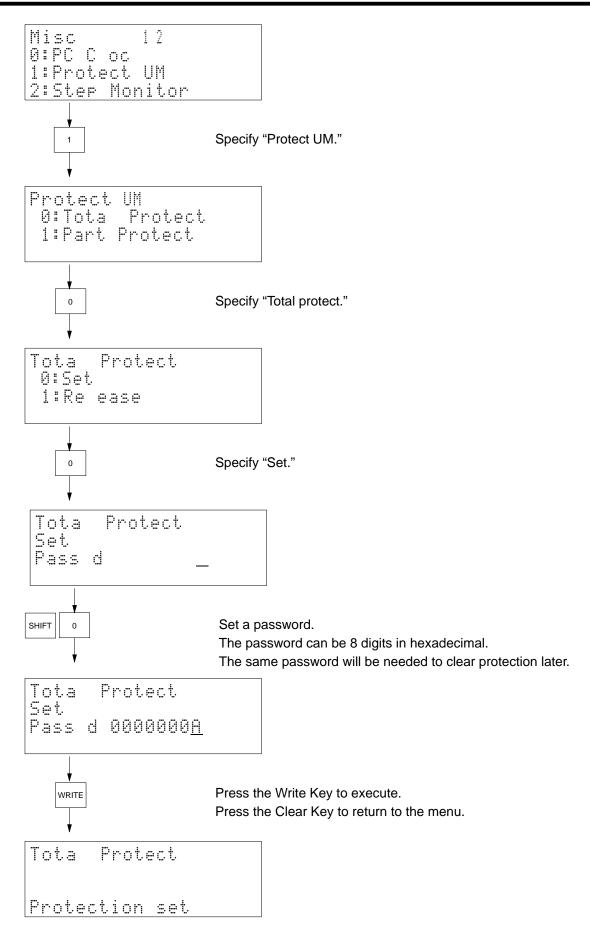
# 4-4-22 UM Protect


Use

Used to set or clear the read/write protection for the user's program memory (UM). Also used to clear part-protect if it has been set by using the CVSS/SSS.

**Modes** 

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


# **Key Sequence**



## Operation

In this example, read/write protection is set.





#### Remarks

The part-protection clear operation clears part-protection set using the CVSS, SSS, or SYSMAC-CPT. The same password that was used for the part-protect operation must be used.

If there is an error, an error message will be displayed when the Write Key is pressed. The following errors may occur.

**Protect error:** A protection error occurred when the user attempted to protect user memory that has been already protected.

A protect error also occurs when the user has attempted to clear the protection of the user's memory but actually it was not protected.

**Password error:** A password error occurs when a wrong password was input to clear the protection of the user's memory that has been protected.

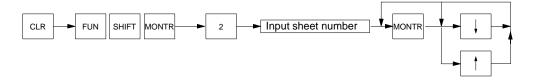
If one of the above errors occurs, press the Clear Key to return to the previous display.

#### **Precautions**

If the user's memory is protected, programs cannot be read, written, or monitored.

If the user should forget the password, the protection of the user's memory cannot be cleared. The only solution in this case is to clear the memory, which will clear protection, and transfer a backup of the program to the Programming Console from a memory card or other source.

# 4-4-23 Active Step Monitor (CV-series PCs Only)

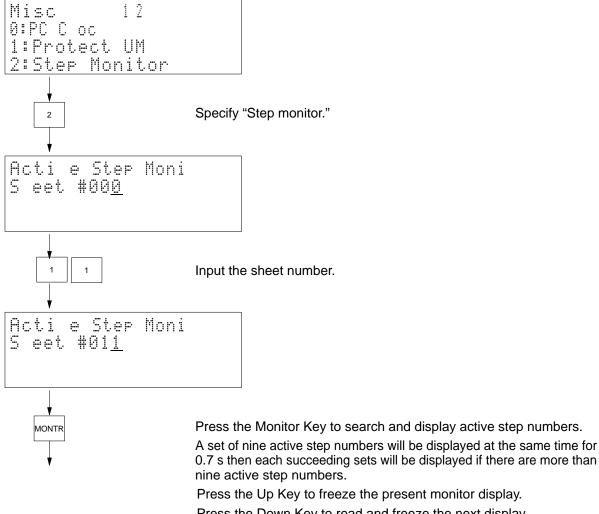

Use

Used to search for the active steps in the SFC program and display the step numbers for a specified sheet.

#### Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**




#### Operation

In this example, the active steps in sheet number 011 are displayed.

Press the Clear Key to access the initial display.





Press the Down Key to read and freeze the next display.

Press the Monitor Key to allow the display to change every 0.7 s.

| ···  | t. #011 |      |  |
|------|---------|------|--|
| 0000 | 0010    | 0150 |  |
| 0200 | 0020    | 0103 |  |
| 1050 | 0003    | 8 5  |  |

### Remarks

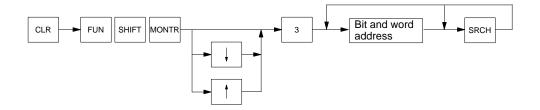
If there is an error, one of the following messages will be displayed.

Sheet not found: Occurs when the user has attempted to designate a sheet that does not exist.

No active steps: Occurs when no step is active. When a step becomes active, it will be displayed and the message removed.

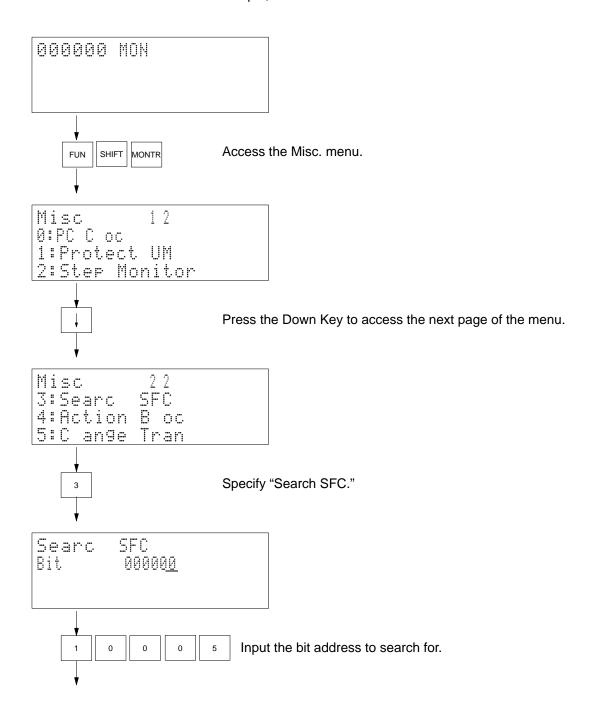
# 4-4-24 SFC Search (CV-series PCs Only)

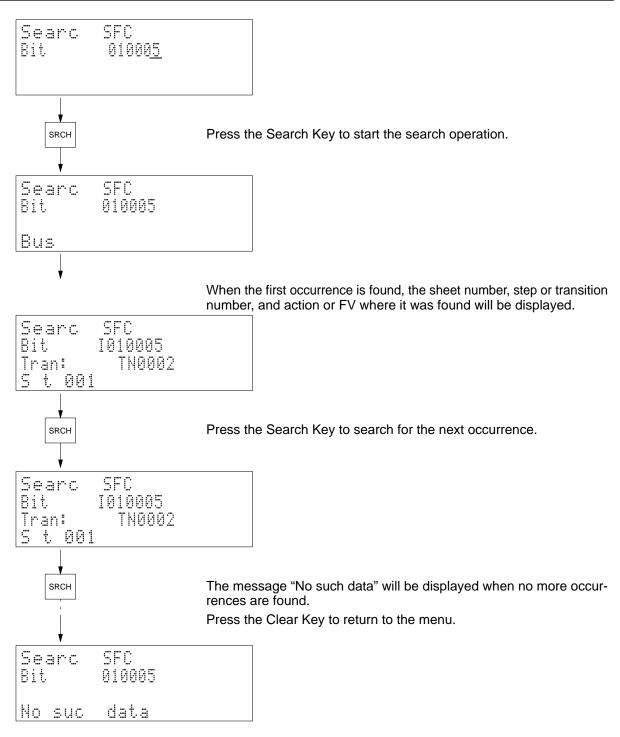
Use


Used to search for bit and word addresses in the SFC program area and display the sheet number and step/transition number where it exists.

**Note** This operation does not search ladder diagrams used within the SFC program, only the SFC portions of the program.

#### Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


# **Key Sequence**



# Operation

In this example, a search is made for address 010005.





## Remarks

Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions and operands.

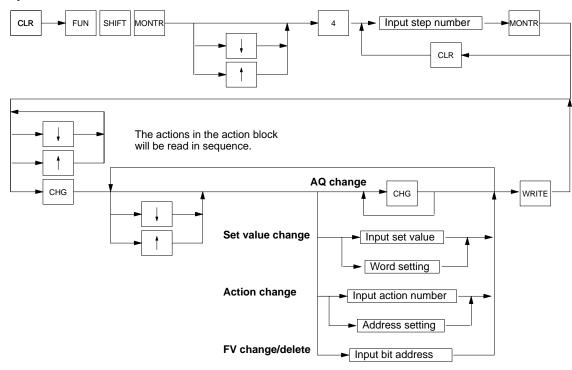
Bits and words can be specified for the following parts of an SFC program.

**Bits:** Actions, transitions, FV (feedback variable)

Words: AQ set value

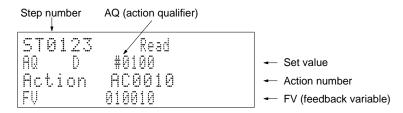
# 4-4-25 Action Block Change (CV-series PCs Only)

**Modes** 


Used to read the contents of the designated step number's action block and change AQs, set values, actions, and FVs within the action block.

Modes

| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |


Note Data can only be read in the RUN mode.

### **Key Sequence**



## Remarks

The following is the configuration of the action read display.



The following display will appear when the Write Key is pressed in the MONITOR or DEBUG mode.



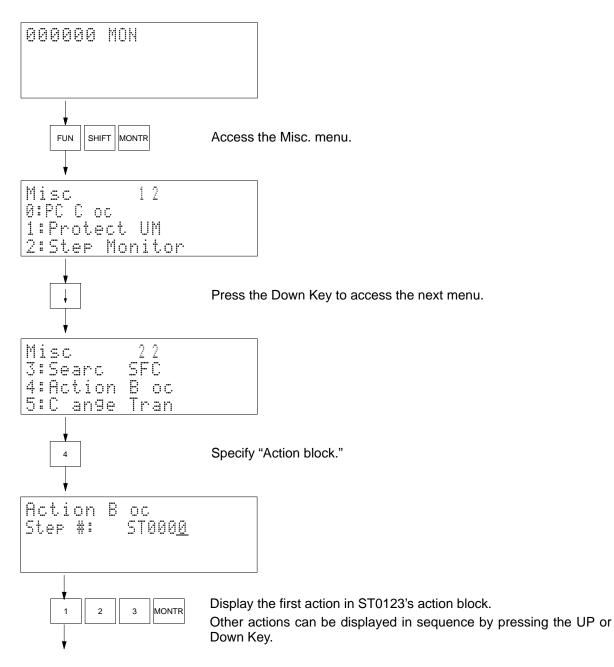
Press the Write Key to change the data.

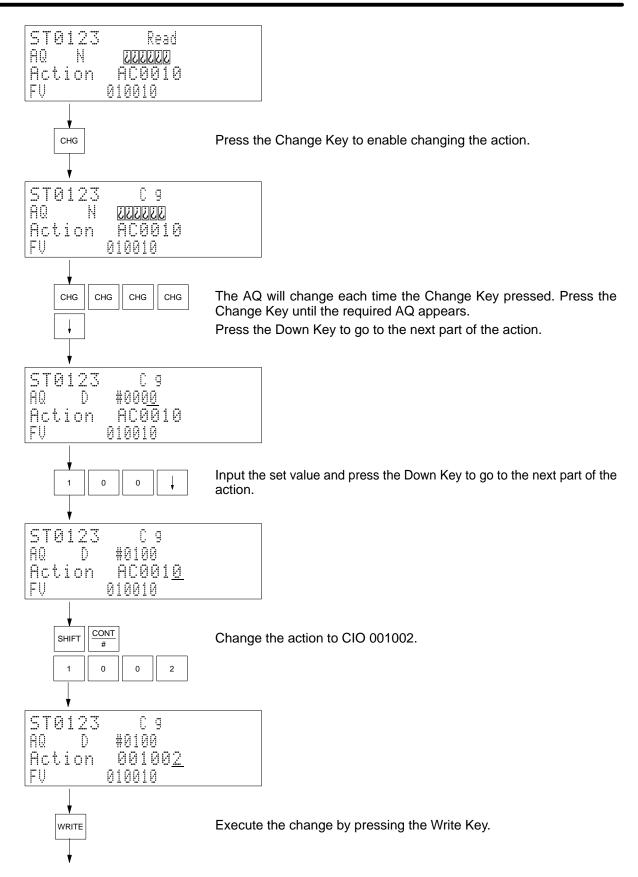
or Press the Clear Key to abort.

If there is an error, one of the following messages will be displayed.

**No such step:** Occurs when the user has attempted to designate a step that does not exist in the program.

**No act block:** Occurs when no action block exists for the designated step number.


### Operation


In this example, the contents of ST0123's action block is read and AC 0010 is changed as follows:

AQ: From N to D

Set value: To #0100

Action: From AC 0010 to CIO 001002

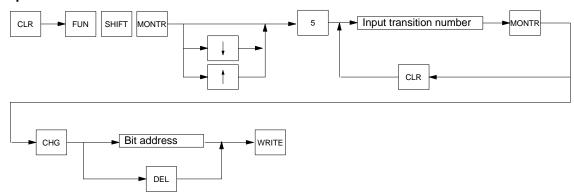




| ST0123 |        |
|--------|--------|
| AQ D   |        |
| Action | 001002 |
| FŲ     |        |

# 4-4-26 Transition Change (CV-series PCs Only)

Use


Used to add a bit address to a transition, change the number of a transition, or delete the bit address for a transition.

Modes

| RUN       | MONITOR | DEBUG | PROGRAM |
|-----------|---------|-------|---------|
| See note. | OK      | OK    | OK      |

Note Data can only be read in the RUN mode.

# **Key Sequence**



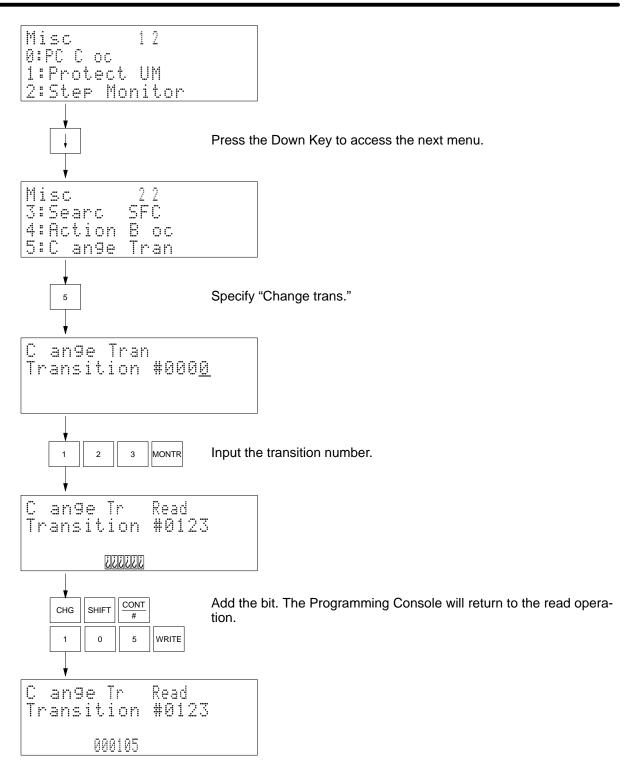
#### Remarks

The following display will appear when the Write Key is pressed in the MONITOR or DEBUG mode.

Press the Write Key to change the data.

or Press the Clear Key to abort.

If the user has attempted to designate a transition number that does not exist in the program, an error message will be displayed.


## **Precautions**

If a bit address is added to a transition, the bit address will define the transition even if another transition program has been set.

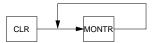
#### Operation

In this example, CIO 000105 is added to TN 0123.



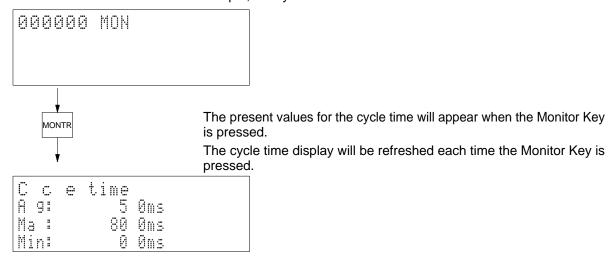


# 4-4-27 Cycle Time Display


Use

Used to display the maximum, minimum, and average value of the cycle time of the program that is being executed.

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | No    | No      |

## **Key Sequence**



# Operation

In this example, the cycle time is read.

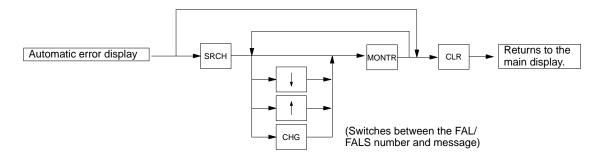


# 4-4-28 Automatic Error Display

Use

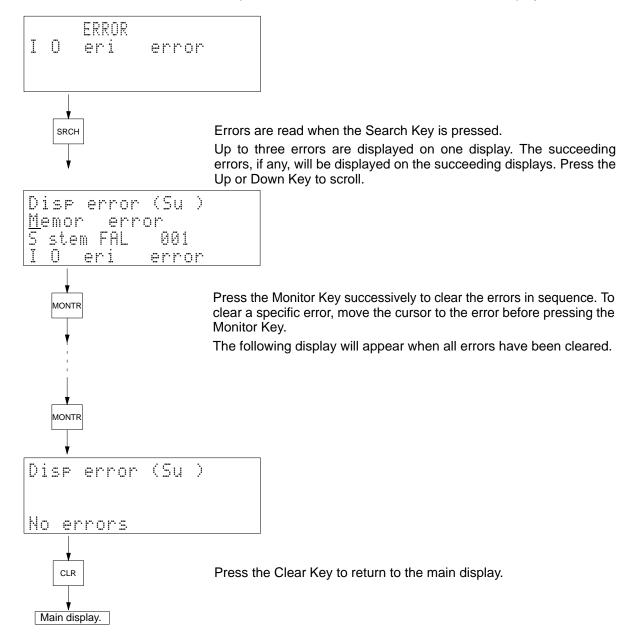
This operation is not executed directly from the main display and instead executed as a sub-operation.

The Programming Console will interrupt all processing operation and automatically display an error message if an error occurs.


If the user program executes MSG(195) for the message number that has been set for the Programming Console, the message generated by the instruction will automatically be displayed.

### **Modes**

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


Note It is possible to clear a fatal error in PROGRAM mode only.

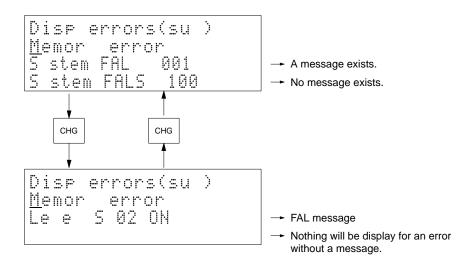
### **Key Sequence**



### Operation

In this example, an error is cleared to return to the main display.




#### Remarks

The following table lists the display priority of error messages. ??? indicates where the FAL number would appear in the actual display.

| Priority      | Туре             | Message                                 |
|---------------|------------------|-----------------------------------------|
| High priority | Fatal errors     | Memory error                            |
|               |                  | I/O bus error                           |
|               |                  | Dup I/O error                           |
|               |                  | CPU bus error                           |
|               |                  | Too many I/O                            |
|               |                  | I/O set error                           |
|               |                  | Program error                           |
|               |                  | Cycle time over                         |
|               |                  | SFC stop error                          |
|               |                  | System FALS ???                         |
|               | Non-fatal errors | System FAL ???                          |
|               |                  | PS error*                               |
|               |                  | JMP error                               |
|               |                  | DM address error                        |
|               |                  | SFC cont error                          |
|               |                  | I/O verify error                        |
|               |                  | CPU Bus Unit err                        |
|               |                  | SYSMAC BUS/2 err                        |
|               |                  | SYSMAC BUS err                          |
|               |                  | Battery error                           |
|               |                  | CPU SIO set err (CPU Bus setting error) |
|               |                  | Power off                               |
|               |                  | DPL bus error*                          |
| Low priority  |                  | DPL verify error*                       |

**Note** Error messages indicated with asterisks appear only for the CVM1D.

Press the Change Key to change the display between the FAL/FALS number and the message (if a message exists).



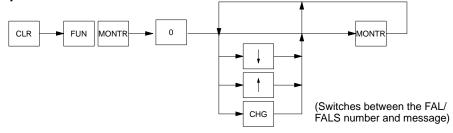
The title of messages displayed as a result of executing MSG(195) will be "MSG exec" and will appear along with an error message when the Search Key is pressed. Press the Clear Key to clear the title.

# **Precautions**

Clear errors after eliminating the cause. See the next operation for details.

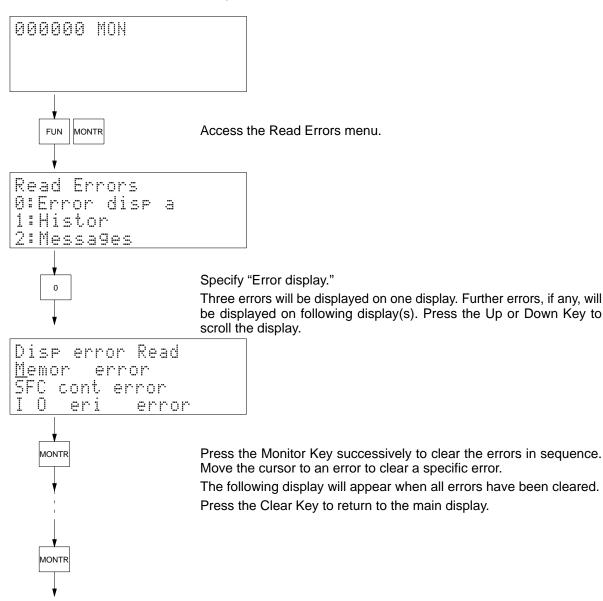
# 4-4-29 Error Display/Clear

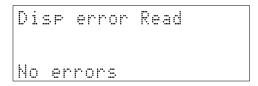
Use


Used to read and clear errors.

**Modes** 

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

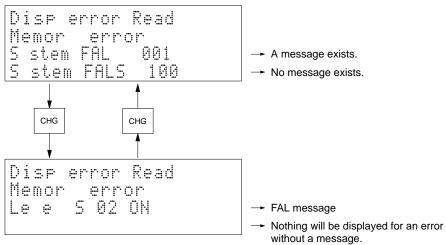

Note It is possible to clear a fatal error in PROGRAM mode only.


#### **Key Sequence**



## Operation

In this example, an error is read and cleared.






#### Remarks

Error messages will be displayed in the order of priority order shown in the table on page 78.

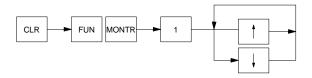
Press the Change Key to change the display between the FAL/FALS number and the message (if a message exists).



#### **Precautions**

Clear errors after removing the cause.

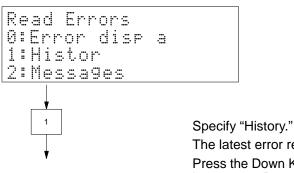
# 4-4-30 Error History Read


Use

Used to read the contents of the data stored in the error history area.

**Modes** 

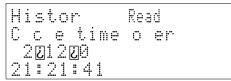
| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


# **Key Sequence**



## Operation

In this example, the data stored in the error history area is read.






The latest error record will be displayed.

Press the Down Key to read the errors in chronological order from the latest error. Press the Up Key to scroll up.

Press the Clear Key to return to the menu.



#### Remarks

The contents of the display are as follows:

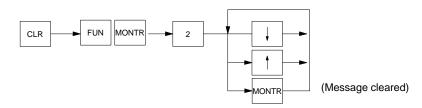


The default values of the error history area are as follows:

Storage area: Words A100 to A199 Maximum number of records: 20

The error history area will be cleared when A00014 (Error Log Reset Bit) is turned ON.

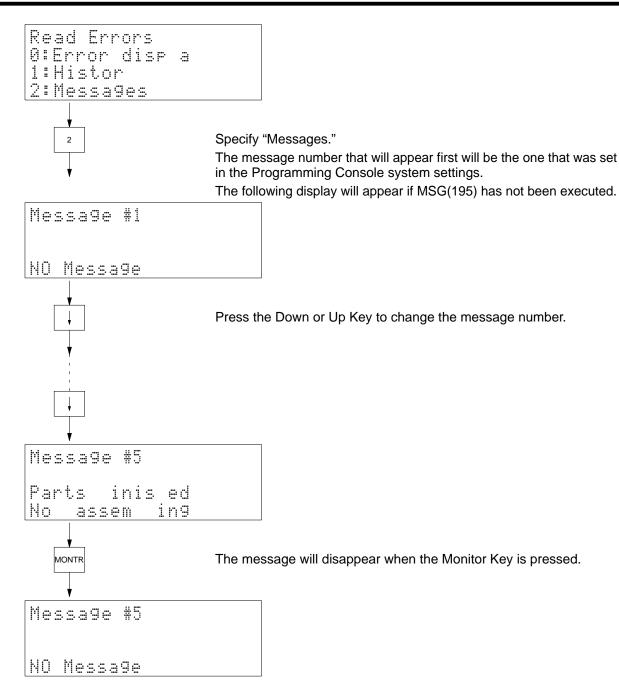
# 4-4-31 Message Read


Use

Used to read and/or clear messages generated by MSG(195).

**Modes** 

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


#### **Key Sequence**

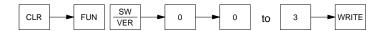


### Operation

In this example, messages generated by MSG(195) are read.

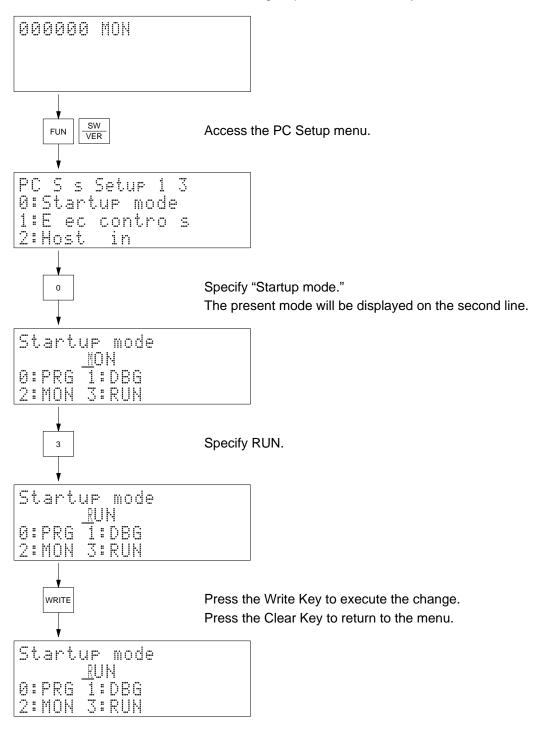





# 4-4-32 Startup Mode

**Use** Used to set the PC mode that will be used when the power is turned on.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

### **Key Sequence**



### Operation

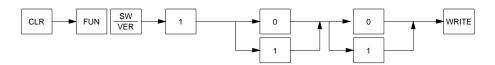
In this example, the startup mode is changed from MONITOR to RUN mode so that the PC will begin operation immediately the next time it is turned on.



Remarks

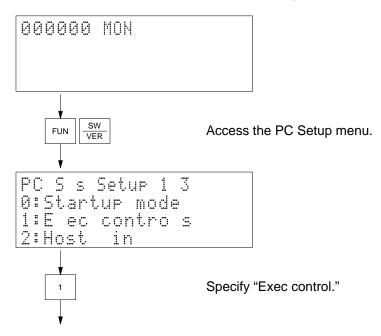
The new mode will be effective when the power is turned on again.

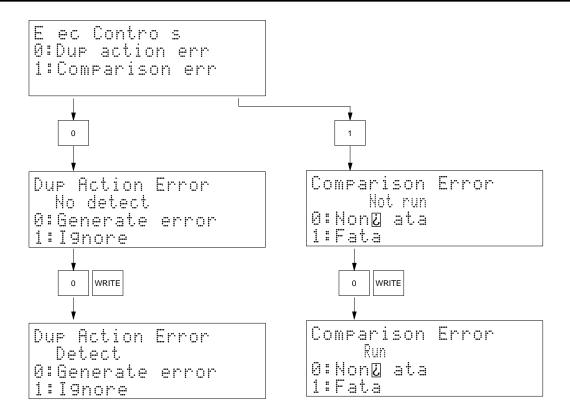
# **4-4-33 Execution Controls**


Use

Used to determine whether or not to regard multiple, simultaneous execution of the same action from two steps as an non-fatal SFC error, and whether or not to continue PC operation when an I/O comparison error occurs. This operation is not supported by the CVM1D.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


## **Key Sequence**



### Operation

In this example, multiple action execution is set as a non-fatal SFC error and the PC is set to continue operation even if an I/O comparison error occurs.

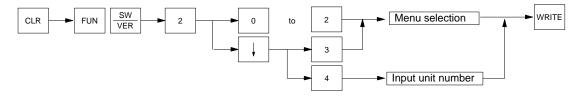




Remarks

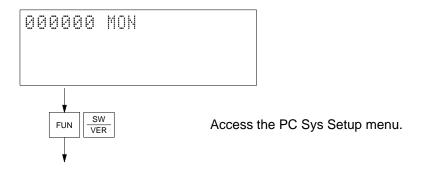
The data changed will be effective immediately.

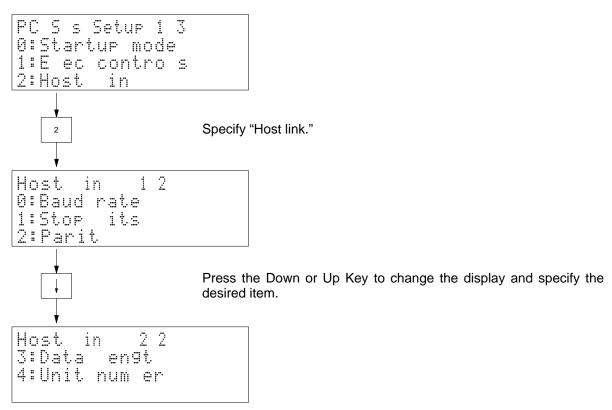
# 4-4-34 Host Link


Use

Used to set the communication parameters for the host interface.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


## **Key Sequence**



## Operation

In this example, the host link settings are read.





# **Settings**

Specify the desired setting and press the Write Key.

Input the unit number and press the Write Key. Then press the Clear Key to return to the menu.



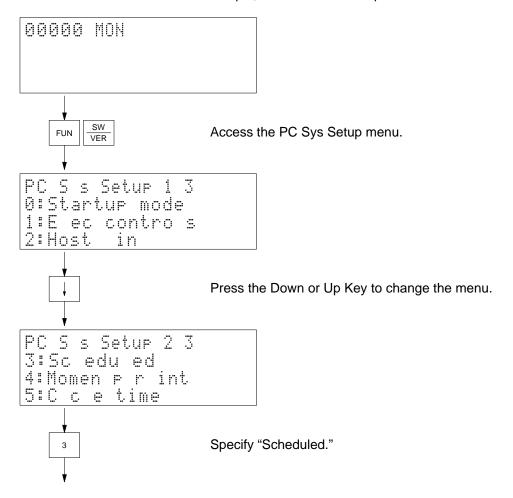
Any parameters that are changed will be effective immediately.

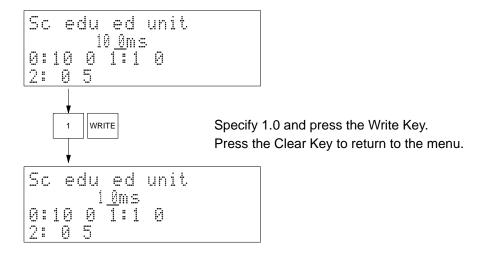
# 4-4-35 Scheduled Interrupt

Use

Used to set the time unit for scheduled interrupts. This operation is not supported by the  $\mbox{CVM1D}.$ 

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


# **Key Sequence**



### Operation

In this example, a scheduled interrupt time unit of 1.0 ms is set.





#### Remarks

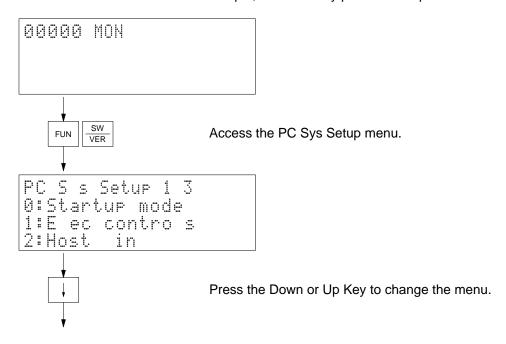
The data changed will be effective from the next time operation is started.

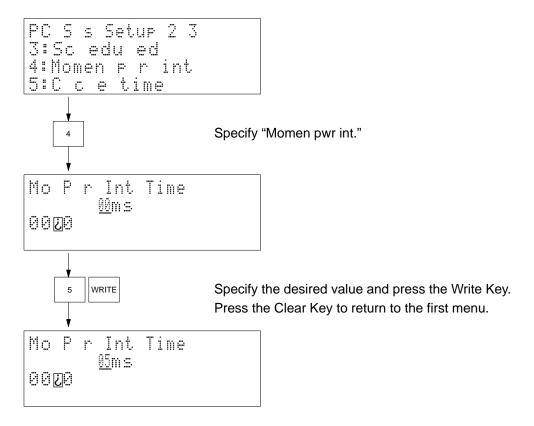
# 4-4-36 Momentary Power Interruption Time

Use

Used to set a momentary power interruption time, which is used to determine when a momentary power interruption has occurred. This operation is not supported by the CVM1D.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


## **Key Sequence**



### Operation

In this example, a momentary power interruption time of 5 ms is set.





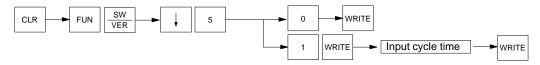
#### Remarks

The data changed will be effective immediately.

Set the momentary power interruption time within a range of 0 to 9 ms.

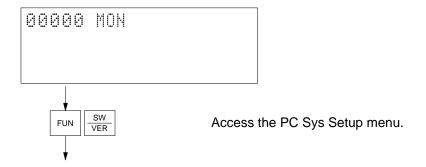
If the supply voltage returns to normal within the momentary interruption definition time that has been set, the PC will continue operating.

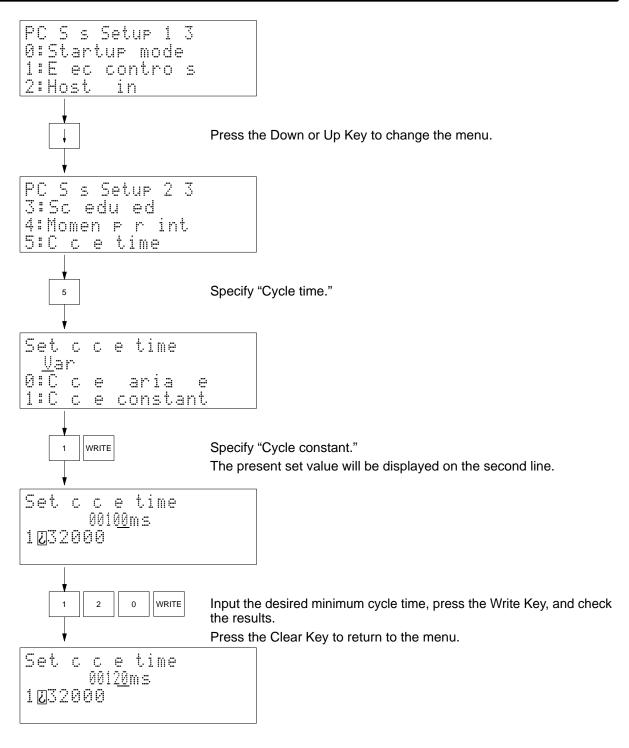
# 4-4-37 Cycle Time


Use

Used to set a minimum or variable value for the cycle time.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |


## **Key Sequence**



### Operation

In this example, a minimum cycle time of 120 ms is input.





Remarks

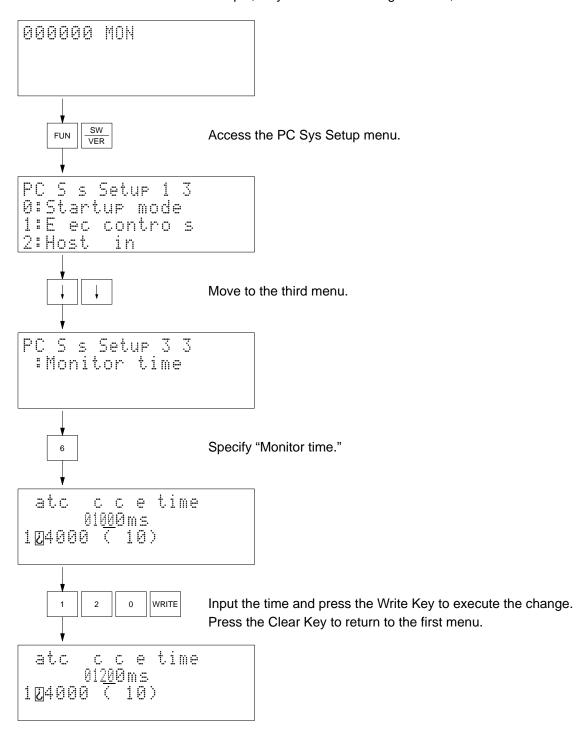
Set the cycle time within a range between 1 and 32,000 ms.

The data changed will be effective immediately.

# 4-4-38 Cycle Time Monitoring Time

**Use** Used to set a cycle time monitoring time.

**Modes** 


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | OK      | OK    | OK      |

# **Key Sequence**



# Operation

In this example, a cycle time monitoring time of 1,200 ms is set.

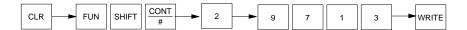


#### Remarks

Set the cycle time within a range of 10 to 40,000 ms.

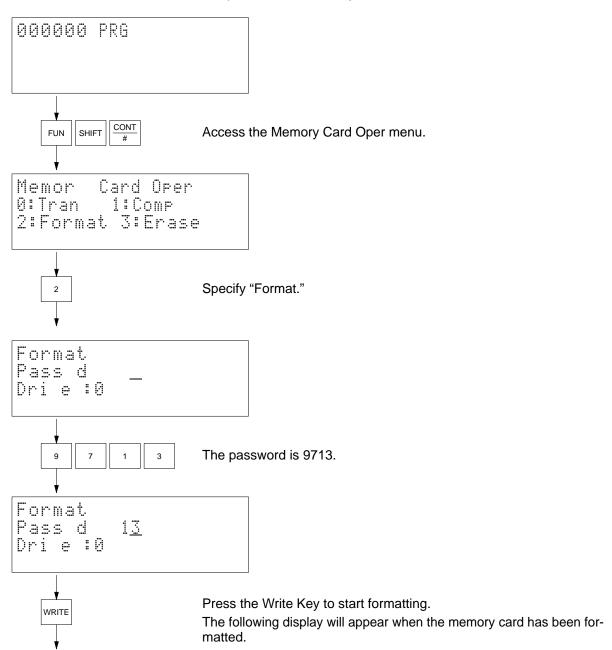
The data changed will be effective immediately.

# 4-4-39 Memory Card Format


Use

Used to format the memory card mounted in the CPU Unit.

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**



## Operation

In this example, the RAM memory card mounted in the CPU Unit is formatted.





#### Remarks

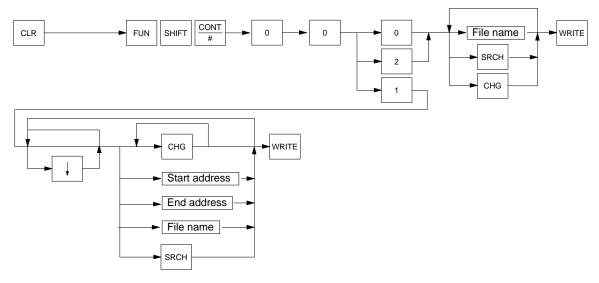
Only RAM memory cards can be formatted. Write-enable the card before mounting it. The drive name of the memory card is 0.

If there is an error, one of the following error messages will appear.

No file device: No memory card has been mounted in the CPU Unit.

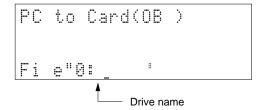
Read only: The memory card is write-protected.

# 4-4-40 File Write


Use

Used to write the contents of the PC's memory to the memory card mounted in the CPU Unit. The data that can be written includes the user's program, I/O memory, and extended PC setup.

Modes


| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

## **Key Sequence**



#### Remarks

Only RAM memory cards can be written. Write enable the card before mounting it. The drive name for the memory card is 0.



### **File Names**

It is possible to use the following keys to input a file name. A file name can consist of 8 characters maximum. Input is possible in one of two modes: normal (numbers only) or alphanumeric. Press the Shift–Text Keys to enter alphanumeric input mode and ! will be displayed on the upper right-hand corner of the screen. Press the Clear Key to return to the normal mode.

## **Normal Input Mode**

0 to 9

Up and Down Keys: Used to move the cursor to the right or left.

DEL: Used to delete the character where the cursor is located.

CLR: Used to delete all the characters of a file name.

SEARCH: Used to read a file name in the memory card. It is possible to read a single file name each time the Search Key is pressed.

WRITE: Used to input a file name and start writing the file.

## **Alphanumeric Input Mode**

0 to 9 and A to Z (the lower right-hand character on each key) are effective.

## **Automatic File Names**

The following type of file name can be automatically input by pressing the Change Key in the normal input mode.

File type (see below) + PC's clock data (Date, month, and year)

P: User's program

I: I/O memory

S: Extended PC Setup

#### **File Extensions**

When a file name is written, one of the following extensions will be added to it.

.OBJ: User's program

.IOM: I/O Memory

.STD: Extended PC Setup

## **Data Area Designations**

The data area designation will be changed and displayed in the following order each time the Change Key is pressed: CIO, G, A, DM, EM0 to EM7.

### **Existing File Names**

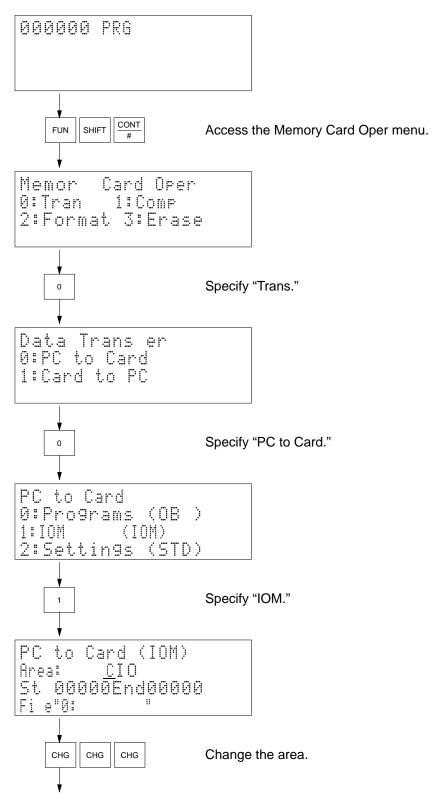
If the designated file name already exists, the following message will appear.

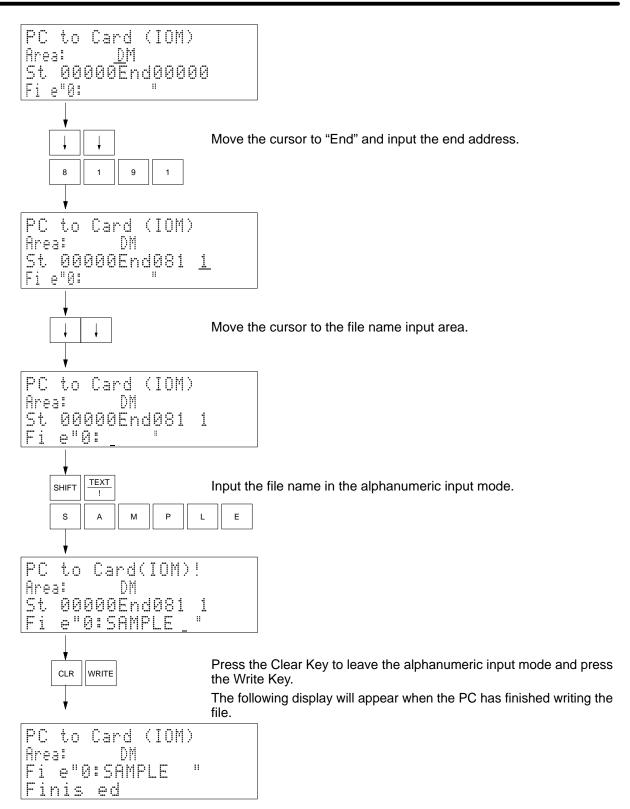
```
PC to Card (IOM)
Area: DM
Fi e 0:P 203250
O er rite
```

Press the Write Key to overwrite.

or Press the Clear Key to abort.

#### **Errors**


If there is an error, one of the following error messages will appear according to the error.


No file device: No memory card has been mounted in the CPU Unit.

**Read only:** The memory card is write-protected or an EPROM or EEPROM memory card has been mounted.

### Operation

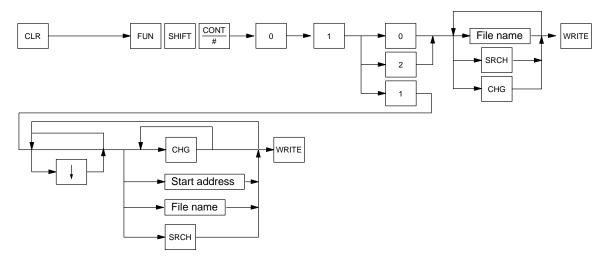
In this example, the file name SAMPLE is written containing the data from between D00000 and D08191. The initial display will appear when the Clear Key is pressed.





## 4-4-41 File Read

Use


Used so that the contents of the memory card mounted in the CPU Unit can be read in the PC's memory. The data that can be written includes the user's program, I/O memory, and extended PC setup.

Modes

| RUN | MONITOR   | DEBUG     | PROGRAM |
|-----|-----------|-----------|---------|
| No  | See note. | See note. | OK      |

Note Only IOM files can be read in the MONITOR or DEBUG mode.

# **Key Sequence**



#### Remarks

It is possible to read any type of memory card. The drive name for the memory card is 0.

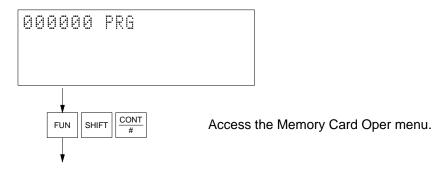
#### **File Names**

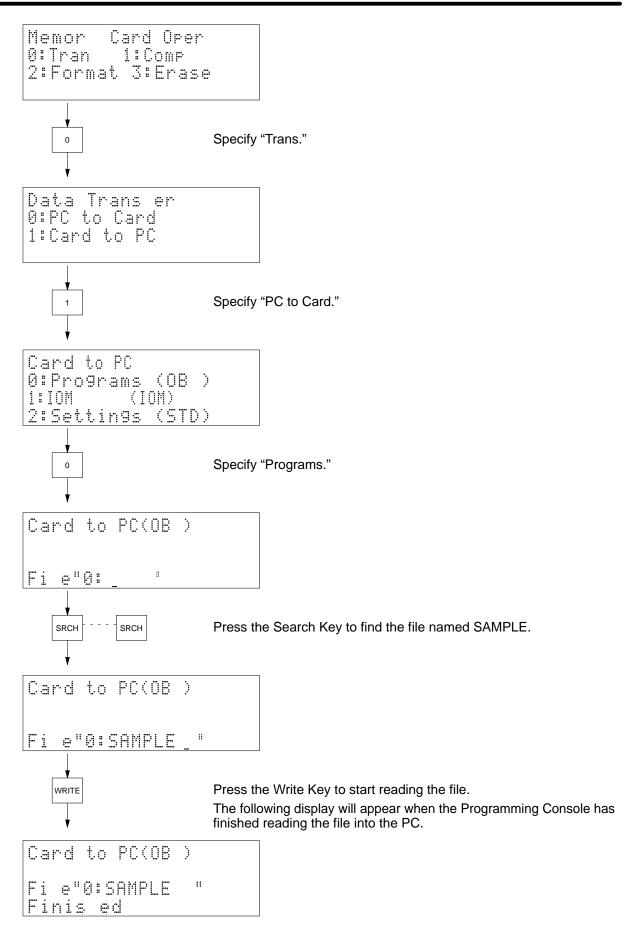
Press the Search Key to read the file name from the memory card.

#### **Data Area Designations**

The data area designation will be changed and displayed in the following order each time the Change Key is pressed: CIO, G, A, DM, EM0 to EM7.

#### **Error Messages**


If there is an error, an error message will be displayed. The following errors may occur.


No file device: No memory card has been mounted in the CPU Unit.

No such file: The specified file does not exist.

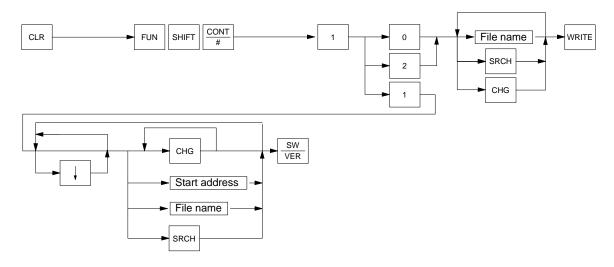
### Operation

In this example, the user's program file SAMPLE in the memory card is read into the PC.





## 4-4-42 File Compare


Use

Used to compare the contents of files in the memory card mounted in the CPU Unit and the PC's memory contents (user's program, I/O memory, or extended PC Setup).

#### Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

#### **Key Sequence**



#### Remarks

It is possible to compare the file contents of any type of memory card with the PC's memory contents.

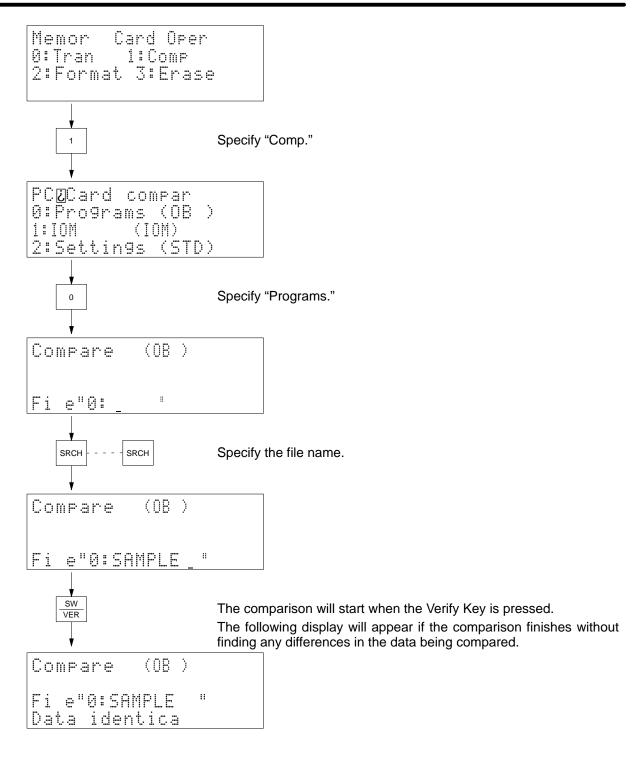
The drive name for the memory card is 0.

Press the Search Key to read the file name from the memory card.

If there is an error, one of the following error messages will appear.

No file device: No memory card has been mounted in the CPU Unit.


No such file: The specified file does not exist.


Data differs: The data did not coincide with each other.

#### Operation

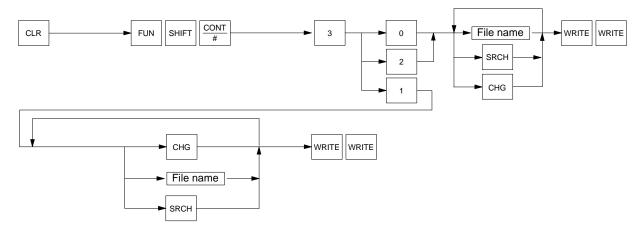
In this example, the user's program file SAMPLE in the memory card is compared with the contents of the user program area in the PC.

The initial display will appear when the Clear Key is pressed.





### 4-4-43 File Delete


Use

Used to delete a designated file (user program, I/O memory, or extended PC Setup) of the memory card mounted in the CPU Unit.

Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

#### **Key Sequence**

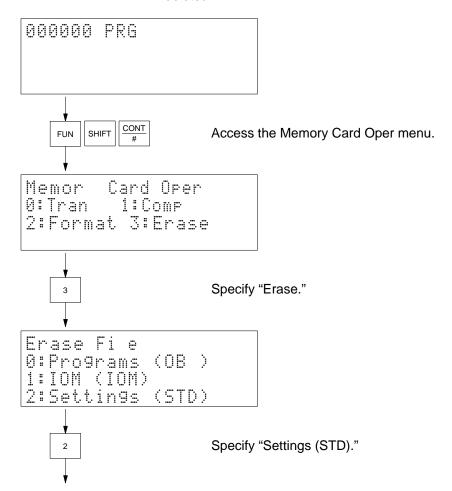


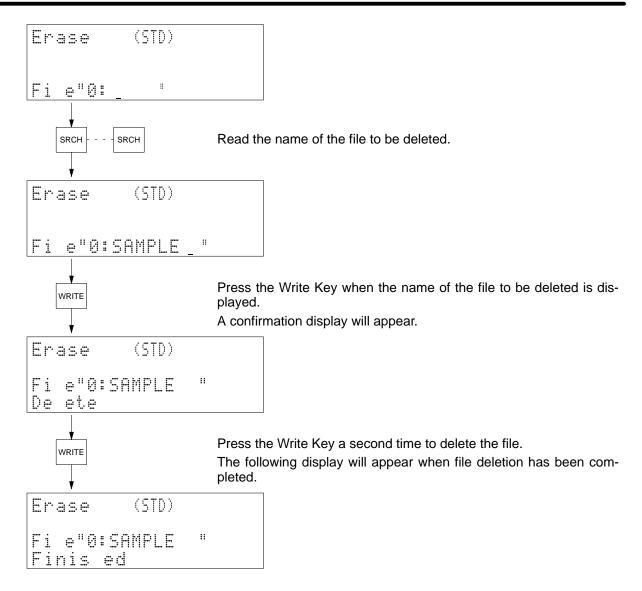
#### Remarks

Only RAM memory cards can be deleted from using this operation. Be sure to write-enable the card before mounting it.

The drive name for the memory card is 0.

Press the Search Key to read the file name from the memory card.


If there is an error, one of the following error messages will appear.


No file device: No memory card has been mounted in the CPU Unit.

No such file: The specified file does not exist.

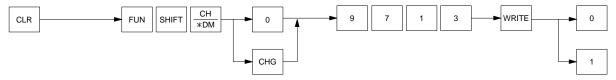
#### Operation

In this example, the extended PC Setup file SAMPLE in the memory card is deleted.





#### 4-4-44 I/O Table Create


Use

Used to register the I/O table in the PC according to the Units currently mounted or connected to the PC.

#### **Modes**

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| No  | No      | No    | OK      |

#### **Key Sequence**

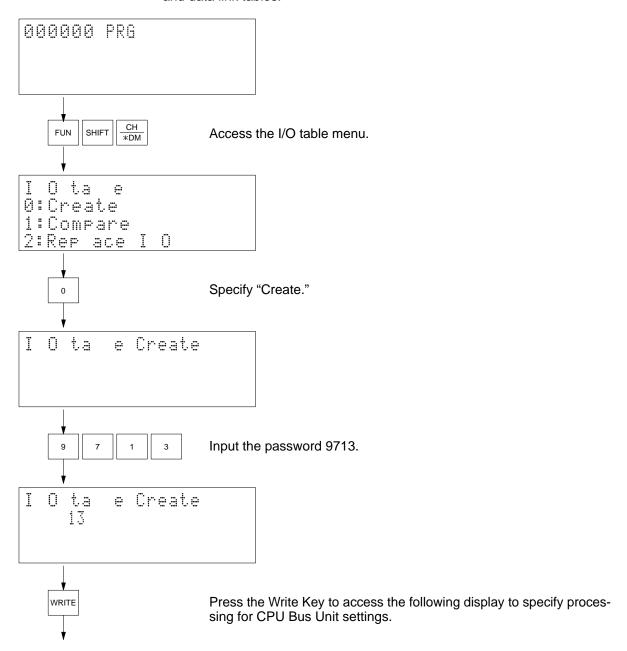


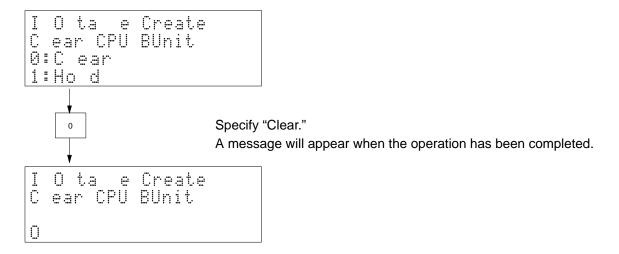
#### Remarks

All I/O and works bits are cleared when the I/O table is generated.

There is no need to create the PC's I/O table each time the PC is turned on unless the user changes the configuration of the Units mounted to the PC.

If a Unit is added to the PC or an existing Unit replaced with a different type of Unit after the I/O table is generated, an I/O setting error or I/O verification error will occur. Check the Units on the PC before creating the I/O table.


"Clear CPU BUnit?" means to clear the contents of software settings for CPU Bus Units or data link tables set with CVSS/SSS online operations. If this data is held, all data will be held regardless of where or not the Units the settings are for actual exist. If the data is cleared, only data for Units not currently mounted in the system will be cleared.


#### **Precautions**

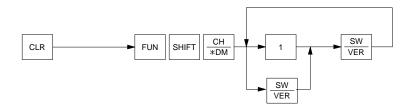
This operation cannot be used from a Programming Console connected to a SYSMAC BUS/2 Remote I/O Slave Unit.

#### Operation

In this example, an I/O table is created after clearing the CPU Bus Unit settings and data link tables.

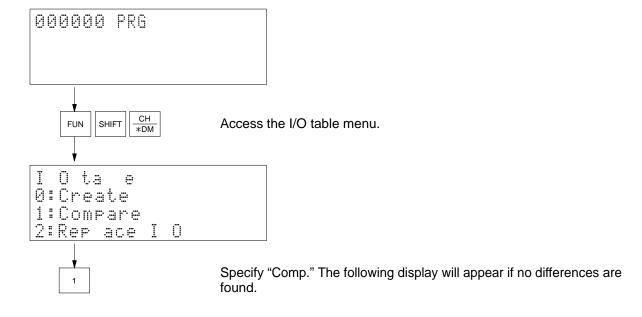


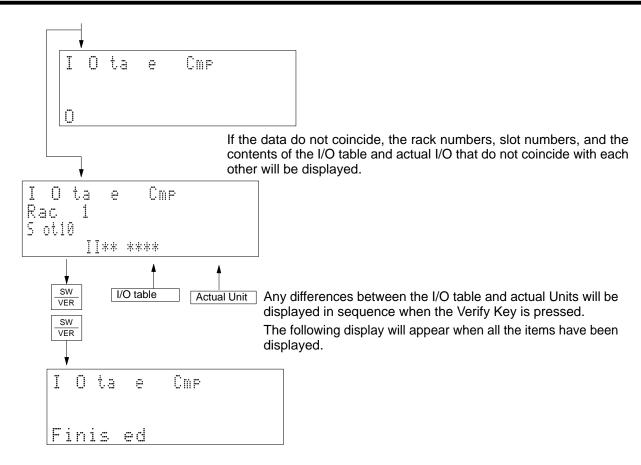



# 4-4-45 I/O Table Compare

Used to compare the I/O table registered in the PC to the Units actually mounted or connected to it.

#### Modes

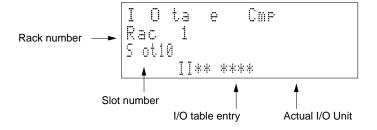

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |


#### **Key Sequence**



#### Operation

In this example, the I/O table is compared to actual Units to confirm that the table is correct.






#### Remarks

If there is any differences between the I/O table and actual Units, check the Units. If any differences exist and all Units are mounted or connected according to system specifications, correct the I/O table or create a new I/O table.

Displays for differences will be as follows:



/ Caution

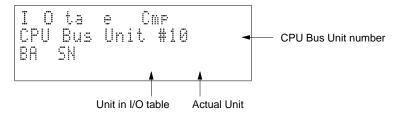
Do not change the I/O table without confirming that the program is written correctly for the allocations that will be produced. Refer to the *CV-series PC Operation Manual: Ladder Diagrams* for details.

#### I/O Units

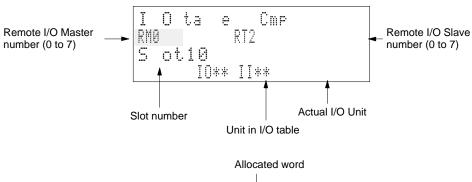
| Display | Unit                | Display | Unit                 |
|---------|---------------------|---------|----------------------|
| ***     | No Unit             | 0000    | 64 output points     |
| 0***    | 8 output points     | IIII    | 64 input points      |
| i***    | 8 input points      | OOII    | 64 I/O points        |
| 0***    | 16 output points    | NNNN    | 64 dummy I/O points  |
| [***    | 16 input points     | 66**    | 128 output points    |
| N***    | 16 dummy I/O points | LL**    | 128 input points     |
| 00**    | 32 output points    | GL**    | 128 I/O points       |
| II**    | 32 input points     | HH**    | 128 dummy I/O points |
| 0[**    | 32 I/O points       | 6666    | 256 output points    |
| NN**    | 32 dummy I/O points | LLLL    | 256 input points     |
|         |                     | GGLL    | 256 I/O points       |
|         |                     | НННН    | 256 dummy I/O points |

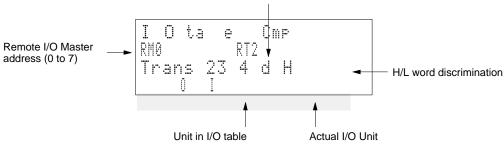
#### **Other Units**

RM (Master #): Remote I/O Master Unit


(Master number: SYSMAC BUS: 0 to 7, SYSMAC BUS/2: 0 to 3)

INT: Interruption Unit SL: SYSMAC LINK Unit SN: SYSMAC NET Link Unit

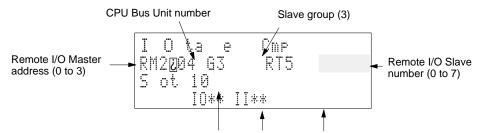

BA: BASIC Unit


VP: Personal Computer Unit

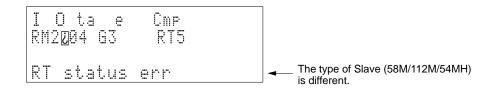
#### **CPU Bus Units**

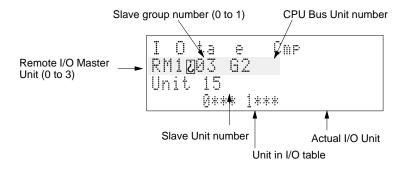


#### **SYSMAC BUS Units**







#### Optical I/O Units


| Display | Unit                   |  |
|---------|------------------------|--|
| 0       | 8 output points OUT    |  |
| I       | 8 input points         |  |
|         | Duplication allocation |  |
| *       | No Unit                |  |

#### SYSMAC BUS/2 Units



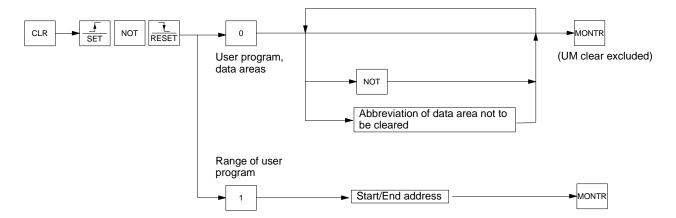
Remote I/O Slave slot number Unit in I/O table Actual I/O Unit





# 4-4-46 Memory Clear

Use


Used to clear all or part of the user program memory area. Always clear memory before inputting a new program when using ladder-only programming.

Modes

| RUN | MONITOR   | DEBUG     | PROGRAM |
|-----|-----------|-----------|---------|
| No  | See note. | See note. | OK      |

**Note** It is possible to clear the only designated data areas in the MONITOR or DEBUG mode.

#### **Key Sequence**



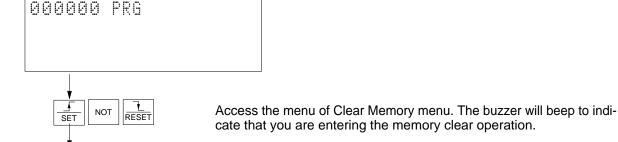
#### Operation

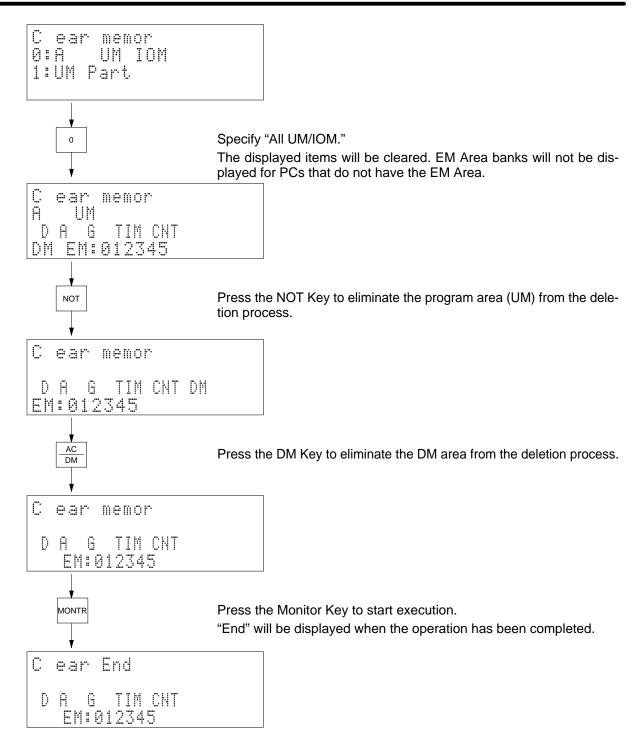
Either the entire program area and/or designated data areas can be deleted, or a specified range of the user program area can be deleted. When 0 is specified, either all or none of the program area must be cleared; a specified range cannot be cleared. When the entire program area is cleared, the program type will set to "ladder only" and will need to be changed to use SFC programming. Even though the entire program is cleared, an END(001) instruction is automatically generated.

Press the NOT Key to clear only data areas without clearing the program area.

The data areas that are displayed will be cleared. If there are any data areas that should not be cleared, input the data area abbreviation to delete the display for that area. Specify the EM bank by using the 0 to 7 Keys.

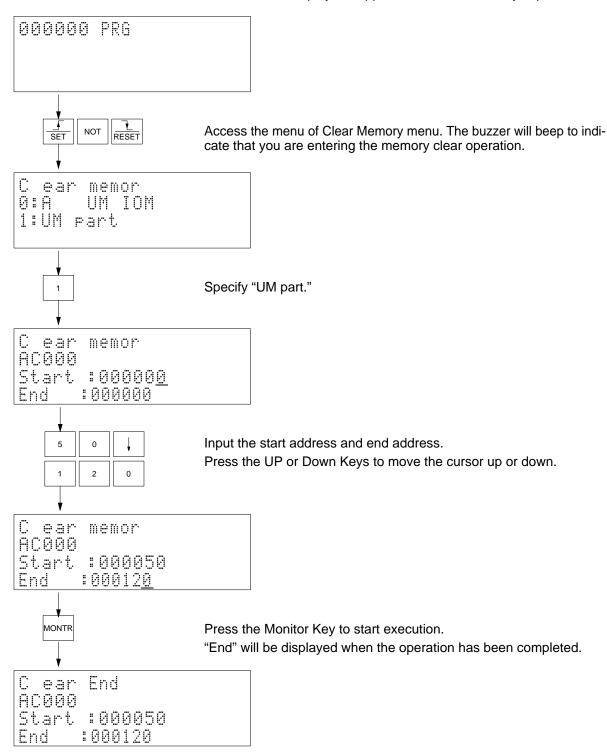
To clear a specified range, specify "1" and the start and end addresses. Do not set an address larger than the address that contains the END(001) instruction or an error will result and "Address too high" will be displayed. If the END(001) instruction is cleared, a program error will result if the user continues operation without adding an END(001) instruction.


The user's program will be cleared even if the UM is protected via Programming Device settings, but will not be cleared if it is protected with the key switch on the CPU Unit and "Read only" will be displayed.


Refer to *Appendix D Inputs for Instructions and Operands* for the key sequences to specify instructions and operands.

**Note** The buzzer will beep when the Set–Not–Reset Keys are pressed to warn that memory will be cleared if you continue with the operation. It is not an indication of an error in operation.

#### Example 1


In this example, all areas except DM are cleared. The program is not cleared.



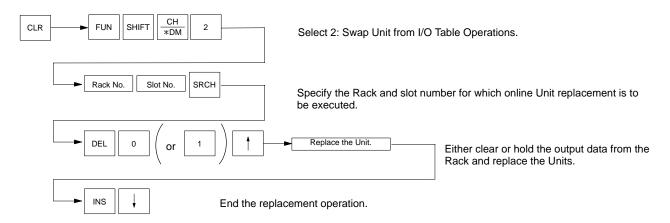


#### Example 2

In this example, action program AC 0001's addresses 000050 to 000120 are cleared. Use the program designation operation to designate program AC 0001 in advance. The initial display will appear when the Clear Key is pressed.



### 4-4-47 Online Unit Replacement


Use

Used to replace an Input or Output Unit without stopping PC operation. Online Unit replacement can be performed for an Input Unit or Output Unit mounted to a CVM1D CPU Rack, an Expansion CPU Rack built on a CVM1D Backplane, or an Expansion I/O Rack. Online Unit replacement cannot be executed for Special I/O Units or CPU Bus Units.

#### Modes

| RUN | MONITOR | DEBUG | PROGRAM |
|-----|---------|-------|---------|
| OK  | OK      | OK    | OK      |

#### **Key Sequence**



**Note** When executing online Unit replacement, either cut off the loads or hold the current status for the entire Rack. Online Unit replacement cannot be executed while cutting off the loads or holding status for individual Units.

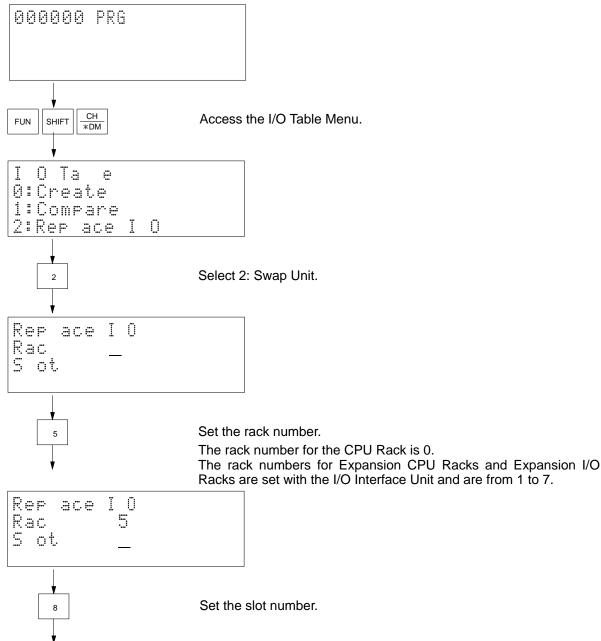
During online Unit replacement, the inputs and outputs for the Units will be cut off. The ON/OFF status of the Rack will be maintained.

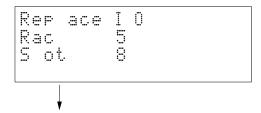
Only one Unit can be changed each time the operation is performed.

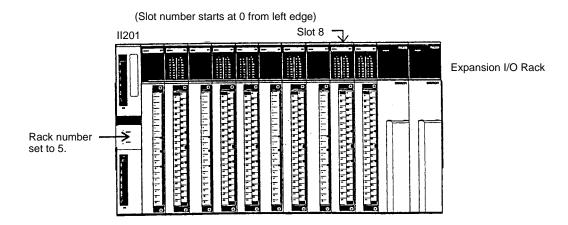
Online Unit replacement is possible in either the Duplex mode or the Simplex mode of the CVM1D Duplex System.

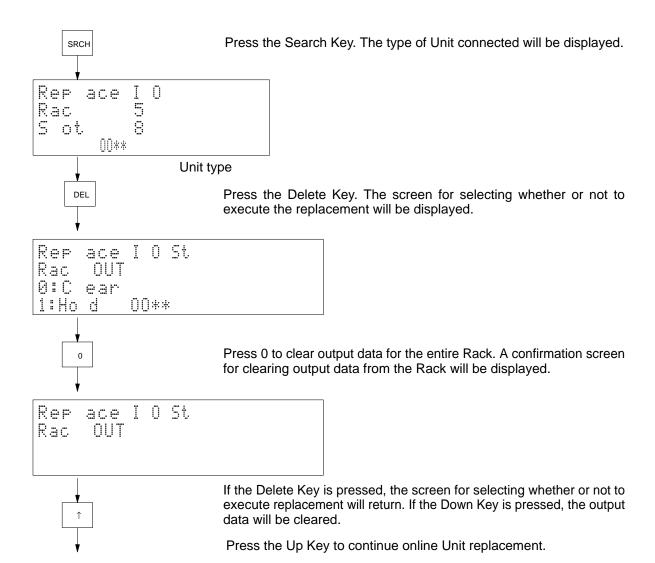
The status of online Unit replacement can be read from the display on the I/O Control Unit or the I/O Interface Unit.

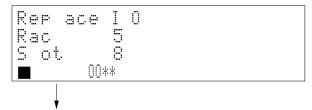
During online replacement the following information is output to the auxiliary area. Refer to the next table for the actual contents of A399.


| Word address | Contents                  |
|--------------|---------------------------|
| A399         | Online replacement status |


The status of online Unit replacement will be output to A399 during online Unit replacement, as shown in the following table.

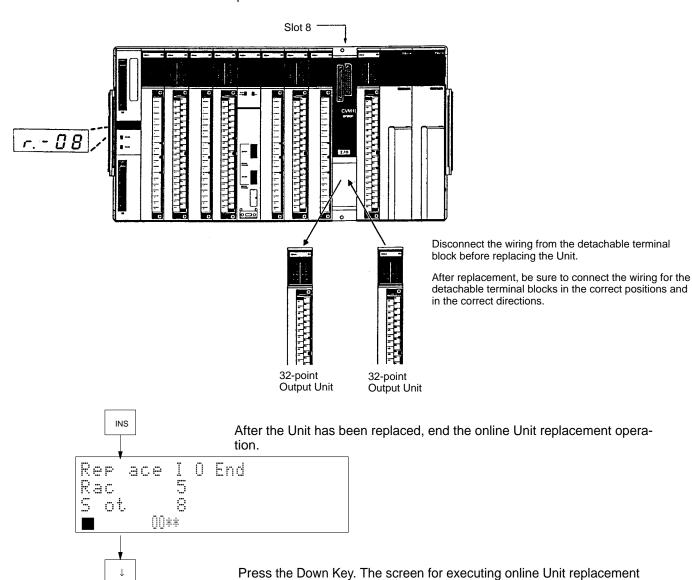

| Address | Bit(s)   | Contents                           |  |                                             |
|---------|----------|------------------------------------|--|---------------------------------------------|
| A399    | 00 to 07 | Slot number of Unit being replaced |  | 00 to 09 (BCD, 2 digits)                    |
|         | 08 to 11 | Rack number of Unit being replaced |  | 0 to 9 (BCD, 1 digit)                       |
|         | 12 to 13 | Not used.                          |  |                                             |
|         |          |                                    |  | Clear<br>Save                               |
|         | 15       | Online Unit replacement status     |  | Online Unit replacement not under execution |
|         |          |                                    |  | Online Unit replacement under execution     |


#### Operation

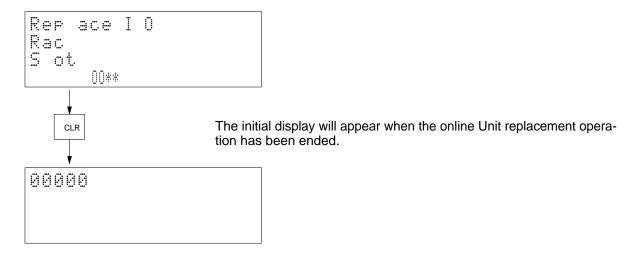

In this example, a 32-point Output Unit in slot 8 (counted from the left) of an Expansion I/O Rack (Rack 5) is replaced. Use a Unit with the same model number and specifications as the Unit being replaced. The initial display will appear when the Clear Key is pressed.










The dark box at the start of the 4th line indicates that the Unit can be replaced.

Replace the Unit.



will reappear.

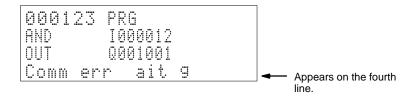


# **SECTION 5 Error Processing**

This section describes errors that can occur during Programming Console operation, including both errors directly relation to Programming Console operation and PC errors. Refer to the *CV-series PC Operation Manual: Ladder Diagrams* for further details on PC operation and errors.

| 5-1 | Readin  | g Errors                   |
|-----|---------|----------------------------|
| 5-2 | Error M | Messages                   |
|     |         | ng Errors                  |
|     |         | ors                        |
|     | 5-4-1   | Initialization Errors      |
|     | 5-4-2   | Non-fatal Operating Errors |
|     | 5-4-3   | Fatal Operating Errors     |

Reading Errors Section 5-1


# 5-1 Reading Errors

It is possible to read the following three kinds of errors.

- Communications errors
- Operating errors
- PC errors

#### **Communications Errors**

Messages for errors occurring in communications between the Programming Console and PC will be displayed automatically. It will be impossible to operate the Programming Console if there is a communications error. Continue operation after first eliminating the cause of the error.



#### **Operating Errors**

An error message will appear if an operating error occurs during program editing or monitoring.

#### **PC Errors**

PC errors are displayed in one of three ways: automatically, via the error read operation, and from the error history. Refer to sections starting on page 75 for details.

#### **Error Automatic Read**

When an error occurs, operation will be interrupted and an error message will appear automatically.



#### Read Errors/Clear

Error messages will appear when the Clear Key, Function–Monitor Keys, and 0 Key are pressed in sequence. Clear error messages after removing the causes of the errors.

```
Disp error Read
Memor error
PS error
I O eri error
```

Move the cursor to an error and press the Monitor Key to clear the error.

Operating Errors Section 5-3

#### **Error History Read**

It is possible to read the data recorded in the error history area by pressing the Clear Key, Function–Monitor Keys, and 1 Key.

# 5-2 Error Messages

| Error message    | Probable cause                                                                                                 | Possible correction                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Cannot connect   | Another Programming Device was already connected or a Programming Device with a higher priority was connected. | Do not connect more than one Programming Device to the CPU Unit or I/O Interface Unit. |
| Comm error       | There is a communications error between the PC and Programming Console.                                        | Check the destination Unit. Check the cable connections.                               |
| Comm err wait'g  | Time ran out before a response has returned for a command.                                                     |                                                                                        |
| Response overflo | A communications error has occurred.                                                                           | Check the communications path between the Programming Console and PC.                  |

# 5-3 Operating Errors

| Error message     | Probable cause                                                                                   | Possible correction                                                                              |
|-------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| # of data error   | The source node did not have the designated                                                      | Check the user program.                                                                          |
|                   | number of data when the data was transferred from the memory card to PC or from the PC to memory | Check the number of send words.                                                                  |
|                   | card.                                                                                            | Check the file designation.                                                                      |
| Add range exceed  | The memory card does not have enough space.                                                      | Use another memory card.                                                                         |
|                   |                                                                                                  | Delete unnecessary files.                                                                        |
| Address too high  | The user attempted to read in an area exceeding the highest address of the user program.         | Check the input address and input the address correctly.                                         |
|                   | The designated word and data area exceeds the possible range.                                    |                                                                                                  |
| Can't chg; active | No action can be changed because the designated step is active.                                  | Check the operating condition of the PC.                                                         |
| File not found    | The designated file does not exist in the memory card.                                           | Check the file name.                                                                             |
| Instr not found   | The designated instruction does not exist in the user memory.                                    | Check the user program.                                                                          |
| Memory error      | A parity or check sum error occurred in PC memory.                                               | Correct the data in memory.                                                                      |
|                   | The user program is not correct.                                                                 | Check and correct the program with the CVSS/SSS or GPC and transfer the program to the PC again. |
|                   | An error occurred in the memory card.                                                            | Mount the memory card correctly.                                                                 |
|                   | An access error occurred while the user was accessing the memory card.                           | Check and correct the data in the memory card.                                                   |
|                   | A checksum error occurred for the data in the memory card.                                       |                                                                                                  |
| Mode error        | An operation was attempted in the wrong PC mode (RUN, MONITOR, DEBUG, PROGRAM).                  | Set the PC to the correct mode.                                                                  |
| No access right   | No data can be changed because data is being written by another Programming Device.              | Write the data after the other Programming Device finishes writing the data.                     |

Operating Errors Section 5-3

| Error message    | Probable cause                                                                                         | Possible correction                                                     |
|------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No action block  | No actions exist in the designated step.                                                               | Input the correct step number.                                          |
|                  |                                                                                                        | Check the program.                                                      |
| No active steps  | There are no active steps in the designated sheet.                                                     | Check the user program.                                                 |
| No areas         | The data area designation is wrong.                                                                    | Designate correctly.                                                    |
|                  | The designated program does not exist.                                                                 | Check the program                                                       |
| No file device   | No memory card is mounted in the CPU Unit.                                                             | Mount the memory card in the CPU Unit.                                  |
| No program       | The data in the user memory is corrupted or no program has been input.                                 | Transfer the program to the PC again.                                   |
|                  | No main program exists or no program exists for AC0000.                                                | Designate the program.                                                  |
| No space         | The memory card does not have enough space.                                                            | Use another memory card.                                                |
|                  |                                                                                                        | Delete unnecessary files.                                               |
| No such data     | The designated data does not exist.                                                                    | Input the correct data.                                                 |
| No such step     | The designated step does not exist in the user memory.                                                 | Check the user program.                                                 |
| Ope not found    | The designated operand does not exist in the user memory.                                              | Check the user program.                                                 |
| Parameter error  | There is a communications error between the Programming Console and PC.                                | Check the communications path.                                          |
| Protected        | The user memory has been protected.                                                                    | Release UM protect.                                                     |
| Protection error | The user has attempted to protect user memory that has been already protected.                         | Check the settings for UM protect.                                      |
|                  | The user has attempted to clear the protection of the user memory that has not been protected.         |                                                                         |
| Read-only        | The memory card has been protected or is EEPROM                                                        | Write-enable the memory card.                                           |
|                  | or PROM.                                                                                               | Use a RAM memory card.                                                  |
|                  | The system has been protected with the protect keyswitch on the CPU Unit.                              | Release the protection of the system with the system protect keyswitch. |
| Sheet not found  | The designated sheet does not exist in the program.                                                    | Input the correct sheet number.                                         |
| Too many files   | The number of files exceeds the permissible number of files that can be registered in the memory card. | Delete unnecessary files.                                               |
| Trans not found  | The designated transition does not exist in the user memory.                                           | Check the user program.                                                 |
| Wrong password   | A wrong password was input.                                                                            | Input the correct password.                                             |

PC Errors Section 5-4

## 5-4 PC Errors

### 5-4-1 Initialization Errors

The following errors occur before program execution has been started. The POWER indicator will be lit and the RUN indicator will not be lit for any of these. The RUN output will be OFF for each of these errors. The alarm indicator (ALARM) will be ON for the I/O table verification error.

| Programming Console error message | Probable cause                                                     | Flag(s)          | Error code<br>(A400) | Possible remedy                                                                                                     |
|-----------------------------------|--------------------------------------------------------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|
| CPU wait                          | Start input on CPU Rack's Power Supply Unit is OFF.                | A30600           | None                 | Short start input terminals on CPU Unit's Power Supply Unit.                                                        |
| CPU wait                          | Power to Slave is off or terminator is missing.                    | A30602           | None                 | Check power supply to Slaves and terminator setting.                                                                |
| CPU wait                          | Initializing CPU Bus Unit or SYSMAC BUS/2 terminator missing.      | A30603           | None                 | Wait for CPU Bus Unit<br>Initialization to be completed.<br>Check power supply to Slaves<br>and terminator setting. |
| CPU wait                          | A Unit has been changed making the I/O table incorrect. (PC Setup) | A30601<br>A40209 | 00E7                 | Check the I/O table from the CVSS/SSS and either connect Dummy I/O Units or correct the I/O table.                  |

**Note** The I/O table verification error can be set as an initialization error in the PC Setup.

# 5-4-2 Non-fatal Operating Errors

The following errors occur after program execution has been started. PC operation and program execution will continue after one or more of these errors have occurred. For each of these errors, the POWER, RUN, and ALARM indicators will be lit and the ERROR indicator will not be lit. The RUN output will be ON.

| Programming Console error message | Probable cause                                                                                                                       | Flag(s) | Error code<br>(A400)                                        | Possible remedy                                                                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| System FAL                        | FAL(006) has been executed in program. Check the FAL number to determine conditions that would cause execution (programmed by user). | A40215  | 4101 to 42FF<br>correspond to<br>FAL numbers<br>001 to 511. | Correct according to cause indicated by FAL number (set by user).                                  |
| JMP error                         | No JMP(004) in the program.                                                                                                          | A40213  | 00F9                                                        | Check and correct the program.                                                                     |
| DM address error                  | Indirectly addressed DM address data is not BCD.                                                                                     | A40212  | 00F8                                                        |                                                                                                    |
| SFC cont error                    | An error has occurred during SFC execution.                                                                                          | A40211  | 00F4                                                        | Check and correct the program. (Refer to the next table for information on non-fatal SFC errors.)  |
| I/O verify error                  | Unit has been removed making I/O table incorrect.                                                                                    | A40209  | 00E7                                                        | Check the I/O table from the CVSS/SSS and either connect Dummy I/O Units or correct the I/O table. |
| CPU Bus Unit error                | A parity error has occurred in the transfer of data between the CPU Unit and a CPU Bus Unit or in the CPU Bus Link.                  | A40207  | 0200 to 0215<br>or 0231 <sup>1</sup>                        | Check the errant Unit.                                                                             |
| SYSMAC BUS/2 error                | An error has occurred between a Master and Slave Rack.                                                                               | A40206  | 00B0 to 00B3<br>(Masters<br>#0 to #3.) <sup>2</sup>         | Verify that the Slave Rack is operating properly, and check the transmission line.                 |
| SYSMAC BUS error                  | An error has occurred between a Master and Slave Rack.                                                                               | A40205  | 00A0 to 00A7<br>(Masters<br>#0 to #7.) <sup>3</sup>         | Verify that the Slave Rack is operating properly, and check the transmission line.                 |

PC Errors Section 5-4

| Programming Console error message | Probable cause                                                                    | Flag(s) | Error code<br>(A400)                 | Possible remedy                                      |
|-----------------------------------|-----------------------------------------------------------------------------------|---------|--------------------------------------|------------------------------------------------------|
| Battery error                     | CPU Unit or Memory Card backup battery is missing or its voltage has dropped.     | A40204  | 00F7                                 | Check battery and replace if necessary. <sup>4</sup> |
| CPU SIO set error                 | The registered CPU Bus Unit number doesn't agree with the registered unit number. | A40203  | 0400 to 0415<br>or 0431 <sup>5</sup> | Check the errant Unit.                               |
| PWR off                           | A momentary power interruption can be set as an non-fatal error in the PC Setup.  | A40202  | 0002                                 | Check the power supply voltage and lines.            |

#### Note

- Error codes 0200 to 0215 indicate CPU Bus Units #00 to #15, respectively, while 0231 indicates a CPU bus link error. Also, A422 contains the errant Unit's number, and A42315 is turned ON to indicate a CPU bus link error.
- 2. A424 contains the unit number of the Master involved, and A480 to A499 contain the unit number of the Slave involved.
- 3. A425 contains the unit number of the Master involved, and A470 to A477 contain the unit number of the Slave involved.
- 4. A42615 is turned ON to indicate a battery error, and A42614 is turned ON to indicate a Memory Card battery error.
- 5. Error codes 0400 to 0415 indicate CPU Bus Units #00 to #15, respectively, while 0431 indicates a CPU Bus Link error. Also, A427 contains the errant Unit's number.

### 5-4-3 Fatal Operating Errors

The following errors occur after program execution has been started. PC operation and program execution will stop and all outputs from the PC will be turned OFF when any of the following errors occur.

None of the CPU Unit indicators will be lit for the power interruption error, and only the POWER indicator will be lit for the Expansion Rack power interruption error. The POWER and WDT indicators will be lit for the CPU Unit error. For all other fatal operating errors, the POWER and ERROR indicators will be lit. The RUN output will be OFF.

| Programming Console error message | Probable Cause                                                                                                          | Flag(s) | Error code<br>(A400) | Possible remedy                                                                                                                                                                                        |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (No message is displayed)         | A power interruption longer than the momentary power interruption time has occurred.                                    | None    | None                 | Check power supply voltage and power lines. Try to power-up again.                                                                                                                                     |
| Expans Rack OFF                   | A power interruption to an Expansion Rack has occurred.                                                                 | None    | None                 | Turn on the power supply to the Expansion CPU and Expansion I/O Racks.                                                                                                                                 |
| CPU error                         | Watchdog timer has exceeded maximum setting.                                                                            | None    | 80FF                 | Turn the power OFF and restart.                                                                                                                                                                        |
| Memory error                      | An error has occurred during check of the PC or EM Unit memory, or program transfer could not be completed at start-up. | A40115  | 80F1                 | Check Memory Card and EM Unit to make sure they are mounted and backed up properly. Perform a Program Check Operation to locate cause of error. If error not correctable, try inputting program again. |

PC Errors Section 5-4

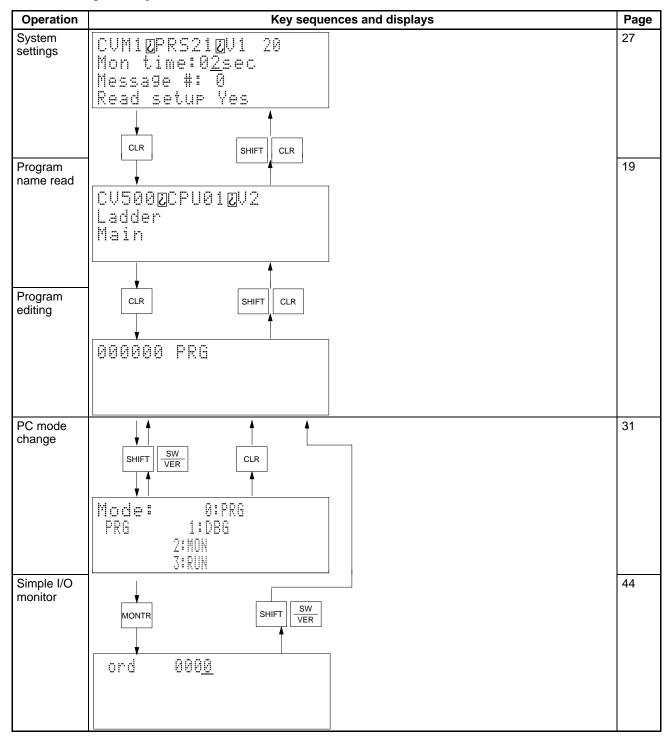
| Programming Console error message | Probable Cause                                                                                                                                                | Flag(s) | Error code<br>(A400)                                        | Possible remedy                                                                                                                                                                                                                          |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O bus error                     | Error has occurred in the bus line between the CPU Unit and I/O Units.                                                                                        | A40114  | 80C0 to 80C7<br>or 80CE or<br>80CF <sup>1</sup>             | Check cable connections between the I/O Units and Racks. Check I/O Units for improper mounting or damage. Verify that terminators are connected, and then clear the error. A404 contains the errant rack/slot number.                    |
| Dup I/O error                     | The same number has been allocated to more than one Expansion Rack, more than one CPU Bus Unit, or one I/O word has been allocated to more than one I/O Unit. | A40113  | 80E9                                                        | After checking the rack numbers, unit numbers, or word allocation, turn the relevant power supply ON, OFF, and ON again, and then clear the error. A409 contains the duplicate rack number, and A410 contains the duplicate unit number. |
| CPU bus error                     | Error has occurred in the bus line between the CPU Unit and CPU Bus Units, or watchdog timer error has occurred with a CPU Bus Unit.                          | A40112  | 8100 to 8115<br>(indicate<br>Units 0 to 15)                 | Check cable connections between<br>the CPU Unit and CPU Bus Units,<br>and then clear the error.<br>A405 contains the errant unit<br>number.                                                                                              |
| Too many I/O                      | Maximum number of I/O points or I/O Units has been exceeded in the I/O Table.                                                                                 | A40111  | 80E1                                                        | Check the number of points with I/O Table Read. If necessary, reduce number of Units in the system to keep within maximum number of I/O points and register the I/O table again. <sup>2</sup>                                            |
| I/O set error                     | Input and output word designations registered in I/O table do no agree with input/output words required by Units actually mounted.                            | A40110  | 80E0                                                        | Check the I/O table with I/O Table Verification operation and check all Units to see that they are in correct configuration. When the system has been confirmed, register the I/O table again.                                           |
| Program error                     | END(001) is not written anywhere in program or the program exceeds memory capacity.                                                                           | A40109  | 80F0                                                        | Correct the program and then clear the error.                                                                                                                                                                                            |
| Cycle time over                   | The cycle time has exceeded the maximum cycle time set in the PC Setup.                                                                                       | A40108  | 809F                                                        | Change the program or the maximum cycle time. <sup>3</sup>                                                                                                                                                                               |
| SFC stop error                    | The program contains an error in SFC syntax.                                                                                                                  | A40107  | 80F3                                                        | Correct the program and then clear the error. (Refer to the next table for information on SFC fatal errors.)                                                                                                                             |
| System FALS                       | FALS has been executed<br>by the program. Check<br>the FAL number to<br>determine conditions that<br>would cause execution.                                   | A40106  | C101 to C2FF<br>correspond to<br>FAL numbers<br>001 to 511. | Correct according to cause indicated by FAL number.                                                                                                                                                                                      |

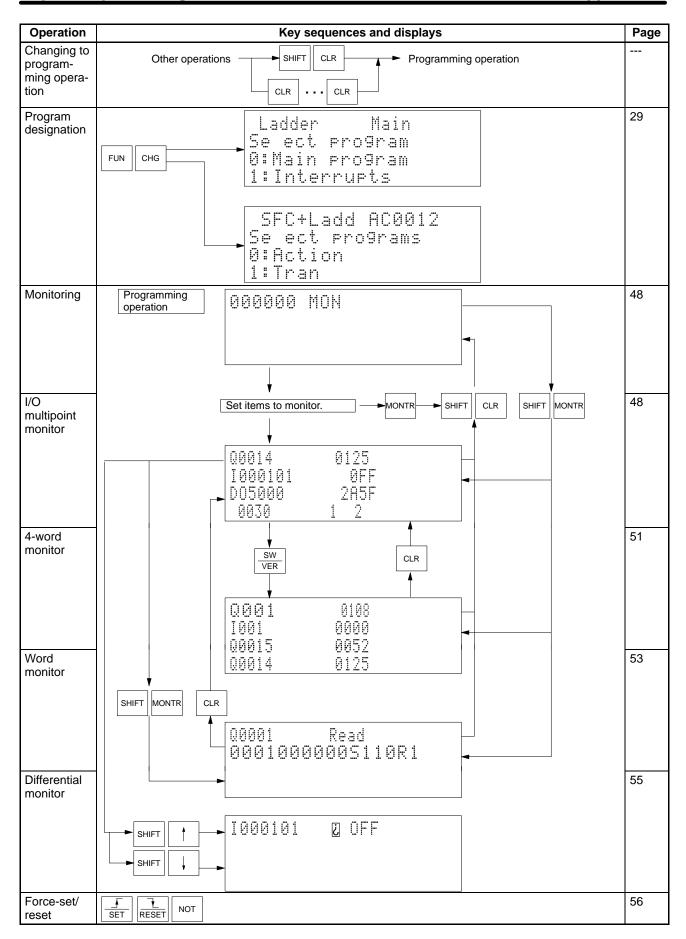
#### Note

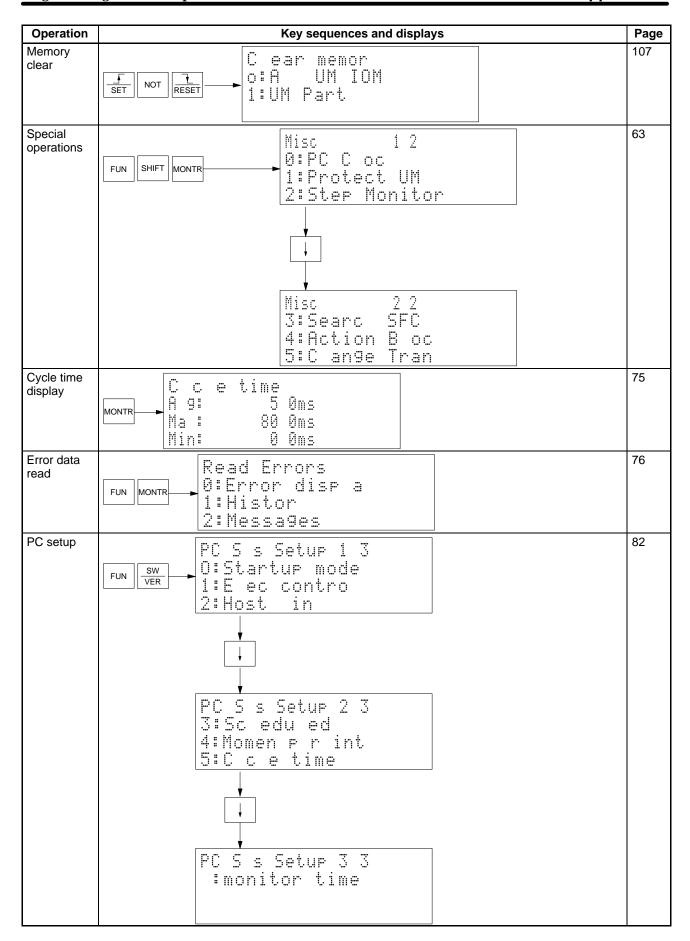
- 1. Error codes 80C0 to 80C7 indicate Rack numbers 0 to 7, respectively. Error codes 80CE and 80CF indicate that the terminator is missing in operating system 0 and 1, respectively.
- The total number of I/O words allocated to the CPU, CPU Expansion, and Expansion I/O Racks is contained in A407. A408 contains the total number of I/O words allocated to the SYSMAC BUS/2 System, and A478 contains the total number of I/O words allocated to the SYSMAC BUS System.
- 3. The maximum cycle time since start-up is contained in A462 and 463, and the present cycle time is contained in A464 and 465.

# Appendix A Standard Models

| Name                          | Specifications                                                                                                                                  | Model number  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| CV-series Programming Console | ramming Console Connectable to CV-series CPU Unit, CVM1 CPU Unit, CVM1D Duplex Unit, I/O Interface Unit, or SYSMAC BUS/2 Remote I/O Slave Unit. |               |
|                               | Connecting Cable sold separately (see below).                                                                                                   |               |
| Memory Cassette               | Installed in the CVM1-PRS21-EV1 Programming Console.                                                                                            | CVM1-MP201-V1 |
| Connecting Cable              | 2 m                                                                                                                                             | CV500-CN224   |
|                               | 4 m                                                                                                                                             | CV500-CN424   |
|                               | 6 m                                                                                                                                             | CV500-CN624   |


# Appendix B Specifications


| ltem                          | Specification                                                     |
|-------------------------------|-------------------------------------------------------------------|
| Power supply                  | 300 mA max. at 5 VDC +5%/–10% (supplied from the connecting Unit) |
| Ambient operating temperature | 0 to 55°C                                                         |
| Ambient operating humidity    | 10% to 90% with no condensation                                   |
| Ambient operating environment | Must be free of corrosive gas.                                    |
| Ambient storage temperature   | −20 to 75°C                                                       |
| Display                       | Semitransparent LCD with LED illumination                         |
|                               | 16 characters x 4 lines, 5 x 7 dots/character                     |
| Weight                        | 370 g                                                             |
| Dimensions                    | 96 x 192 x 48.5 mm (W x H x D)                                    |

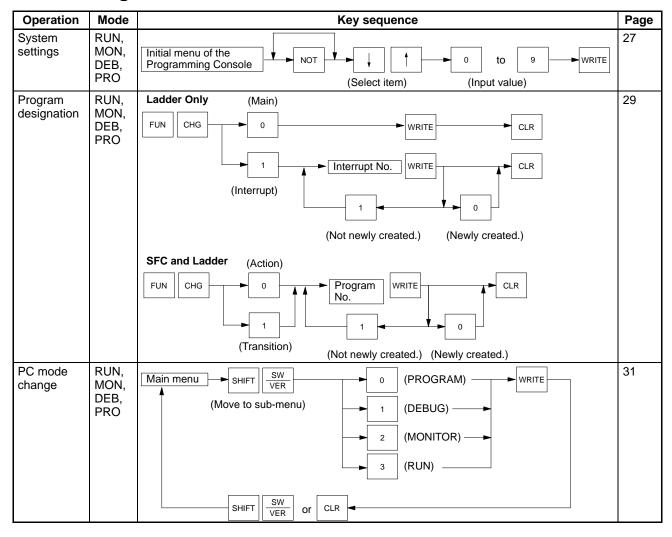

# **Appendix C Programming Console Operations**

Press the CLEAR Key and return to the initial menu before continue operating.

# **Main Key Sequence**





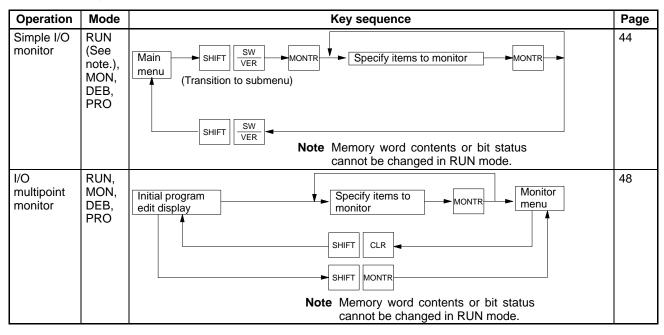


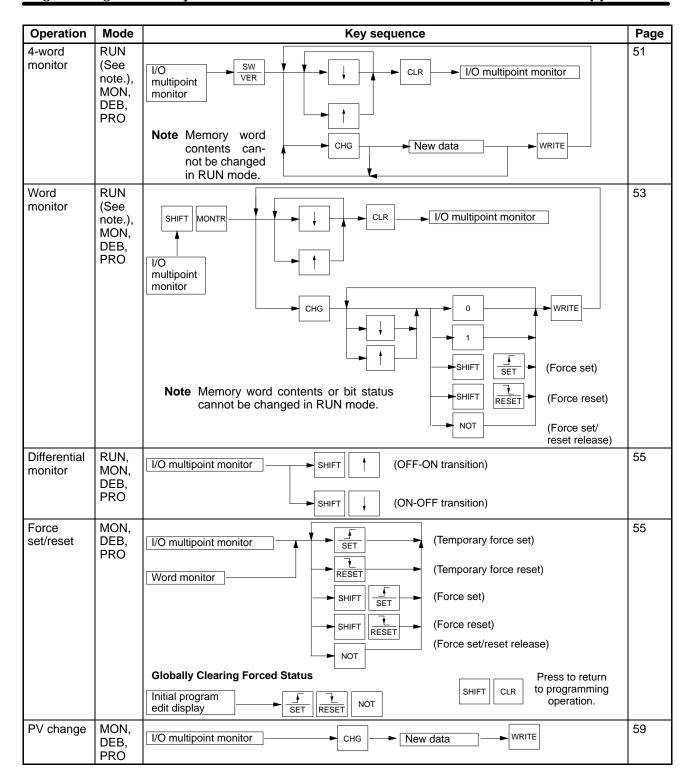

| Operation                    | Key sequences and displays                                          |     |  |
|------------------------------|---------------------------------------------------------------------|-----|--|
| Memory<br>card<br>operations | FUN SHIFT CONT # Memor Card Oper 0: Tran 1: Comp 2: Format 3: Erase | 92  |  |
| I/O table operations         | FUN SHIFT CH *DM I C C C C C C C C C C C C C C C C C C              | 102 |  |

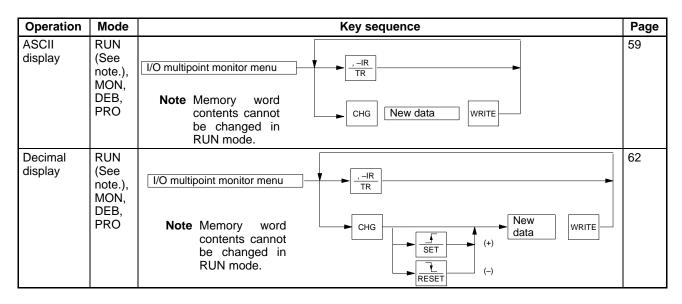
# **Key Sequences**


All basic key sequences here beginning with the initial menu omits the CLEAR Key input.

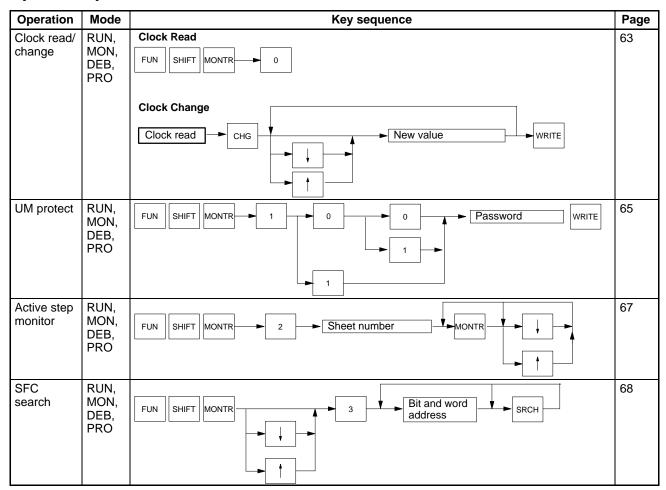
## **Initial Settings**

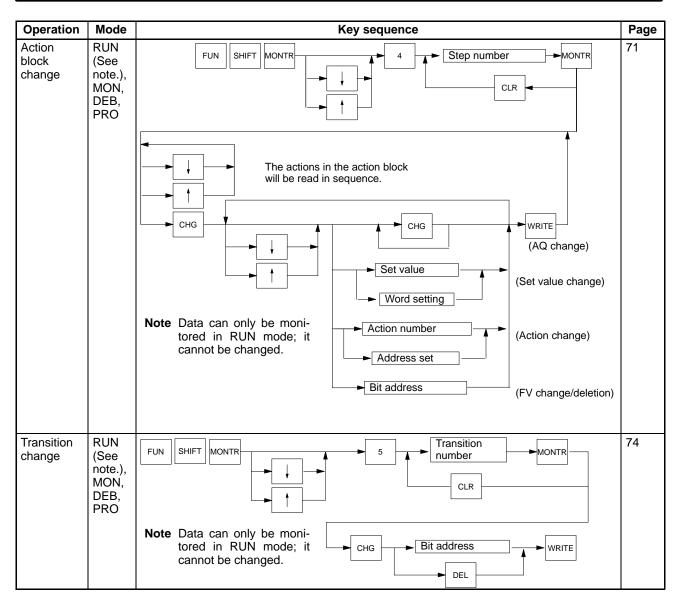




# **Program Editing**

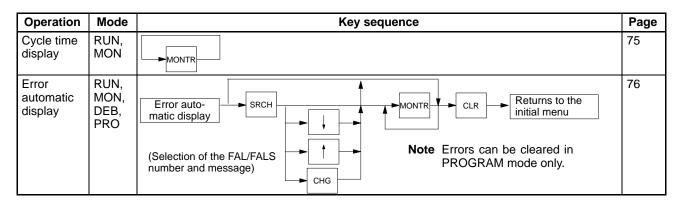

| Operation          | Mode                        | Key sequence                 | Page |
|--------------------|-----------------------------|------------------------------|------|
| Address<br>set     | RUN,<br>MON,<br>DEB,<br>PRO | Input address                | 32   |
| Program<br>read    | RUN,<br>MON,<br>DEB,<br>PRO | Address set                  | 33   |
| Instruction search | RUN,<br>MON,<br>DEB,<br>PRO | Address set Instruction SRCH | 35   |

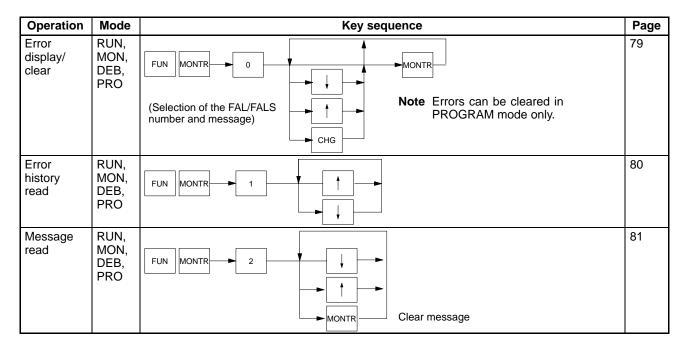



# **Monitoring**

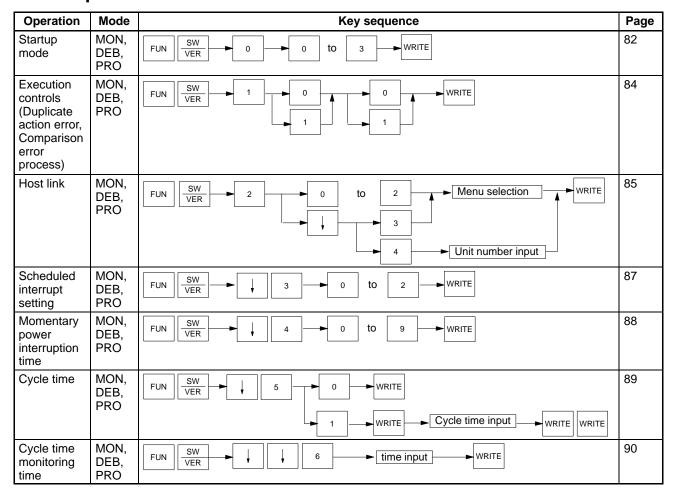




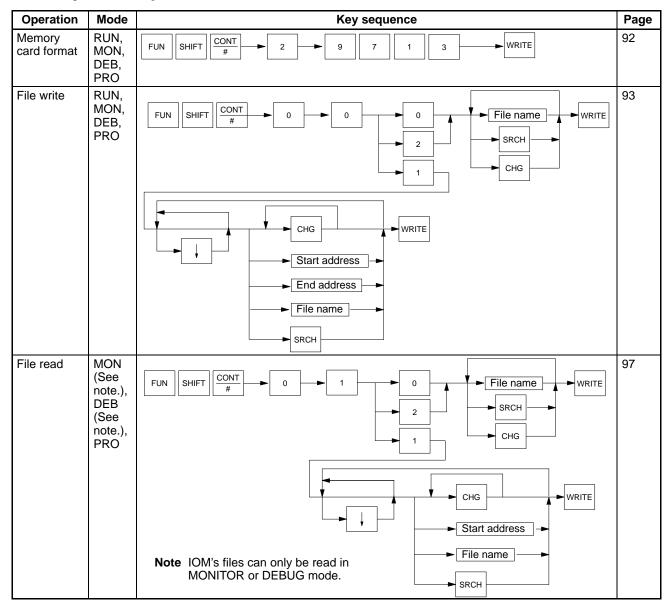



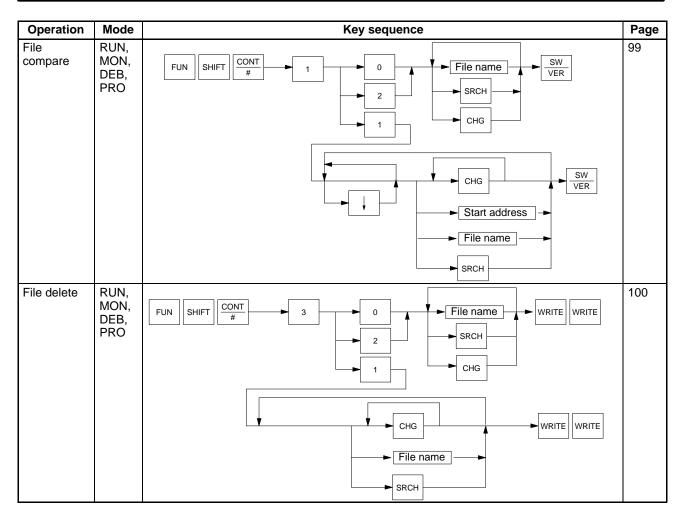


# **Special Operations**



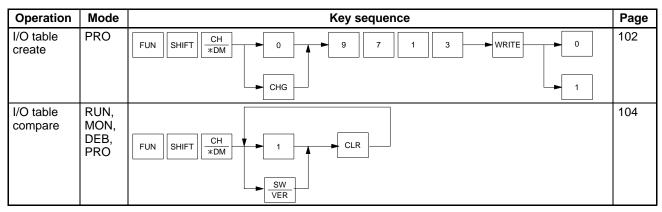



#### **PC Data Read**

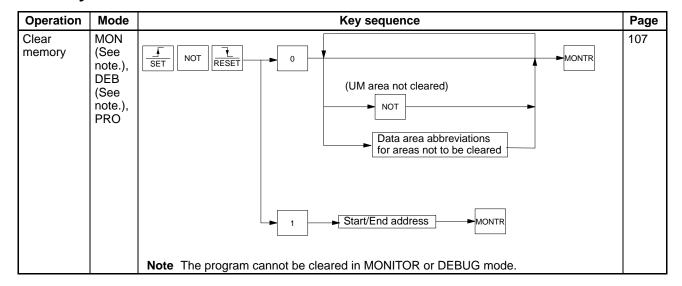


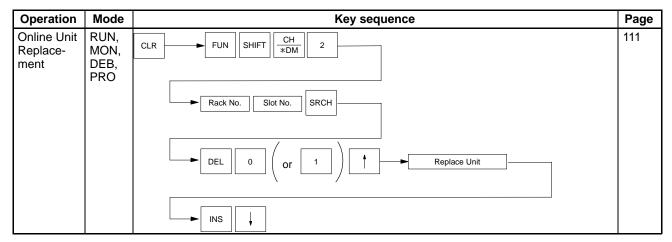

### **PC Setup**




## **Memory Card Operations**







## I/O Table Operations



### **Memory Clear**



## **Online Unit Replacement**



# Appendix D Inputs for Instructions and Operands

The following tables show the key strokes required to input instructions and operands.

### **Instructions**

| Instruction                                                                                 | Keys                                            | Remarks                                            |
|---------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|
| LOAD                                                                                        | LD                                              |                                                    |
| AND                                                                                         | AND                                             |                                                    |
| OR                                                                                          | OR                                              |                                                    |
| LOAD NOT                                                                                    | LD NOT                                          | Displayed as LD N.                                 |
| AND NOT                                                                                     | AND NOT                                         | Displayed as AND N.                                |
| OR NOT                                                                                      | OR NOT                                          | Displayed as OR N.                                 |
| AND LOAD                                                                                    | AND LD                                          |                                                    |
| OR LOAD                                                                                     | OR LD                                           |                                                    |
| NOT                                                                                         | FUN 0 1 0                                       | Cannot be input using the NOT Key.                 |
| Differentiate up instructions                                                               | SHIFT SET                                       | The same keys will toggle the specification.       |
| Differentiate down instructions                                                             | SHIFT RESET                                     |                                                    |
| Immediate refresh instructions                                                              | TEXT !                                          |                                                    |
| OUTPUT                                                                                      | OUT                                             |                                                    |
| OUTPUT NOT                                                                                  | OUT NOT                                         | Displayed as OUT N.                                |
| TIMER                                                                                       | ТІМ                                             |                                                    |
| COUNTER                                                                                     | CNT                                             |                                                    |
| SHIFT REGISTER (SFT(050))                                                                   | SFT                                             | Can also be input via function code 050.           |
| Special instructions with function codes (see next line for block programming instructions) | Fun 0 to 9  Three digits of function code       | All leading zeros in function codes must be input. |
| Block programming instructions                                                              | SHIFT FUN 0 to 9  Three digits of function code | All leading zeros in function codes must be input. |

## **Operands**

Data area abbreviations set in custom operations from the CVSS/SSS or other Programming Devices are not displayed and cannot be used from the Programming Console. Custom data areas and abbreviations for them, however, can be used (as can the default addresses). Press the Shift+Text Keys before inputting custom data area abbreviations and then press the Clear Key before inputting an address.

| Item                                 | Bit/Flag addresses        | Word addresses          | Display                   | Remarks                                                                                                                                        |
|--------------------------------------|---------------------------|-------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Specifying bit/word input            | SHIFT CONT#               | SHIFT CH *DM            |                           |                                                                                                                                                |
| Custom data area address             | SHIFT TEXT   Abbreviation | SHIFT TEXT Abbreviation |                           |                                                                                                                                                |
|                                      | CLR Bit address           | CLR Word address        |                           |                                                                                                                                                |
| CIO Area                             | Bit address               | Word address            | I (inputs)<br>Q (outputs) | I/O classification is<br>displayed after I/O table is<br>created.                                                                              |
| CPU Bus Link<br>Area                 | EM Bit address            | EM Word address         | G                         |                                                                                                                                                |
| Auxiliary Area                       | *EM Bit address           | *EM Word address        | А                         |                                                                                                                                                |
| TR Area                              | Rit address               |                         |                           |                                                                                                                                                |
| Timer Area                           | TIM Timer number          | Timer number            | Т                         | Indicate the Completion Flag and the PV.                                                                                                       |
| Counter Area                         | CNT Counter number        | CNT Counter number      | С                         | Indicate the Completion Flag and the PV.                                                                                                       |
| Constant                             |                           | CONT # Value            | #                         | Press the Number (#) Key to switch from word input to constant input. A to F can be input by pressing the SHIFT together with the 0 to 5 Keys. |
| DM Area, direct address              |                           | DM address              | D                         |                                                                                                                                                |
| DM Area, indirect address            |                           | CH DM address           | *D                        | * is not displayed when monitoring.                                                                                                            |
| EM Area, direct address              |                           | SHIFT EM EM address     | E                         |                                                                                                                                                |
| EM Area, indirect address            |                           | SHIFT *EM Address       | *E                        | * is not displayed when monitoring.                                                                                                            |
| Data registers                       |                           | SHIFT DR DR address     | DR                        |                                                                                                                                                |
| Index registers (IR), direct address |                           | DR IR address           | IR                        |                                                                                                                                                |
| IR, indirect address                 |                           | , IR+<br>, IR address   | ,IR                       |                                                                                                                                                |
| IR, constant offset                  |                           | IR address  IR offset   | +,IR<br>-,IR              |                                                                                                                                                |
|                                      |                           | (- offset) (+ offset)   |                           |                                                                                                                                                |
| IR, data register offset             |                           | IR address              | DR ,IR                    |                                                                                                                                                |
|                                      |                           | SHIFT R DR address      |                           |                                                                                                                                                |

| Item               | Bit/Flag addresses         | Word addresses               | Display | Remarks |
|--------------------|----------------------------|------------------------------|---------|---------|
| IR, auto-increment |                            | SHIFT , IR IR address        | ,IR+    |         |
|                    |                            | SHIFT , IR SHIFT , IR        | ,IR++   |         |
|                    |                            | IR address                   |         |         |
| IR, auto-decrement |                            | SHIFT .IR address            | ,–IR    |         |
|                    |                            | SHIFT -, -IR SHIFT -, -IR TR | ,—IR    |         |
|                    |                            | IR address                   |         |         |
| Step               | Step number                |                              | ST      |         |
| Transition         | SHIFT TN Transition number |                              | TN      |         |
| Action             | SHIFT AC Action number     |                              | AC      |         |

# Appendix E Alphabetic List of Instructions by Function Code

# **Sequence Control, Error Handling, and Step Control Instructions**

| Code | Mnemonic | Name            |
|------|----------|-----------------|
| 000  | NOP      | NO OPERATION    |
| 001  | END      | END             |
| 002  | IL       | INTERLOCK       |
| 003  | ILC      | INTERLOCK CLEAR |
| 004  | JMP      | JUMP            |
| 005  | JME      | JUMP END        |
| 006  | FAL(↑)   | FAILURE ALARM   |
| 007  | FALS     | FAILURE ALARM   |
| 800  | STEP     | STEP DEFINE     |
| 009  | SNXT     | STEP START      |

#### Sequence I/O Instructions

| Code | Mnemonic  | Name               |
|------|-----------|--------------------|
| 010  | NOT       | NOT                |
| 011  | KEEP(!)   | KEEP               |
| 012  | CNTR      | REVERSIBLE COUNTER |
| 013  | DIFU(!)   | DIFFERENTIATE UP   |
| 014  | DIFD(!)   | DIFFERENTIATE DOWN |
| 015  | TIMH      | HIGH-SPEED TIMER   |
| 016  | SET(!↑↓)  | SET                |
| 017  | RSET(!↑↓) | RSET               |
| 018  | UP*       | CONDITION ON       |
| 019  | DOWN*     | CONDITION OFF      |

#### **Data Compare Instructions**

| Code | Mnemonic | Name                         |
|------|----------|------------------------------|
| 020  | CMP(!↑)  | COMPARE                      |
| 021  | CMPL     | DOUBLE COMPARE               |
| 022  | BCMP(↑)  | BLOCK COMPARE                |
| 023  | TCMP(↑)  | TABLE COMPARE                |
| 024  | MCMP(↑)  | MULTIPLE COMPARE             |
| 025  | EQU(↑)   | EQUAL                        |
| 026  | CPS(!)*  | SIGNED BINARY<br>COMPARE     |
| 027  | CPSL*    | DOUBLE SIGNED BINARY COMPARE |
| 028  | CMP(!)*  | UNSIGNED COMPARE             |
| 029  | CMPL*    | DOUBLE UNSIGNED COMPARE      |

#### **Data Move and Sequence Output Instructions**

| Code | Mnemonic | Name                        |
|------|----------|-----------------------------|
| 030  | MOV(!↑)  | MOVE                        |
| 031  | MVN(↑)   | MOVE NOT                    |
| 032  | MOVL(↑)  | DOUBLE MOVE                 |
| 033  | MVNL(↑)  | DOUBLE MOVE NOT             |
| 034  | XCHG(↑)  | DATA EXCHANGE               |
| 035  | XCGL(↑)  | DOUBLE DATA EXCHANGE        |
| 036  | MOVR(↑)  | MOVE TO REGISTER            |
| 037  | MOVQ     | MOVE QUICK                  |
| 038  | XFRB(↑)* | MULTIPLE BIT TRANSFER       |
| 040  | XFER(↑)  | BLOCK TRANSFER              |
| 041  | BSET(↑)  | BLOCK SET                   |
| 042  | MOVB(↑)  | MOVE BIT                    |
| 043  | MOVD(↑)  | MOVE DIGIT                  |
| 044  | DIST(↑)  | SINGLE WORD<br>DISTRIBUTE   |
| 045  | COLL(↑)  | DATA COLLECT                |
| 046  | BXFR(↑)* | INTERBANK BLOCK<br>TRANSFER |
| 047  | SETA(↑)* | MULTIPLE BIT SET            |
| 048  | RSTA(↑)* | MULTIPLE BIT RESET          |

#### **Data Shift Instructions**

| Code | Mnemonic | Name                         |
|------|----------|------------------------------|
| 050  | SFT      | SHIFT REGISTER               |
| 051  | SFTR(↑)  | REVERSIBLE SHIFT<br>REGISTER |
| 052  | ASFT(↑)  | ASYNCHRONOUS SHIFT REGISTER  |
| 053  | WSFT(↑)  | WORD SHIFT                   |
| 054  | NSFL*    | SHIFT N-BIT DATA LEFT        |
| 055  | NSFR*    | SHIFT N-BIT DATA RIGHT       |
| 056  | NASL*    | SHIFT N-BITS LEFT            |
| 057  | NASR*    | SHIFT N-BITS RIGHT           |
| 058  | NSLL*    | DOUBLE SHIFT N-BIT LEFT      |
| 059  | NSRL*    | DOUBLE SHIFT N-BIT<br>RIGHT  |
| 060  | ASL(↑)   | ARITHMETIC SHIFT LEFT        |
| 061  | ASR(↑)   | ARITHMETIC SHIFT RIGHT       |
| 062  | ROL(↑)   | ROTATE LEFT                  |
| 063  | ROR(↑)   | ROTATE RIGHT                 |
| 064  | ASLL(↑)  | DOUBLE SHIFT LEFT            |
| 065  | ASRL(↑)  | DOUBLE SHIFT RIGHT           |
| 066  | ROLL(↑)  | DOUBLE ROTATE LEFT           |
| 067  | RORL(↑)  | DOUBLE ROTATE RIGHT          |
| 068  | SLD(↑)   | SHIFT DIGIT LEFT             |
| 069  | SRD(↑)   | SHIFT DIGIT RIGHT            |

#### **BCD Calculation and Carry Instructions**

| Code | Mnemonic | Name                |
|------|----------|---------------------|
| 070  | ADD(↑)   | BCD ADD             |
| 071  | SUB(↑)   | BCD SUBTRACT        |
| 072  | MUL(个)   | BCD MULTIPLY        |
| 073  | DIV(↑)   | BCD DIVIDE          |
| 074  | ADDL(↑)  | DOUBLE BCD ADD      |
| 075  | SUBL(↑)  | DOUBLE BCD SUBTRACT |
| 076  | MULL(个)  | DOUBLE BCD MULTIPLY |
| 077  | DIVL(↑)  | DOUBLE BCD DIVIDE   |
| 078  | STC(↑)   | SET CARRY           |
| 079  | CLC(↑)   | CLEAR CARRY         |

#### **Binary Calculation Instructions**

| Code | Mnemonic | Name                      |
|------|----------|---------------------------|
| 080  | ADB(↑)   | BINARY ADD                |
| 081  | SBB(↑)   | BINARY SUBTRACT           |
| 082  | MLB(↑)   | BINARY MULTIPLY           |
| 083  | DVB(↑)   | BINARY DIVIDE             |
| 084  | ADBL(↑)  | DOUBLE BINARY ADD         |
| 085  | SBBL(↑)  | DOUBLE BINARY<br>SUBTRACT |
| 086  | MLBL(↑)  | DOUBLE BINARY<br>MULTIPLY |
| 087  | DVBL(↑)  | DOUBLE BINARY DIVIDE      |

#### **Increment/Decrement Instructions**

| Code | Mnemonic | Name                       |
|------|----------|----------------------------|
| 090  | INC(↑)   | INCREMENT BCD              |
| 091  | DEC(↑)   | DECREMENT BCD              |
| 092  | INCB(↑)  | INCREMENT BINARY           |
| 093  | DECB(↑)  | DECREMENT BINARY           |
| 094  | INCL(↑)  | DOUBLE INCREMENT BCD       |
| 095  | DECL(↑)  | DOUBLE DECREMENT<br>BCD    |
| 096  | INBL(↑)  | DOUBLE INCREMENT<br>BINARY |
| 097  | DCBL(↑)  | DOUBLE DECREMENT<br>BINARY |

# **Data Format Conversion and Special Calculation Instructions**

| Code | Mnemonic | Name                           |
|------|----------|--------------------------------|
| 100  | BIN(↑)   | BCD-TO-BINARY                  |
| 101  | BCD(↑)   | BINARY-TO-BCD                  |
| 102  | BINL(↑)  | DOUBLE BCD-TO-DOUBLE<br>BINARY |
| 103  | BCDL(↑)  | DOUBLE<br>BINARY-TO-DOUBLE BCD |
| 104  | NEG(↑)   | 2'S COMPLEMENT                 |
| 105  | NEGL(↑)  | DOUBLE 2'S<br>COMPLEMENT       |
| 106  | SIGN(↑)  | SIGN                           |

#### **Basic I/O Unit Instructions**

| Code | Mnemonic | Name              |
|------|----------|-------------------|
| 110  | MLPX(↑)  | 4-TO-16 DECODER   |
| 111  | DMPX(↑)  | 16-TO-4 ENCODER   |
| 112  | SDEC(↑)  | 7-SEGMENT DECODER |
| 113  | ASC(↑)   | ASCII CONVERT     |
| 114  | BCNT(↑)  | BIT COUNTER       |
| 115  | LINE(个)  | COLUMN-TO-LINE    |
| 116  | COLM(↑)  | LINE-TO-COLUMN    |
| 117  | HEX(↑)*  | ASCII-TO-HEX      |

#### **Special Timer and SFC Control Instructions**

| Code | Mnemonic | Name               |
|------|----------|--------------------|
| 120  | TTIM     | ACCUMULATIVE TIMER |
| 121  | TIML     | DOUBLE TIMER       |
| 122  | MTIM     | MULTI-OUTPUT TIMER |
| 123  | TCNT**   | TRANSITION COUNTER |
| 124  | TSR(个)** | READ STEP TIMER    |
| 125  | TSW(个)** | WRITE STEP TIMER   |

#### **Logical Instructions**

| Code | Mnemonic | Name                 |
|------|----------|----------------------|
| 130  | ANDW(↑)  | LOGICAL AND          |
| 131  | ORW(↑)   | LOGICAL OR           |
| 132  | XORW(↑)  | EXCLUSIVE OR         |
| 133  | XNRW(↑)  | EXCLUSIVE NOR        |
| 134  | ANDL(↑)  | DOUBLE LOGICAL AND   |
| 135  | ORWL(个)  | DOUBLE LOGICAL OR    |
| 136  | XORL(↑)  | DOUBLE EXCLUSIVE OR  |
| 137  | XNRL(↑)  | DOUBLE EXCLUSIVE NOR |
| 138  | COM(↑)   | COMPLEMENT           |
| 139  | COML(↑)  | DOUBLE COMPLEMENT    |

#### **Special and Time-related Instructions**

| Code | Mnemonic | Name                          |
|------|----------|-------------------------------|
| 140  | ROOT(↑)  | BCD SQUARE ROOT               |
| 141  | FDIV(↑)  | FLOATING POINT<br>DIVIDE(BCD) |
| 142  | APR(↑)   | ARITHMETIC PROCESS            |
| 143  | SEC(↑)   | HOURS-TO-SECONDS              |
| 144  | HMS(↑)   | SECONDS-TO-HOURS              |
| 145  | CADD(↑)  | CALENDAR ADD                  |
| 146  | CSUB(↑)  | CALENDAR SUBTRACT             |

#### **Subroutine and Interrupt Instructions**

| Code | Mnemonic       | Name              |
|------|----------------|-------------------|
| 150  | SBN            | SUBROUTINE ENTER  |
| 151  | SBS(↑)         | SUBROUTINE CALL   |
| 152  | RET            | SUBROUTINE RETURN |
| 153  | MSKS(↑)**<br>* | INTERRUPT MASK    |
| 154  | CLI(↑)***      | CLEAR INTERRUPT   |
| 155  | MSKR(↑)**      | READ MASK         |
| 156  | MCRO(↑)*       | MACRO             |

#### **Table Data Processing Instructions**

| Code | Mnemonic | Name               |
|------|----------|--------------------|
| 160  | SSET(↑)  | SET STACK          |
| 161  | PUSH(↑)  | PUSH ONTO STACK    |
| 162  | LIFO(↑)  | LAST IN FIRST OUT  |
| 163  | FIFO(↑)  | FIRST IN FIRST OUT |
| 164  | SRCH(↑)  | DATA SEARCH        |
| 165  | MAX(↑)   | FIND MAXIMUM       |
| 166  | MIN(↑)   | FIND MINIMUM       |
| 167  | SUM(个)   | SUM                |

# Debugging, Special, Error Processing and Time-related Instructions

| Code | Mnemonic | Name                       |
|------|----------|----------------------------|
| 170  | TRSM     | TRACE MEMORY               |
| 171  | EMBC(↑)  | SELECT EM BANK             |
| 172  | CCL(↑)   | LOAD FLAGS                 |
| 173  | CCS(↑)   | SAVE FLAGS                 |
| 174  | MARK     | MARK TRACE                 |
| 175  | REGL(↑)  | LOAD REGISTER              |
| 176  | REGS(↑)  | SAVE REGISTER              |
| 177  | FPD*     | FAILURE POINT<br>DETECTION |
| 178  | WDT(↑)*  | MAXIMUM CYCLE TIME EXTEND  |
| 179  | DATE(↑)* | CLOCK COMPENSATION         |

# File Memory, Basic I/O, and Special I/O Instructions

| Code | Mnemonic   | Name                |
|------|------------|---------------------|
| 180  | FILR(个)*** | READ DATA FILE      |
| 181  | FILW(个)*** | WRITE DATA FILE     |
| 182  | FILP(个)*** | READ PROGRAM FILE   |
| 183  | FLSP(个)*** | CHANGE STEP PROGRAM |
| 184  | IORF(↑)    | I/O REFRESH         |
| 187  | IOSP(↑)    | DISABLE ACCESS      |
| 188  | IORS       | ENABLE ACCESS       |
| 189  | IODP(↑)    | I/O DISPLAY         |
| 190  | READ       | I/O READ            |
| 191  | WRIT       | I/O WRITE           |
| 192  | SEND(↑)    | NETWORK SEND        |
| 193  | RECV(↑)    | NETWORK RECEIVE     |
| 194  | CMND(个)    | DELIVER COMMAND     |
| 195  | MSG(↑)     | MESSAGE             |

#### **SFC Control Instructions**

| Code | Mnemonic  | Name              |
|------|-----------|-------------------|
| 202  | TOUT**    | TRANSITION OUTPUT |
| 210  | SA(↑)**   | ACTIVATE STEP     |
| 211  | SP(↑)**   | PAUSE STEP        |
| 212  | SR(↑)**   | RESTART STEP      |
| 213  | SF(↑)**   | END STEP          |
| 214  | SE(个)**   | DEACTIVATE STEP   |
| 215  | SOFF(↑)** | RESET STEP        |

## **Sequence Control and Timer/Counter Reset Instructions**

| Code | Mnemonic | Name                |
|------|----------|---------------------|
| 221  | CJP*     | CONDITIONAL JUMP    |
| 222  | CJPN*    | CONDITIONAL JUMP    |
| 236  | CNR(↑)   | RESET TIMER/COUNTER |

#### **Block Program Instruction()**

| Code | Mnemonic | Name          |
|------|----------|---------------|
| 250  | BPRG*    | BLOCK PROGRAM |

#### **Block Program Instructions < >**

| Code  | Mnemonic   | Name                     |
|-------|------------|--------------------------|
| <001> | BEND*      | BLOCK PROGRAM END        |
| <002> | IF(NOT)*   | CONDITIONAL BRANCH       |
| <003> | ELSE*      | NO CONDITIONAL<br>BRANCH |
| <004> | IEND*      | END OF BRANCH            |
| <005> | WAIT(NOT)* | 1-SCAN WAIT              |
| <006> | EXIT(NOT)* | CONDITIONAL END          |
| <009> | LOOP*      | REPEAT BLOCK             |
| <010> | LEND(NOT)* | REPEAT BLOCK END         |
| <011> | BPPS*      | BLOCK PROGRAM PAUSE      |
| <012> | BPRS*      | BLOCK PROGRAM<br>RESTART |
| <013> | TIMW*      | TIMER WAIT               |
| <014> | CNTW*      | COUNTER WAIT             |
| <015> | TMHW*      | HIGH-SPEED TIMER WAIT    |

#### **Data Shift Instructions**

| Code | Mnemonic | Name                                |
|------|----------|-------------------------------------|
| 260  | RLNC(↑)* | ROTATE LEFT WITHOUT<br>CARRY        |
| 261  | RRNC(↑)* | ROTATE RIGHT WITHOUT CARRY          |
| 262  | RLNL(↑)* | DOUBLE ROTATE LEFT<br>WITHOUT CARRY |
| 263  | RRNL(↑)* | ROTATE LEFT WITHOUT CARRY           |

## Data Control, Special Calculation, and Data Conversion Instructions

| Code | Mnemonic | Name                           |
|------|----------|--------------------------------|
| 270  | PID*     | PID CONTROL                    |
| 271  | LMT(个)*  | LIMIT CONTROL                  |
| 272  | BAND(↑)* | DEAD BAND CONTROL              |
| 273  | ZONE(↑)* | DEAD-ZONE CONTROL              |
| 274  | ROTB(↑)* | BINARY ROOT                    |
| 275  | BINS(↑)* | SIGNED BCD-TO-BINARY           |
| 276  | BCDS(↑)* | SIGNED BINARY-TO-BCD           |
| 277  | BISL(↑)* | DOUBLE SIGNED<br>BCD-TO-BINARY |
| 278  | BDSL(↑)* | DOUBLE SIGNED<br>BINARY-TO-BCD |

#### **Special I/O Instructions**

| Code | Mnemonic | Name             |
|------|----------|------------------|
| 280  | RD2*     | I/O READ 2       |
| 281  | WR2*     | I/O UNIT WRITE 2 |

#### **Data Comparison Instructions**

| Code | Mnemonic                                                | Name                                |
|------|---------------------------------------------------------|-------------------------------------|
| 300  | =*                                                      | EQUAL                               |
| 301  | =L*                                                     | DOUBLE EQUAL                        |
| 302  | =S*                                                     | SIGNED EQUAL                        |
| 303  | =SL*                                                    | DOUBLE SIGNED EQUAL                 |
| 305  | <>*                                                     | NOT EQUAL                           |
| 306  | <>L*                                                    | DOUBLE NOT EQUAL                    |
| 307  | <>S*                                                    | SIGNED NOT EQUAL                    |
| 308  | <>SL*                                                   | DOUBLE SIGNED NOT EQUAL             |
| 310  | <*                                                      | LESS THAN                           |
| 311  | <l*< td=""><td>DOUBLE LESS THAN</td></l*<>              | DOUBLE LESS THAN                    |
| 312  | <s*< td=""><td>SIGNED LESS THAN</td></s*<>              | SIGNED LESS THAN                    |
| 313  | <sl*< td=""><td>DOUBLE SIGNED LESS<br/>THAN</td></sl*<> | DOUBLE SIGNED LESS<br>THAN          |
| 315  | <=*                                                     | LESS THAN OR EQUAL                  |
| 316  | <=L*                                                    | DOUBLE LESS THAN OR EQUAL           |
| 317  | <=S*                                                    | SIGNED LESS THAN OR EQUAL           |
| 318  | <=SL*                                                   | DOUBLE SIGNED LESS<br>THAN OR EQUAL |
| 320  | >*                                                      | GREATER THAN                        |
| 321  | >L*                                                     | DOUBLE GREATER THAN                 |
| 322  | >S*                                                     | SIGNED GREATER THAN                 |
| 323  | >SL*                                                    | DOUBLE SIGNED<br>GREATER THAN       |
| 325  | >=*                                                     | GREATER THAN OR EQUAL               |
| 326  | >=L*                                                    | DOUBLE GREATER THAN OR EQUAL        |
| 327  | >=S*                                                    | SIGNED GREATER THAN<br>OR EQUAL     |

Note Instructions with one asterisk (\*) are supported by the CVM1D and version-2 CVM1 CPU Units only.

Instructions with two asterisks (\*\*) are supported by the CV500, CV1000, and CV2000 only.

Instructions with three asterisks (\*\*\*) are not supported by the CVM1D.

| 328 | >=SL* | DOUBLE SIGNED   |
|-----|-------|-----------------|
|     |       | GREATER THAN OR |
|     |       | EQUAL           |

#### **Bit Tests**

| Code | Mnemonic | Name     |
|------|----------|----------|
| 350  | TST*     | BIT TEST |
| 351  | TSTN*    | BIT TEST |

#### **Symbol Math Instructions**

| Code | Mnemonic     | Name                                              |
|------|--------------|---------------------------------------------------|
|      |              |                                                   |
| 400  | +(↑)*        | SIGNED BINARY ADD<br>WITHOUT CARRY                |
| 401  | +L(↑)*       | DOUBLE SIGNED BINARY<br>ADD WITHOUT CARRY         |
| 402  | +C(↑)*       | SIGNED BINARY ADD<br>WITH CARRY                   |
| 403  | +CL(↑)*      | DOUBLE SIGNED BINARY<br>ADD WITH CARRY            |
| 404  | +B(↑)*       | BCD ADD WITHOUT<br>CARRY                          |
| 405  | +BL(↑)*      | DOUBLE BCD ADD<br>WITHOUT CARRY                   |
| 406  | +BC(↑)*      | BCD ADD WITH CARRY                                |
| 407  | +BCL(↑)*     | DOUBLE BCD ADD WITH<br>CARRY                      |
| 410  | <b>-(↑)*</b> | SIGNED BINARY<br>SUBTRACT WITHOUT<br>CARRY        |
| 411  | -L(↑)*       | DOUBLE SIGNED BINARY<br>SUBTRACT WITHOUT<br>CARRY |
| 412  | -C(↑)*       | SIGNED BINARY<br>SUBTRACT WITH CARRY              |
| 413  | -CL(↑)*      | DOUBLE SIGNED BINARY<br>SUBTRACT WITH CARRY       |
| 414  | -B(↑)*       | BCD SUBTRACT WITHOUT CARRY                        |
| 415  | -BL(↑)*      | DOUBLE BCD SUBTRACT<br>WITHOUT CARRY              |
| 416  | -BC(↑)*      | BCD SUBTRACT WITH CARRY                           |
| 417  | -BCL(↑)*     | DOUBLE BCD SUBTRACT<br>WITH CARRY                 |
| 420  | *(↑)*        | SIGNED BINARY MULTIPLY                            |
| 421  | *L(↑)*       | DOUBLE SIGNED BINARY<br>MULTIPLY                  |
| 422  | *U(↑)*       | UNSIGNED BINARY<br>MULTIPLY                       |
| 423  | *UL(1)*      | DOUBLE UNSIGNED<br>BINARY MULTIPLY                |
| 424  | *B(↑)*       | BCD MULTIPLY                                      |
| 425  | *BL(↑)*      | DOUBLE BCD MULTIPLY                               |
| 430  | /(个)*        | SIGNED BINARY DIVIDE                              |
| 431  | /L(↑)*       | DOUBLE SIGNED BINARY<br>DIVIDE                    |
| 432  | /U(↑)*       | UNSIGNED BINARY DIVIDE                            |
| 433  | /UL(↑)*      | DOUBLE UNSIGNED<br>BINARY DIVIDE                  |
| 434  | /B(↑)*       | BCD DIVIDE                                        |
|      |              | •                                                 |

Note Instructions with one asterisk (\*) are supported by the CVM1D and version-2 CVM1 CPU Units only.

Instructions with two asterisks (\*\*) are supported by the CV500, CV1000, and CV2000 only.

Instructions with three asterisks (\*\*\*) are not supported by the CVM1D.

| 435 | /BL(↑)* | DOUBLE BCD DIVIDE |
|-----|---------|-------------------|

#### **Floating-point Math Instructions**

| o totaling point matri motifications |                 |                            |
|--------------------------------------|-----------------|----------------------------|
| Code                                 | Mnemonic        | Name                       |
| 450                                  | FIX(↑)*         | FLOATING-TO-16-BIT         |
| 451                                  | FIXL(↑)*        | FLOATING-TO-32-BIT         |
| 452                                  | FLT(↑)*         | 16-BIT-TO-FLOATING         |
| 453                                  | FLTL(个)*        | 32-BIT-TO-FLOATING         |
| 454                                  | +F(↑)*          | FLOATING-POINT ADD         |
| 455                                  | _F(↑)*          | FLOATING-POINT<br>SUBTRACT |
| 456                                  | *F( <b>↑</b> )* | FLOATING-POINT<br>MULTIPLY |
| 457                                  | /F(↑)*          | FLOATING-POINT DIVIDE      |
| 458                                  | RAD(个)*         | DEGREES-TO-RADIANS         |
| 459                                  | DEG(个)*         | RADIANS-TO-DEGREES         |
| 460                                  | SIN(↑)*         | SINE                       |
| 461                                  | COS(↑)*         | COSINE                     |
| 462                                  | TAN(↑)*         | TANGENT                    |
| 463                                  | ASIN(↑)*        | SINE-TO-ANGLE              |
| 464                                  | ACOS(↑)*        | COSINE-TO-ANGLE            |
| 465                                  | ATAN(↑)*        | TANGENT-TO-ANGLE           |
| 466                                  | SQRT(↑)*        | SQUARE ROOT                |
| 467                                  | EXP(↑)*         | EXPONENT                   |
| 468                                  | LOG(个)*         | LOGARITHM                  |

# **Appendix F Alphabetic List of Instructions by Mnemonics**

| Mnemonic | Code  | Name                           |
|----------|-------|--------------------------------|
| ACOS(↑)* | 464   | COSINE-TO-ANGLE                |
| ADB(↑)   | 080   | BINARY ADD                     |
| ADBL(↑)  | 084   | DOUBLE BINARY ADD              |
| ADD(↑)   | 070   | BCD ADD                        |
| ADDL(↑)  | 074   | DOUBLE BCD ADD                 |
| ANDL(↑)  | 134   | DOUBLE LOGICAL AND             |
| ANDW(↑)  | 130   | LOGICAL AND                    |
| APR(↑)   | 142   | ARITHMETIC PROCESS             |
| ASC(↑)   | 113   | ASCII CONVERT                  |
| ASFT(↑)  | 052   | ASYNCHRONOUS SHIFT<br>REGISTER |
| ASIN(↑)* | 463   | SINE-TO-ANGLE                  |
| ASL(↑)   | 060   | ARITHMETIC SHIFT LEFT          |
| ASLL(↑)  | 064   | DOUBLE SHIFT LEFT              |
| ASR(↑)   | 061   | ARITHMETIC SHIFT RIGHT         |
| ASRL(↑)  | 065   | DOUBLE SHIFT RIGHT             |
| ATAN(↑)* | 465   | TANGENT-TO-ANGLE               |
| BAND(↑)* | 272   | DEAD BAND CONTROL              |
| BCD(↑)   | 101   | BINARY-TO-BCD                  |
| BCDL(↑)  | 103   | DOUBLE BINARY-TO-DOUBLE BCD    |
| BCDS(↑)* | 276   | SIGNED BINARY-TO-BCD           |
| BCMP(↑)  | 022   | BLOCK COMPARE                  |
| BCNT(↑)  | 114   | BIT COUNTER                    |
| BDSL(个)* | 278   | DOUBLE SIGNED<br>BINARY-TO-BCD |
| BEND*    | <001> | BLOCK PROGRAM END              |
| BIN(↑)   | 100   | BCD-TO-BINARY                  |
| BINL(↑)  | 102   | DOUBLE BCD-TO-DOUBLE<br>BINARY |
| BINS(↑)* | 275   | SIGNED BCD-TO-BINARY           |
| BISL(↑)* | 277   | DOUBLE SIGNED<br>BCD-TO-BINARY |
| BPPS*    | <011> | BLOCK PROGRAM PAUSE            |
| BPRG*    | 250   | BLOCK PROGRAM                  |
| BPRS*    | <012> | BLOCK PROGRAM RESTART          |
| BSET(↑)  | 041   | BLOCK SET                      |

| Mnemonic  | Code  | Name                            |
|-----------|-------|---------------------------------|
| BXFR(↑)*  | 046   | INTERBANK BLOCK<br>TRANSFER     |
| CADD(↑)   | 145   | CALENDAR ADD                    |
| CCL(↑)    | 172   | LOAD FLAGS                      |
| CCS(↑)    | 173   | SAVE FLAGS                      |
| CJP*      | 221   | CONDITIONAL JUMP                |
| CJPN*     | 222   | CONDITIONAL JUMP                |
| CLC(↑)    | 079   | CLEAR CARRY                     |
| CLI(个)*** | 154   | CLEAR INTERRUPT                 |
| CMND(↑)   | 194   | DELIVER COMMAND                 |
| CMP(!)    | 020   | COMPARE                         |
| CMP(!)*   | 028   | UNSIGNED COMPARE                |
| CMPL      | 021   | DOUBLE COMPARE                  |
| CMPL*     | 029   | DOUBLE UNSIGNED COMPARE         |
| CNR(↑)    | 236   | RESET TIMER/COUNTER             |
| CNTR      | 012   | REVERSIBLE COUNTER              |
| CNTW*     | <014> | COUNTER WAIT                    |
| COLL(↑)   | 045   | DATA COLLECT                    |
| COLM(个)   | 116   | LINE-TO-COLUMN                  |
| COM(↑)    | 138   | COMPLEMENT                      |
| COML(↑)   | 139   | DOUBLE COMPLEMENT               |
| COS*      | 461   | COSINE                          |
| CPS(!)*   | 026   | SIGNED BINARY COMPARE           |
| CPSL*     | 027   | DOUBLE SIGNED BINARY<br>COMPARE |
| CSUB(↑)   | 146   | CALENDAR SUBTRACT               |
| DATE(↑)*  | 179   | CLOCK COMPENSATION              |
| DCBL(↑)   | 097   | DOUBLE DECREMENT<br>BINARY      |
| DEC(↑)    | 091   | DECREMENT BCD                   |
| DECB(↑)   | 093   | DECREMENT BINARY                |
| DECL(↑)   | 095   | DOUBLE DECREMENT BCD            |
| DEG(↑)*   | 459   | RADIANS-TO-DEGREES              |
| DIFD(!)   | 014   | DIFFERENTIATE DOWN              |
| DIFU(!)   | 013   | DIFFERENTIATE UP                |
| DIST(↑)   | 044   | SINGLE WORD DISTRIBUTE          |
| DIV(↑)    | 073   | BCD DIVIDE                      |
| DIVL(↑)   | 077   | DOUBLE BCD DIVIDE               |

| Mnomonio   | Codo  | Name                          |
|------------|-------|-------------------------------|
| Mnemonic   | Code  |                               |
| DMPX(↑)    | 111   | 16-TO-4/256-8 ENCODER         |
| DOWN*      | 019   | CONDITION OFF                 |
| DVB(↑)     | 083   | BINARY DIVIDE                 |
| DVBL(↑)    | 087   | DOUBLE BINARY DIVIDE          |
| ELSE*      | <003> | NO CONDITIONAL BRANCH         |
| EMBC(↑)    | 171   | SELECT EM BANK                |
| END        | 001   | END                           |
| EQU(↑)     | 025   | EQUAL                         |
| EXIT(NOT)* | <006> | CONDITIONAL END               |
| EXP(↑)*    | 467   | EXPONENT                      |
| FAL(↑)     | 006   | FAILURE ALARM                 |
| FALS(↑)    | 007   | FAILURE ALARM                 |
| FDIV(↑)    | 141   | FLOATING POINT<br>DIVIDE(BCD) |
| FIFO(↑)    | 163   | FIRST IN FIRST OUT            |
| FILP(个)*** | 182   | READ PROGRAM FILE             |
| FILR(个)*** | 180   | READ DATA FILE                |
| FILW(个)*** | 181   | WRITE DATA FILE               |
| FIX(个)*    | 450   | FLOATING-TO-16-BIT            |
| FIXL(↑)*   | 451   | FLOATING-TO-32-BIT            |
| FLSP(个)*** | 183   | CHANGE STEP PROGRAM           |
| FLT(个)*    | 452   | 16-BIT-TO-FLOATING            |
| FLTL(个)*   | 453   | 32-BIT-TO-FLOATING            |
| FPD*       | 177   | FAILURE POINT DETECTION       |
| HEX(个)*    | 117   | ASCII-TO-HEX                  |
| HMS(↑)     | 144   | SECONDS-TO-HOURS              |
| IEND*      | <004> | END OF BRANCH                 |
| IF(NOT)*   | <002> | CONDITIONAL BRANCH            |
| IL         | 002   | INTERLOCK                     |
| ILC        | 003   | INTERLOCK CLEAR               |
| INBL(↑)    | 096   | DOUBLE INCREMENT BINARY       |
| INC(↑)     | 090   | INCREMENT BCD                 |
| INCB(↑)    | 092   | INCREMENT BINARY              |
| INCL(↑)    | 094   | DOUBLE INCREMENT BCD          |
| IODP(↑)    | 189   | I/O DISPLAY                   |
| IORF(↑)    | 184   | I/O REFRESH                   |
| IORS       | 188   | ENABLE ACCESS                 |
| IOSP(↑)    | 187   | DISABLE ACCESS                |
| JME        | 005   | JUMP END                      |
| JMP        | 004   | JUMP                          |
| KEEP(!)    | 011   | KEEP                          |

| Mnemonic   | Code  | Name                     |
|------------|-------|--------------------------|
| LEND(NOT)  | <010> | REPEAT BLOCK END         |
| *          |       |                          |
| LIFO(↑)    | 162   | LAST IN FIRST OUT        |
| LINE(个)    | 115   | COLUMN-TO-LINE           |
| LMT(个)*    | 271   | LIMIT CONTROL            |
| LOG(个)*    | 468   | LOGARITHM                |
| LOOP*      | <009> | REPEAT BLOCK             |
| MARK       | 174   | MARK TRACE               |
| MAX(↑)     | 165   | FIND MAXIMUM             |
| MCMP(↑)    | 024   | MULTIPLE COMPARE         |
| MCRO(↑)*   | 156   | MACRO                    |
| MIN(↑)     | 166   | FIND MINIMUM             |
| MLB(↑)     | 082   | BINARY MULTIPLY          |
| MLBL(↑)    | 086   | DOUBLE BINARY MULTIPLY   |
| MLPX(↑)    | 110   | 4-TO-16/8-TO-256 DECODER |
| MOV(!↑)    | 030   | MOVE                     |
| MOVB(↑)    | 042   | MOVE BIT                 |
| MOVD(↑)    | 043   | MOVE DIGIT               |
| MOVL(↑)    | 032   | DOUBLE MOVE              |
| MOVQ       | 037   | MOVE QUICK               |
| MOVR(↑)    | 036   | MOVE TO REGISTER         |
| MSG(↑)     | 195   | MESSAGE                  |
| MSKR(个)*** | 155   | READ MASK                |
| MSKS(↑)*** | 153   | INTERRUPT MASK           |
| MTIM       | 122   | MULTI-OUTPUT TIMER       |
| MUL(↑)     | 072   | BCD MULTIPLY             |
| MULL(↑)    | 076   | DOUBLE BCD MULTIPLY      |
| MVN(↑)     | 031   | MOVE NOT                 |
| MVNL(个)    | 033   | DOUBLE MOVE NOT          |
| NASL(↑)*   | 056   | SHIFT N-BITS LEFT        |
| NASR(↑)*   | 057   | SHIFT N-BITS RIGHT       |
| NEG(↑)     | 104   | 2'S COMPLEMENT           |
| NEGL(↑)    | 105   | DOUBLE 2'S COMPLEMENT    |
| NOP        | 000   | NO OPERATION             |
| NOT        | 010   | NOT                      |
| NSFL(↑)*   | 054   | SHIFT N-BIT DATA LEFT    |
| NSFR(↑)*   | 055   | SHIFT N-BIT DATA RIGHT   |
| NSLL(↑)*   | 058   | DOUBLE SHIFT N-BIT LEFT  |
| NSRL(↑)*   | 059   | DOUBLE SHIFT N-BIT RIGHT |
| ORW(↑)     | 131   | LOGICAL OR               |
| ORWL(↑)    | 135   | DOUBLE LOGICAL OR        |
| PID*       | 270   | PID CONTROL              |
| PUSH(↑)    | 161   | PUSH ONTO STACK          |

| Manie   RAD(↑)*   458   DEGREES-TO-RADIANS     RD2*   280   I/O READ 2     READ   190   I/O READ     RECV(↑)   193   NETWORK RECEIVE     REGL(↑)   175   LOAD REGISTER     REGS(↑)   176   SAVE REGISTER     RET   152   SUBROUTINE RETURN     RLNC(↑)*   260   ROTATE LEFT WITHOUT CARRY     RUNL(↑)*   262   DOUBLE ROTATE LEFT WITH CARRY     ROL(↑)   062   ROTATE LEFT WITH CARRY     ROL(↑)   066   DOUBLE ROTATE LEFT WITH CARRY     ROOT(↑)   140   BCD SQUARE ROOT     ROR(↑)   063   ROTATE RIGHT WITH CARRY     ROT(↑)   067   DOUBLE ROTATE RIGHT WITH CARRY     ROTB(↑)*   274   BINARY ROOT     RRNC(↑)*   261   ROTATE RIGHT WITHOUT CARRY     RRNL(↑)*   263   ROTATE LEFT WITHOUT CARRY     RSET( ↑↓)   017   RSET     RSTA(↑)*   048   MULTIPLE BIT RESET     SA(↑)**   210   ACTIVATE STEP     SBB(↑)   081   BINARY SUBTRACT     SBBL(↑)   085   DOUBLE BINARY SUBTRACT     SBBL(↑)   085   DOUBLE BINARY SUBTRACT     SBS(↑)   151   SUBROUTINE ENTER     SBS(↑)   151   SUBROUTINE CALL     SDEC(↑)   112   7-SEGMENT DECODER     SE(↑)**   214   DEACTIVATE STEP     SEC(↑)   143   HOURS-TO-SECONDS     SEND(↑)   192   NETWORK SEND     SET( ↑↓)   016   SET     SET( ↑↓)   016   SET     SET(↑)**   213   END STEP     SFT   050   SHIFT REGISTER     SFT(↑)**   213   END STEP     SFT(↑)**   214   REGISTER     SFT(↑)**   215   RESET STEP     SP(↑)***   216   SIGN     SIN(↑)**   460   SINE     SIGN(↑)   106   SIGN     SIN(↑)*   460   SINE     SUD(↑)**   215   RESET STEP     SP(↑)***   215   RESET STEP     SP(↑)***   211   PAUSE STEP | Mnomonio  | Codo | Nome                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|-------------------------|
| RD2*         280         I/O READ 2           READ         190         I/O READ           RECV(↑)         193         NETWORK RECEIVE           REGL(↑)         175         LOAD REGISTER           REGS(↑)         176         SAVE REGISTER           RET         152         SUBROUTINE RETURN           RLNC(↑)*         260         ROTATE LEFT WITHOUT CARRY           RLNL(↑)*         262         DOUBLE ROTATE LEFT WITH CARRY           ROL(↑)         062         ROTATE LEFT WITH CARRY           ROL(↑)         066         DOUBLE ROTATE LEFT WITH CARRY           ROOT(↑)         140         BCD SQUARE ROOT           ROR(↑)         063         ROTATE RIGHT WITH CARRY           ROR(↑)         067         DOUBLE ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE LEFT WITHOUT CARRY           ROTATE LEFT WITHOUT CARRY         ROTATE LEFT WITHOUT CARRY           RSET(↑)*         261         ROTATE LEFT WITHOUT CARRY           RSET(↑)*         263         ROTATE LEFT WITHOUT CARRY           ROTATE RIGHT WITH CARRY         ROTATE RIGHT WITH CARRY           ROTATE RIGHT WITH CARRY         ROTATE RIGHT WITH CARRY           ROTATE RIGHT WITH CARRY         ROTATE RIGHT WITH CARRY                                                                                                                                                                                                                                                                                                                         | Mnemonic  | Code | Name                    |
| READ 190 I/O READ  RECV(↑) 193 NETWORK RECEIVE  REGL(↑) 175 LOAD REGISTER  REGS(↑) 176 SAVE REGISTER  RET 152 SUBROUTINE RETURN  RLNC(↑)* 260 ROTATE LEFT WITHOUT CARRY  RLNL(↑)* 262 DOUBLE ROTATE LEFT WITH CARRY  ROL(↑) 062 ROTATE LEFT WITH CARRY  ROL(↑) 066 DOUBLE ROTATE LEFT WITH CARRY  ROOT(↑) 140 BCD SQUARE ROOT  ROR(↑) 063 ROTATE RIGHT WITH CARRY  ROTB(↑) 067 DOUBLE ROTATE RIGHT WITH CARRY  ROTB(↑)* 274 BINARY ROOT  RRNC(↑)* 261 ROTATE RIGHT WITHOUT CARRY  ROTB(↑)* 263 ROTATE LEFT WITHOUT CARRY  RSET(!↑↓) 017 RSET  RSTA(↑)* 048 MULTIPLE BIT RESET  SA(↑)** 210 ACTIVATE STEP  SBB(↑) 081 BINARY SUBTRACT  SBBL(↑) 085 DOUBLE BINARY SUBTRACT  SBBL(↑) 151 SUBROUTINE ENTER  SBS(↑) 151 SUBROUTINE ENTER  SBS(↑) 151 SUBROUTINE CALL  SDEC(↑) 112 7-SEGMENT DECODER  SE(↑)** 214 DEACTIVATE STEP  SEC(↑) 143 HOURS-TO-SECONDS  SEND(↑) 192 NETWORK SEND  SET(!↑↓) 016 SET  SETA(↑)** 213 END STEP  SFT 050 SHIFT REGISTER  SFTR(↑) 051 REVERSIBLE SHIFT REGISTER  SIGN(↑) 106 SIGN  SIN(↑)* 460 SINE  SLD(↑) 068 SHIFT DIGIT LEFT  SNXT 009 STEP START  SOFF(↑)*** 215 RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ,       |      |                         |
| RECV(↑)         193         NETWORK RECEIVE           REGL(↑)         175         LOAD REGISTER           REGS(↑)         176         SAVE REGISTER           RET         152         SUBROUTINE RETURN           RLNC(↑)*         260         ROTATE LEFT WITHOUT CARRY           RLNL(↑)*         262         DOUBLE ROTATE LEFT WITH CARRY           ROL(↑)         062         ROTATE LEFT WITH CARRY           ROL(↑)         066         DOUBLE ROTATE LEFT WITH CARRY           ROOT(↑)         140         BCD SQUARE ROOT           ROR(↑)         063         ROTATE RIGHT WITH CARRY           ROR(↑)         067         DOUBLE ROTATE RIGHT WITH CARRY           ROTGERY         ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITHOUT CARRY           RRNC(↑)*         261         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         263         ROTATE LEFT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITH                                                                                                                                                                                                                                                                                                        |           |      |                         |
| REGL(↑)         175         LOAD REGISTER           REGS(↑)         176         SAVE REGISTER           RET         152         SUBROUTINE RETURN           RLNC(↑)*         260         ROTATE LEFT WITHOUT CARRY           RLNL(↑)*         262         DOUBLE ROTATE LEFT WITH CARRY           ROL(↑)         062         ROTATE LEFT WITH CARRY           ROL(↑)         066         DOUBLE ROTATE LEFT WITH CARRY           ROOT(↑)         140         BCD SQUARE ROOT           ROR(↑)         063         ROTATE RIGHT WITH CARRY           RORL(↑)         067         DOUBLE ROTATE RIGHT WITHOUT CARRY           ROTB(↑)*         261         ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         263         ROTATE LEFT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         R                                                                                                                                                                                                                                                                                                                 |           |      |                         |
| REGS(↑) 176 SAVE REGISTER  RET 152 SUBROUTINE RETURN  RLNC(↑)* 260 ROTATE LEFT WITHOUT CARRY  RLNL(↑)* 262 DOUBLE ROTATE LEFT WITHOUT CARRY  ROL(↑) 062 ROTATE LEFT WITH CARRY  ROL(↑) 066 DOUBLE ROTATE LEFT WITH CARRY  ROOT(↑) 140 BCD SQUARE ROOT  ROR(↑) 063 ROTATE RIGHT WITH CARRY  RORL(↑) 067 DOUBLE ROTATE RIGHT WITH CARRY  ROTB(↑)* 274 BINARY ROOT  RRNC(↑)* 261 ROTATE RIGHT WITHOUT CARRY  RRNL(↑)* 263 ROTATE RIGHT WITHOUT CARRY  RSET(!↑↓) 017 RSET  RSTA(↑)* 048 MULTIPLE BIT RESET  SA(↑)** 210 ACTIVATE STEP  SBB(↑) 081 BINARY SUBTRACT  SBN 150 SUBROUTINE ENTER  SBS(↑) 151 SUBROUTINE CALL  SDEC(↑) 112 7-SEGMENT DECODER  SE(↑)** 214 DEACTIVATE STEP  SEC(↑) 143 HOURS-TO-SECONDS  SEND(↑) 192 NETWORK SEND  SET(!↑↓) 016 SET  SETA(↑)** 047 MULTIPLE BIT SET  SF(↑)** 213 END STEP  SFT 050 SHIFT REGISTER  SFT(↑)** 213 END STEP  SFT 050 SHIFT REGISTER  SFTR(↑) 051 REVERSIBLE SHIFT REGISTER  SIGN(↑) 106 SIGN  SIN(↑)* 460 SINE  SLD(↑) 068 SHIFT DIGIT LEFT  SNXT 009 STEP START  SOFF(↑)** 215 RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      | NETWORK RECEIVE         |
| RET         152         SUBROUTINE RETURN           RLNC(↑)*         260         ROTATE LEFT WITHOUT CARRY           RLNL(↑)*         262         DOUBLE ROTATE LEFT WITH CARRY           ROL(↑)         062         ROTATE LEFT WITH CARRY           ROL(↑)         066         DOUBLE ROTATE LEFT WITH CARRY           ROOT(↑)         140         BCD SQUARE ROOT           ROR(↑)         063         ROTATE RIGHT WITH CARRY           RORL(↑)         067         DOUBLE ROTATE RIGHT WITHOUT CARRY           ROTATE RIGHT WITHOUT CARRY         ROTATE RIGHT WITHOUT CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         248         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBN (↑)         085         DOUBLE BINARY SUBTRACT           SBN (↑)         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS                                                                                                                                                                                                                                                                                                                                                               | ` ′       | 175  | LOAD REGISTER           |
| RLNC(↑)* 260 ROTATE LEFT WITHOUT CARRY  RLNL(↑)* 262 DOUBLE ROTATE LEFT WITHOUT CARRY  ROL(↑) 062 ROTATE LEFT WITH CARRY  ROL(↑) 066 DOUBLE ROTATE LEFT WITH CARRY  ROOT(↑) 140 BCD SQUARE ROOT  ROR(↑) 063 ROTATE RIGHT WITH CARRY  RORL(↑) 067 DOUBLE ROTATE RIGHT WITH CARRY  ROTB(↑)* 274 BINARY ROOT  RRNC(↑)* 261 ROTATE RIGHT WITHOUT CARRY  RRNL(↑)* 263 ROTATE RIGHT WITHOUT CARRY  RSET(!↑↓) 017 RSET  RSTA(↑)* 048 MULTIPLE BIT RESET  SA(↑)** 210 ACTIVATE STEP  SBB(↑) 081 BINARY SUBTRACT  SBN 150 SUBROUTINE ENTER  SBS(↑) 151 SUBROUTINE CALL  SDEC(↑) 112 7-SEGMENT DECODER  SE(↑)** 214 DEACTIVATE STEP  SEC(↑) 143 HOURS-TO-SECONDS  SEND(↑) 192 NETWORK SEND  SET(!↑↓) 016 SET  SETA(↑)* 047 MULTIPLE BIT SET  SFT(↑)** 213 END STEP  SFT 050 SHIFT REGISTER  SFTR(↑) 051 REVERSIBLE SHIFT REGISTER  SIGN(↑) 106 SIGN  SIN(↑)* 460 SINE  SLD(↑) 068 SHIFT DIGIT LEFT  SNXT 009 STEP START  SOFF(↑)** 215 RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ` '       | 176  | SAVE REGISTER           |
| CARRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RET       | 152  | SUBROUTINE RETURN       |
| WITHOUT CARRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RLNC(↑)*  | 260  |                         |
| ROLL(↑)         066         DOUBLE ROTATE LEFT WITH CARRY           ROOT(↑)         140         BCD SQUARE ROOT           ROR(↑)         063         ROTATE RIGHT WITH CARRY           RORL(↑)         067         DOUBLE ROTATE RIGHT WITH CARRY           ROTB(↑)*         274         BINARY ROOT           RRNC(↑)*         261         ROTATE RIGHT WITHOUT CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)***         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)***         213         END STEP           SFT         050                                                                                                                                                                                                                                                                                                                                                                                                          | RLNL(个)*  | 262  |                         |
| CARRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROL(↑)    | 062  | ROTATE LEFT WITH CARRY  |
| ROR(↑)         063         ROTATE RIGHT WITH CARRY           RORL(↑)         067         DOUBLE ROTATE RIGHT WITH CARRY           ROTB(↑)*         274         BINARY ROOT           RRNC(↑)*         261         ROTATE RIGHT WITHOUT CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBN(↑)         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106                                                                                                                                                                                                                                                                                                                                                                                                              | ROLL(↑)   | 066  |                         |
| RORL(↑)         067         DOUBLE ROTATE RIGHT WITH CARRY           ROTB(↑)*         274         BINARY ROOT           RRNC(↑)*         261         ROTATE RIGHT WITHOUT CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBB(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE                                                                                                                                                                                                                                                                                                                                                                                                                          | ROOT(↑)   | 140  | BCD SQUARE ROOT         |
| WITH CARRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROR(↑)    | 063  | ROTATE RIGHT WITH CARRY |
| RRNC(↑)*         261         ROTATE RIGHT WITHOUT CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBN(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT           REGISTER         SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT<                                                                                                                                                                                                                                                                                                                                                                                                                   | RORL(↑)   | 067  |                         |
| CARRY           RRNL(↑)*         263         ROTATE LEFT WITHOUT CARRY           RSET(!↑↓)         017         RSET           RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBN(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP S                                                                                                                                                                                                                                                                                                                                                                                                                                    | ROTB(↑)*  | 274  | BINARY ROOT             |
| CARRY     RSET(!↑↓)   017   RSET     RSTA(↑)*   048   MULTIPLE BIT RESET     SA(↑)**   210   ACTIVATE STEP     SBB(↑)   081   BINARY SUBTRACT     SBBL(↑)   085   DOUBLE BINARY SUBTRACT     SBN   150   SUBROUTINE ENTER     SBS(↑)   151   SUBROUTINE CALL     SDEC(↑)   112   7-SEGMENT DECODER     SE(↑)**   214   DEACTIVATE STEP     SEC(↑)   143   HOURS-TO-SECONDS     SEND(↑)   192   NETWORK SEND     SET(!↑↓)   016   SET     SETA(↑)*   047   MULTIPLE BIT SET     SFTA(↑)*   047   MULTIPLE BIT SET     SFT   050   SHIFT REGISTER     SFTR(↑)   051   REVERSIBLE SHIFT     REGISTER     SIGN(↑)   106   SIGN     SIN(↑)*   460   SINE     SLD(↑)   068   SHIFT DIGIT LEFT     SNXT   009   STEP START     SOFF(↑)**   215   RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RRNC(↑)*  | 261  |                         |
| RSTA(↑)*         048         MULTIPLE BIT RESET           SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBBL(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RRNL(↑)*  | 263  |                         |
| SA(↑)**         210         ACTIVATE STEP           SBB(↑)         081         BINARY SUBTRACT           SBBL(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RSET(!↑↓) | 017  | RSET                    |
| SBB(↑)         081         BINARY SUBTRACT           SBBL(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SET(!↑↓)         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT           REGISTER         SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSTA(↑)*  | 048  | MULTIPLE BIT RESET      |
| SBBL(↑)         085         DOUBLE BINARY SUBTRACT           SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT           REGISTER         SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SA(↑)**   | 210  | ACTIVATE STEP           |
| SBN         150         SUBROUTINE ENTER           SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBB(↑)    | 081  | BINARY SUBTRACT         |
| SBS(↑)         151         SUBROUTINE CALL           SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SBBL(↑)   | 085  | DOUBLE BINARY SUBTRACT  |
| SDEC(↑)         112         7-SEGMENT DECODER           SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT           REGISTER         SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBN       | 150  | SUBROUTINE ENTER        |
| SE(↑)**         214         DEACTIVATE STEP           SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBS(↑)    | 151  | SUBROUTINE CALL         |
| SEC(↑)         143         HOURS-TO-SECONDS           SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SDEC(↑)   | 112  | 7-SEGMENT DECODER       |
| SEND(↑)         192         NETWORK SEND           SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE(↑)**   | 214  | DEACTIVATE STEP         |
| SET(!↑↓)         016         SET           SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SEC(↑)    | 143  | HOURS-TO-SECONDS        |
| SETA(↑)*         047         MULTIPLE BIT SET           SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SEND(↑)   | 192  | NETWORK SEND            |
| SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SET(!↑↓)  | 016  | SET                     |
| SF(↑)**         213         END STEP           SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 047  | MULTIPLE BIT SET        |
| SFT         050         SHIFT REGISTER           SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 213  | END STEP                |
| SFTR(↑)         051         REVERSIBLE SHIFT REGISTER           SIGN(↑)         106         SIGN           SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      | SHIFT REGISTER          |
| SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      | REVERSIBLE SHIFT        |
| SIN(↑)*         460         SINE           SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SIGN(↑)   | 106  | SIGN                    |
| SLD(↑)         068         SHIFT DIGIT LEFT           SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |      |                         |
| SNXT         009         STEP START           SOFF(↑)**         215         RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |                         |
| SOFF(↑)** 215 RESET STEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |      |                         |
| ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |      |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . ,       |      |                         |

| Mnemonic        | Code  | Name                      |
|-----------------|-------|---------------------------|
| SQRT(↑)*        | 466   | SQUARE ROOT               |
| SR(个)**         | 212   | RESTART STEP              |
| SRCH(↑)         | 164   | DATA SEARCH               |
| SRD(↑)          | 069   | SHIFT DIGIT RIGHT         |
| SSET(↑)         | 160   | SET STACK                 |
| STC(↑)          | 078   | SET CARRY                 |
| STEP            | 008   | STEP DEFINE               |
| SUB(↑)          | 071   | BCD SUBTRACT              |
| SUBL(↑)         | 075   | DOUBLE BCD SUBTRACT       |
| SUM(个)          | 167   | SUM                       |
| TAN(↑)*         | 462   | TANGENT                   |
| TCMP(↑)         | 023   | TABLE COMPARE             |
| TCNT**          | 123   | TRANSITION COUNTER        |
| TIMH            | 015   | HIGH-SPEED TIMER          |
| TIML            | 121   | DOUBLE TIMER              |
| TIMW*           | <013> | TIMER WAIT                |
| TMHW*           | <015> | HIGH-SPEED TIMER WAIT     |
| TOUT**          | 202   | TRANSITION OUTPUT         |
| TRSM            | 170   | TRACE MEMORY              |
| TSR(个)**        | 124   | READ STEP TIMER           |
| TST*            | 350   | BIT TEST                  |
| TSTN*           | 351   | BIT TEST                  |
| TSW(个)**        | 125   | WRITE STEP TIMER          |
| TTIM            | 120   | ACCUMULATIVE TIMER        |
| UP*             | 018   | CONDITION ON              |
| WAIT(NOT)       | <005> | 1-SCAN WAIT               |
| WDT*            | 178   | MAXIMUM CYCLE TIME EXTEND |
| WR2*            | 281   | I/O UNIT WRITE 2          |
| WRIT            | 191   | I/O WRITE                 |
| WSFT(↑)         | 053   | WORD SHIFT                |
| XCGL(↑)         | 035   | DOUBLE DATA EXCHANGE      |
| XCHG(↑)         | 034   | DATA EXCHANGE             |
| XFER(↑)         | 040   | BLOCK TRANSFER            |
| XFRB(↑)*        | 038   | MULTIPLE BIT TRANSFER     |
| XNRL(↑)         | 137   | DOUBLE EXCLUSIVE NOR      |
| XNRW(↑)         | 133   | EXCLUSIVE NOR             |
| XORL(↑)         | 136   | DOUBLE EXCLUSIVE OR       |
| XORW(↑)         | 132   | EXCLUSIVE OR              |
| ZONE(↑)*        | 273   | DEAD-ZONE CONTROL         |
| <b>/(↑)</b> *   | 430   | SIGNED BINARY DIVIDE      |
| /B( <b>↑</b> )* | 434   | BCD DIVIDE                |
| /BL(↑)*         | 435   | DOUBLE BCD DIVIDE         |

Note Instructions with one asterisk (\*) are supported by the CVM1D and version-2 CVM1 CPU Units only.

Instructions with two asterisks (\*\*) are supported by the CV500, CV1000, and CV2000 only.

Instructions with three asterisks (\*\*\*) are not supported by the CVM1D.

| Mnemonic        | Code | Name                                           |
|-----------------|------|------------------------------------------------|
| /F(个)*          | 457  | FLOATING-POINT DIVIDE                          |
| /L(↑)*          | 431  | DOUBLE SIGNED BINARY<br>DIVIDE                 |
| /U(个)*          | 432  | UNSIGNED BINARY DIVIDE                         |
| /UL(个)*         | 433  | DOUBLE UNSIGNED BINARY DIVIDE                  |
| +(↑)*           | 400  | SIGNED BINARY ADD<br>WITHOUT CARRY             |
| +B( <b>↑</b> )* | 404  | BCD ADD WITHOUT CARRY                          |
| +BC(↑)*         | 406  | BCD ADD WITH CARRY                             |
| +BCL(↑)*        | 407  | DOUBLE BCD ADD WITH<br>CARRY                   |
| +BL(↑)*         | 405  | DOUBLE BCD ADD WITHOUT CARRY                   |
| +C(↑)*          | 402  | SIGNED BINARY ADD WITH CARRY                   |
| +CL(↑)*         | 403  | DOUBLE SIGNED BINARY<br>ADD WITH CARRY         |
| +F(↑)*          | 454  | FLOATING-POINT ADD                             |
| +L(↑)*          | 401  | DOUBLE SIGNED BINARY<br>ADD WITHOUT CARRY      |
| 一(个)*           | 410  | SIGNED BINARY SUBTRACT<br>WITHOUT CARRY        |
| -B(↑)*          | 414  | BCD SUBTRACT WITHOUT CARRY                     |
| -BC(↑)*         | 416  | BCD SUBTRACT WITH CARRY                        |
| -BCL(↑)*        | 417  | DOUBLE BCD SUBTRACT<br>WITH CARRY              |
| -BL(↑)*         | 415  | DOUBLE BCD SUBTRACT<br>WITHOUT CARRY           |
| -C(↑)*          | 412  | SIGNED BINARY SUBTRACT<br>WITH CARRY           |
| -CL(↑)*         | 413  | DOUBLE SIGNED BINARY<br>SUBTRACT WITH CARRY    |
| -F(↑)*          | 455  | FLOATING-POINT SUBTRACT                        |
| -L(↑)*          | 411  | DOUBLE SIGNED BINARY<br>SUBTRACT WITHOUT CARRY |
| =*              | 300  | EQUAL                                          |
| =L*             | 301  | DOUBLE EQUAL                                   |

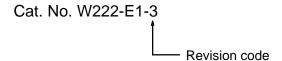
| Mnemonic                                                        | Code | Name                                   |
|-----------------------------------------------------------------|------|----------------------------------------|
| =S*                                                             | 302  | SIGNED EQUAL                           |
| =SL*                                                            | 303  | DOUBLE SIGNED EQUAL                    |
| <*                                                              | 310  | LESS THAN                              |
| <=*                                                             | 315  | LESS THAN OR EQUAL                     |
| <=L*                                                            | 316  | DOUBLE LESS THAN OR EQUAL              |
| <=S*                                                            | 317  | SIGNED LESS THAN OR EQUAL              |
| <=SL*                                                           | 318  | DOUBLE SIGNED LESS THAN OR EQUAL       |
| <>*                                                             | 305  | NOT EQUAL                              |
| <>L*                                                            | 306  | DOUBLE NOT EQUAL                       |
| <>S*                                                            | 307  | SIGNED NOT EQUAL                       |
| <>\$L*                                                          | 308  | DOUBLE SIGNED NOT EQUAL                |
| <l*< td=""><td>311</td><td>DOUBLE LESS THAN</td></l*<>          | 311  | DOUBLE LESS THAN                       |
| <s*< td=""><td>312</td><td>SIGNED LESS THAN</td></s*<>          | 312  | SIGNED LESS THAN                       |
| <sl*< td=""><td>313</td><td>DOUBLE SIGNED LESS THAN</td></sl*<> | 313  | DOUBLE SIGNED LESS THAN                |
| >*                                                              | 320  | GREATER THAN                           |
| >=*                                                             | 325  | GREATER THAN OR EQUAL                  |
| >=L*                                                            | 326  | DOUBLE GREATER THAN OR EQUAL           |
| >=S*                                                            | 327  | SIGNED GREATER THAN OR EQUAL           |
| >=SL*                                                           | 328  | DOUBLE SIGNED GREATER<br>THAN OR EQUAL |
| >L*                                                             | 321  | DOUBLE GREATER THAN                    |
| >S*                                                             | 322  | SIGNED GREATER THAN                    |
| >SL*                                                            | 323  | DOUBLE SIGNED GREATER THAN             |
| *(↑)*                                                           | 420  | SIGNED BINARY MULTIPLY                 |
| *B(↑)*                                                          | 424  | BCD MULTIPLY                           |
| *BL(↑)*                                                         | 425  | DOUBLE BCD MULTIPLY                    |
| *F(↑)*                                                          | 456  | FLOATING-POINT MULTIPLY                |
| *L( <b>↑</b> )*                                                 | 421  | DOUBLE SIGNED BINARY<br>MULTIPLY       |
| *U(↑)*                                                          | 422  | UNSIGNED BINARY MULTIPLY               |
| *UL(↑)*                                                         | 423  | DOUBLE UNSIGNED BINARY<br>MULTIPLY     |

# Index

| A-B                                                               | PC baud rate setting, ,                                     |
|-------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                   | displays,<br>ASCII,                                         |
| action blocks, changing,                                          | automatic error displays,                                   |
| alphanumeric input mode,                                          | contrast adjustment, , cycle time,                          |
| ASCII display, display example,                                   | decimal,                                                    |
| baud rate, ,                                                      | examples,<br>FAL, ,                                         |
| buzzer, volume adjustment, ,                                      | FALS, , hexadecimal, I/O tables, initial display, MSG(195), |
| cable connector, cover,                                           | program designation display,                                |
| clock, reading/changing,                                          | programming display, symbols and abbreviations,             |
| communications baud rate setting, , errors, host link parameters, | Duplex Unit,<br>connection,                                 |
| comparing                                                         | E                                                           |
| I/O table and Units,<br>memory cards and PC memory,               | <del>-</del>                                                |
|                                                                   | error history, reading,                                     |
| Connecting Cables, connectors,                                    | errors                                                      |
| disconnecting,                                                    | automatic error displays, automatic reading,                |
| models,                                                           | Cannot connect,                                             |
| connections, cable connectors,                                    | clearing, , communications,                                 |
| cables,                                                           | displaying and clearing,                                    |
| connecting to PC,                                                 | error display priority,                                     |
| connecting to Programming Console,                                | error history,<br>error messages,                           |
| priority, restrictions in number,                                 | operating errors,                                           |
| contrast, adjustment, ,                                           | FAL displays, ,                                             |
| counters. See timers/counters                                     | FALS displays, , operating errors,                          |
|                                                                   | PC, ,                                                       |
| customizing, unsupported operations,                              | fatal errors,                                               |
| cycle time<br>displaying,                                         | initialization errors,<br>non-fatal errors,                 |
| minimum cycle time setting,                                       | reading,                                                    |
| monitoring time,                                                  | reading error history, reading messages,                    |
| n                                                                 | execution controls,                                         |
| ט                                                                 |                                                             |
| data areas, display symbols and abbreviations,                    | F                                                           |
| debugging,                                                        | FAL                                                         |
| decimal display, display example,                                 | error displays, ,                                           |
| differentiate up/down instructions, display example,              | errors,                                                     |
| dimensions                                                        | FALS                                                        |
| Mounting Bracket,                                                 | error displays, , errors,                                   |
| Programming Console,                                              | features,                                                   |
| DIP switch                                                        | ,                                                           |

files, deleting from memory cards,

baud rate setting,


#### Index

force-set/reset, monitoring four words, binary display, monitoring multiple items, monitoring on ASCII display, simple I/O monitor, monitoring on binary display, forced status monitoring on decimal display, display example, monitoring on hexadecimal display, globally releasing, simple I/O monitoring, Mounting Bracket, , dimensions, н MSG(195), displays, normal input mode, handling precaution, hexadecimal display, display example, host link, communications parameters, online Unit replacement, supported models, I—L operands, inputting, I/O displays, display symbols and abbreviations, operating environment, temperature, I/O Interface Units, , operating modes. See PC operating modes connection. operation, main display, I/O tables, operations comparing, 4-word monitor, creating, action block change, input modes, displays, active step monitor, address set. instructions ASCII display, display symbols and abbreviations, automatic error display, immediate refresh, display example, inputting, clock read/change, cycle time, list by mnemonics, , cycle time display, keypad, cycle time monitoring time, basic layout and functions, decimal display, input modes, differential monitor, error display/clear, lock release levers, error history read, execution controls, file compare, M-Nfile delete, file read. memory file write, clearing, force-set/reset, user program protection, host link, I/O multipoint monitor, memory cards I/O table compare, comparing files to PC memory contents, I/O tables, deleting files, instruction delete, file names, instruction insert, formatting, instruction overwrite, reading, instruction search, writing, list, Memory Cassette, replacement, memory card format, memory clear, message number, , message read, messages, reading, momentary power interruption time, operand search, models, overview, , display, PC mode change, monitoring program designation, active steps, program read, differential monitoring of bit status, PV change, display examples, scheduled interrupt, display symbols and abbreviations, SFC search,

| simple I/O monitor,<br>startup mode,                            | R                                                                                    |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|
| structure,<br>system settings,                                  | refresh, immediate refresh instructions, display example,                            |
| table of procedures,                                            | Remote I/O Slave Units, ,                                                            |
| timer/counter SV change,                                        | connection,                                                                          |
| transition change, UM protect, unsupported operations,          | reading/not reading PC Setup, time required, restrictions when not reading PC Setup, |
| word monitor,                                                   | replacing Units, online replacement,                                                 |
|                                                                 | response monitor time, ,                                                             |
| Р                                                               | RUN indicator,                                                                       |
| panel mounting, bracket screws, cutout,                         | S                                                                                    |
| PC operating modes                                              | scheduled interrupt, time setting,                                                   |
| changing,                                                       | searching                                                                            |
| description,                                                    | instructions,                                                                        |
| display,<br>display symbols and abbreviations,                  | operands,<br>SFC,                                                                    |
| startup mode,                                                   | settings. See DIP switch; PC Setup; system settings                                  |
| PC Setup                                                        | SFC,                                                                                 |
| cycle time monitoring time,                                     | searching,                                                                           |
| execution controls, minimum cycle time setting,                 | shift input mode,                                                                    |
| momentary power interruption time,                              | specifications,                                                                      |
| scheduled interrupt time,<br>startup mode,                      | steps                                                                                |
| unsupported settings,                                           | display example,                                                                     |
| writing to memory cards,                                        | monitoring active steps,                                                             |
| Peripheral Service Disable Bit,                                 | sub-operations. See operations                                                       |
| precautions,                                                    | SYSMAC BUS/2. See Remote I/O Slave Units                                             |
| general, operating environment,                                 | system configuration, restrictions,                                                  |
| safety,                                                         | System Memory Cassette,                                                              |
| program address, display,                                       | precaution,                                                                          |
| programming                                                     | system settings,                                                                     |
| changing action blocks,                                         |                                                                                      |
| changing timer/counter SV, changing transitions,                | <del>-</del>                                                                         |
| checking programs,                                              | l                                                                                    |
| clearing memory,                                                | temperature, ambient temperature,                                                    |
| debugging, deleting instructions,                               | timers/counters                                                                      |
| designating the program,                                        | changing SV,                                                                         |
| inputting instructions and operations,                          | inputting instructions,                                                              |
| inputting timer/counter instructions, , inserting instructions, | timer display example,                                                               |
| overwriting instructions,                                       | transitions                                                                          |
| reading programs, display examples,                             | changing,<br>display example,                                                        |
| reading the program,                                            | display example,                                                                     |
| searching for instructions,<br>searching for operands,          |                                                                                      |
| setting the program address,                                    | U–W                                                                                  |
| Programming Console, models,                                    |                                                                                      |
| protection, user program memory,                                | Units, replacing Units online, supported models,                                     |
| PV                                                              |                                                                                      |
| changing,                                                       | user program memory, protecting,                                                     |
| display example,                                                | word contents, changing, , ,                                                         |

## **Revision History**

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.



The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

| Revision code | Date          | Revised content                                                                                                                                                                                                                                                                                         |
|---------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1             | February 1993 | Original production                                                                                                                                                                                                                                                                                     |
| 2             | February 1995 | Minor changes to add CV2000, CVM1 (V2), and SSS.                                                                                                                                                                                                                                                        |
|               |               | Page 11: Memory Cassette added.                                                                                                                                                                                                                                                                         |
|               |               | Page 113: "Jump error" description changed.                                                                                                                                                                                                                                                             |
|               |               | Page 117: Memory Casette added.                                                                                                                                                                                                                                                                         |
|               |               | Page 133: Added line to end of table.                                                                                                                                                                                                                                                                   |
|               |               | Page 137 on: Added new table of instructions including V2 CVM1 PCs.                                                                                                                                                                                                                                     |
| 3             | January 1999  | Minor changes to add CVM1D and I/O Unit online replacement operation (hot swapping) for CVM1D. A precautions section was also added to the beginning of the manual. Precautions were also added at various points in the manual and corrections were made to update information on Programming Devices. |



Authorized Distributor:

Cat. No. W222-E1-3

Note: Specifications subject to change without notice.

Printed in Japan