

Current Transducer HXS 20-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

All Data are given with a $R_1 = 10 \text{ k}\Omega$

$I_{DN} = 5 - 10 - 20 A$

Electrical data

I _{PN}	Primary nominal r.m.s. current		±20	Α
I _P	Primary current measuring range		±60	Α
$\dot{\mathbf{V}}_{OUT}$	Analog output voltage @ I _p		$V_{RFF} \pm (0.625 \cdot I_{RFF})$	/I _{PN}) V
001	$I_p = 0$		V _{RFF} ± 0.0125	
\mathbf{V}_{REF}	Internal Reference 1) - Output voltage		2.5 ± 0.025	V
IVE:	V _{REF} Output impedance	typ.	200	Ω
	V _{REF} Load impedance		≥ 200	$k\Omega$
R,	Output load resistance		≥ 2	$k\Omega$
\mathbf{R}_{OUT}^{T}	Output impedance		< 10	Ω
C	Max. output capacitive load		< 1	μF
V _c	Supply voltage (± 5 %)		5	V
I _c	Current consumption @ $V_c = 5 \text{ V}$		22	mΑ

Accuracy - Dynamic performance data

X	Accuracy $^{2)}$ @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$	≤±1	% of $I_{_{\mathrm{PN}}}$
$\mathbf{e}_{\scriptscriptstyle L}$	Linearity 0 I _{PN}	≤±0.5	% of I _{PN}
	3 x I _{PN}	≤±1	% of \mathbf{I}_{PN}
TCV _{OUT}	Thermal drift of \mathbf{V}_{OUT} @ $\mathbf{I}_{P} = 0$	≤±0.4	mV/K
TCV _{REF}	Thermal drift of \mathbf{V}_{REF}	≤±0.01	%/K
TCV _{OUT}	V_{REF} Thermal drift of V_{OUT}/V_{REF} @ $I_P = 0$	≤±0.2	mV/K
$TCe_{\scriptscriptstyleG}$	Thermal drift of the gain	$\leq \pm 0.05\%$ of	reading/K
$V_{_{\mathrm{OM}}}$	Residual voltage @ $I_p = 0$, after an overload of 3 x I_{PNDC}	<±0.7	% of \mathbf{I}_{PN}
\mathbf{t}_{ra}	Reaction time @ 10 % of I _{PN}	< 3	μs
$\mathbf{t}_{_{\mathrm{r}}}$	Response time @ 90 % of I_{PN}	< 5	μs
di/dt	di/dt accurately followed	> 50	A/µs
	Output noise (DC10 kHz)	< 15	mVpp
	(DC 1 MHz)	< 40	mVpp
f	Frequency bandwidth (-3 dB) 3)	DC 50	kHz

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	- 40 + 85	°C
$T_{_{S}}$	Ambient storage temperature	- 40 + 85	°C
dCp	Creepage distance	> 5.5	m m
dCl	Clearance distance	> 5.5	m m
CTI	Comparative tracking index (Group I)	> 600	V
	UL94 classification	V0	
m	Mass	10	g
	Standards	EN 50178 (97	'-10-01)

Features

- Hall effect measuring principle
- Multirange current transducer through PCB pattern lay-out
- Galvanic isolation between primary and secondary circuit
- Isolation test voltage 2500V
- Low power consumption
- Extremely low profile, 10mm
- Single power supply +5V
- Fixed offset & gain

Advantages

- Small size and space saving
- Only one design for wide current ratings range
- High immunity to external interference.
- Internal & external reference

Applications

- AC variable speed drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Current Transducer HXS 20-NP

Insulation category 150 V_b Nominal Voltage V r.m.s. with IEC 61010-1 standards and following conditions - Single insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field 300 $V_{\rm b}$ Nominal Voltage V r.m.s. with EN 50178 standards and following conditions - Reinforced insulation - Over voltage category III - Pollution degree 2 - Heterogeneous field R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn kV R.m.s. voltage for partial discharge extinction @ 10pC >1 kV Impulse withstand voltage 1.2/50µs

Notes : 1) It is possible to overdrive **V**_{REF} with an external reference voltage between 2 - 2.8 V providing its ability to sink or source approximately 2.5 mA.

Safety:

Caution, risk of danger

Caution, risk of electrical shock

This transducer shall be used in accordance with manufacturer instruction.

The temperature of the primary conductor shall not exceed 100°C

Power supply shall be a low voltage source and shall have an efficient protective system against over current.

Power supply must incorporate a circuit breaker.

This transducer shall be used in an electric/electronic equipment in respect of standards rules and applicable safety requirements.

Primary bar and output terminals can provide hazardous voltage.

This transducer is a built in device, of which conducting parts must be inaccessible by installation.

Protective envelope or additional shield must be used.

²⁾Excluding offset and hysteresis.

³⁾ Small signal only to avoid excessive heatings of the magnetic core.

HXS 20-NP Dimensions (in mm)

Required Connection Circuit

Operation Principle

Number of primary turns	Primary nominal I _{PN} [A]	current maximum I _P [A]	Primary resistance R _P [m ohm]	Primary insertion inductance	Recommended PCB connections
1	20	60	0.05	0.025	IN 1 3 5 7 0 0 0 0 0 0 0 0 2 4 6 8 OUT
2	10	30	0.2	0.1	IN 1 3 5 7 0-0 0-0 0-0 0-0 2 4 6 8 OUT
4	5	15	1	0.4	IN 1 3 5 7 0 0 0 0 0 0 0 2 4 6 8 OUT

Mechanical characteristics

· General tolerance

• Fastening & connection of primary jumper 8 pins Ø 1.3 mm Recommended PCB hole

• Fastening & connection of secondary Recommended PCB hole

 $\pm 0.2\,\text{mm}$

Ø 1.5 mm

4 pins 0.5 x 0.25

Ø 0.7 mm

Remarks

- \mathbf{V}_{OUT} is positive when \mathbf{I}_{p} flows from terminals 1, 3, 5, 7 (IN) to terminals 2, 4, 6, 8 (OUT).
- Temperature of the primary conductors should not exceed 100°C.