TUV

POLARIZED, MONOSTABLE

Panasonic

ideas for life

FEATURES

- Forced operation contacts (2 Form A 2 Form B, 3 Form A 1 Form B)
N.O. and N.C. side contacts are connected through a card so that one interacts with the other in movement. In case of a contact welding, the other keeps a min. 0.5 mm .020inch contact gap.

- Separated chamber structure
 (2 Form A 2 Form B, 3 Form A 1 Form B)

N.O. and N.C. side contacts are put in each own space surrounded with a card and a body-separater. That prevents short circuit between contacts, which is caused by their springs welding or damaged.

- UL/CSA, TÜV, SEV approved

SPECIFICATIONS

Contact

Type		SF2	SF3
Arrangement		$\begin{aligned} & 2 \text { Form A } \\ & 2 \text { Form B } \end{aligned}$	3 Form A 1 Form B
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)		$30 \mathrm{~m} \Omega$	
Contact material		Gold-flashed silver alloy	
Rating (resistive)	Nominal switching capacity	6 A 250 V AC, 6 A 30 V DC	
	Max. switching power	1,500 VA, 180 W	
	Max. switching voltage	30 V DC, 440 V AC	
	Max. carrying current	6 A DC, AC	
	Min. switching capacity\#1	$100 \mathrm{~mA}, 5 \mathrm{~V}$ DC	
Expected life (min. operations)	Mechanical (at 180 cpm) (resistive)	10^{7}	
	Electrical (at 20 cpm)	$3 \times 10^{4 * 1}$	

Coil (at $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)
Nominal operating power

$$
500 \mathrm{~mW}
$$

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.
Remarks

* Specifications will vary with foreign standards certification ratings.
${ }^{*}$ More than 10^{5} operations when applying the nominal switching capacity to one side of contact pairs of each Form A contact and Form B contact
*2 Measurement at same location as "Initial breakdown voltage" section
${ }^{*}$ Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{* 5}$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 6$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 7$ Detection time: 10 us
${ }^{* 8}$ Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT

Characteristics (at $\mathbf{2 0}{ }^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}, \mathbf{5 0 \%}$ Relative humidity)

			SF2	SF3
Max. operating speed			180 cpm (at nominal voltage)	
Initial insulation resistance*2			Min. 1,000 M Ω at 500 V DC	
Initial breakdown voltage*3	Between contact sets		2,500 Vrms	
	Between open contacts		2,500 Vrms	
	Between contact and coil		2,500 Vrms	
Operate time ${ }^{*_{4}}$ (at nominal voltage)			Max. 30 ms	
Release time (without diode)*4 (at nominal voltage)			Max. 15 ms	
Temperature rise (at nominal voltage)			$\text { Max. } 45^{\circ} \mathrm{C}$ with nominal coil voltage and at 6 A switching current	
Shock resistance		Functiona**5	Min. $294 \mathrm{~m} / \mathrm{s}^{2}$ \{30 G\}	
		Destructive*5	Min. $980 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$	
Vibration resistance		Functional*7	$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 2 mm	
		Destructive	$117.6 \mathrm{~m} / \mathrm{s}^{2}\{12 \mathrm{G}\}$, 10 to 55 Hz at double amplitude of 2 mm	
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+158^{\circ} \mathrm{F} \end{aligned}$	
		Humidity	5 to 85\% R.H.	
Unit weight			37 g 1.31 oz	

ORDERING INFORMATION

Ex. SF $\boxed{2}$

DC 12 V	
Contact arrangement	Coil voltage
2: 2 Form A 2 Form B	DC 5, 9, 12, 18, 21,
3: 3 Form A 1 Form B	$24,36,48,60 \mathrm{~V}$

TYPICAL APPLICATIONS

- Signal
- Escalator
- Elevator
- Medical Instruments
- Factory Automation

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Contact arrangement	Part No.	Nominal voltage, V DC	Pick-up voltage, VDC (max.)	$\begin{aligned} & \text { Drop-out } \\ & \text { voltage, V DC } \\ & (\text { min. }) \end{aligned}$	Coil resistance Ω ($\pm 10 \%$)	Nominal operating current, $m A(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
SF2	SF2-DC5V	5	3.75	0.5	50	100	500	6
	SF2-DC9V	9	6.75	0.9	162	55.6	500	10.8
	SF2-DC12V	12	9	1.2	288	41.7	500	14.4
	SF2-DC18V	18	13.5	1.8	648	27.8	500	21.6
	SF2-DC21V	21	15.75	2.1	882	23.8	500	25.2
	SF2-DC24V	24	14.4	2.4	1,152	20.8	500	28.8
	SF2-DC36V	36	27	3.6	2,592	13.9	500	43.2
	SF2-DC48V	48	36	4.8	4,608	10.4	500	57.6
	SF2-DC60V	60	45	6.0	7,200	8.3	500	72
SF3	SF3-DC5V	5	3.75	0.5	50	100	500	6
	SF3-DC9V	9	6.75	0.9	162	55.6	500	10.8
	SF3-DC12V	12	9	1.2	288	41.7	500	14.4
	SF3-DC18V	18	13.5	1.8	648	27.8	500	21.6
	SF3-DC21V	21	15.75	2.1	882	23.8	500	25.2
	SF3-DC24V	24	14.4	2.4	1,152	20.8	500	28.8
	SF3-DC36V	36	27	3.6	2,592	13.9	500	43.2
	SF3-DC48V	48	36	4.8	4,608	10.4	500	57.6
	SF3-DC60V	60	45	6.0	7,200	8.3	500	72

DIMENSIONS

1) SF 2

General tolerance: $\pm 0.3 \pm .012$
Schematic (Bottom view)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

General tolerance: $\pm 0.3 \pm .012$

Schematic (Bottom view)

PC board pattern (Bottom view)

Tolerance: $\pm 0.1 \pm .004$

REFERENCE DATA

1. Operate/release time

2. Coil temperature rise

Coil applied voltage: 120\%V
Contact switching current: 6A

SAFETY STRUCTURE OF SF RELAYS

This SF relay design ensures that subsequent operations shut down and can automatically return to a safe state when the SF relay suffers overloading and other circuit abnormalities
(unforeseen externally caused circuit or device breakdowns, end of life incidents, and noise, surge, and environmental influences) owing to contact welding, spring fusion or, in the worst-case
scenario, relay breakdown (coil rupture, faulty operation, faulty return, and fatigue and breakage of the operating spring and return spring), and even in the event of end of life.

1. Forced operation method
(2a2b, 3a1b, types)
2. Separate chamber method
(2a2b, 3a1b, types)

THE OPERATION OF SF RELAYS (when contacts are welded)

SF relays work to maintain a normal operating state even when overloading or short-circuit currents occur. It is also easy to include weld detection and safety circuits in the design to ensure safety even if contacts weld.

1) 2a2b Type

Form "b" Contact Weld

If the form "b" contacts (No. 1 or 3) weld, the armature becomes non-operational and the contact gap of the two form "a" contacts is maintained at greater than 0.5 mm .020 inch. Reliable isolation is thus ensured.

If the No. 1 contact welds.
A gap of greater than 0.5 mm .020 inch is maintained at each of the two form "a" contacts (No. 2 and 4).

Form "a" Contact Weld
If the form "a" contacts (No. 2 or 4) weld, the armature becomes non-operational and the gap between the two form "b" contacts is maintained at greater than 0.5 mm .020 inch . Reliable isolation is thus ensured.

If the No. 2 contact welds.
Each of the two form "b" contacts (No. 1 and 3) maintains a gap of greater than 0.5 mm .020 inch.

Contact Operation Table

The table below shows the state of the other contacts when the current through the welded form "a" contact is 0 V and the rated voltage is applied through the form "b" contact.

>0.5 : contact gap is kept at
min. 0.5 mm .020 inch
Empty cells: either closed or open

Note: Contact gaps are shown at the initial state.
If the contacts change state owing to loading/breaking it is necessary to check the actual loading.

2) 3a1b Type

Form "b" Contact Weld

If the form "b" contact (No.3) welds, the armature becomes non-operational, the contact gaps at the three form "a" contacts are maintained at greater than 0.5 mm .020 inch. Reliable isolation is thus ensured

If the No. 3 contact welds.
Each of the three form "a" contacts (No. 1, 2, and 4) maintain a gap of greater than 0.5 mm .020 inch.

Form "a" Contact Weld

When the form "a" contacts (No. 1, 2, or 4) weld, the armature remains in a non-returned state and the contact gap at the single form "b" contact is maintained at greater than 0.5 mm .020 inch . Reliable isolation is thus ensured.

If the No. 2 contact welds.
The single form "b" contact (No. 3) maintains a gap of greater than 0.5 mm .020 inch.

Contact Operation Table
The table below shows the state of the other contacts when the current through the welded form "a" contact is 0 V and the rated voltage is applied through the form "b" contact.

>0.5 : contact gap is kept at min .0 .5 mm .020 inch Empty cells: either closed or open

Note: Contact gaps are shown at the initial state.
If the contacts change state owing to loading/breaking it is necessary to check the actual loading.

For Cautions for Use, see Relay Technical Information

