PCB Relay

Ultra-miniature, Highly Sensitive SPDT

Relay for Signal Circuits

■ Ultra-miniature at $12.5 \times 7.5 \times 10 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$.
■ Wide switching power of 1 mA to 1 A .
■ High sensitivity: $150-\mathrm{mW}$ nominal coil power.

- Fully sealed construction.
- International 2.54-mm terminal pitch.
- Conforms to FCC Part 68 requirements for coil to contacts.

메(ㅛ)

Ordering Information

Classification				Model
Contact form	Contact type	Contact material	Structure	
SPDT	Single crossbar	Ag + Au-Alloy	Fully sealed	G5V-1

Note: When ordering, add the rated coil voltage to the model number.
Example: G5V-1 12 VDC
L Rated coil voltage

Model Number Legend

G5V -

12

1. Contact Form
2. Rated Coil Voltage
1: SPDT
3, 5, 6, 9, 12, 24 VDC

Specifications

- Coil Ratings

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC
Rated current		50 mA	30 mA	25 mA	16.7 mA	12.5 mA	6.25 mA
Coil resistance		60Ω	167 ת	240Ω	540Ω	960 ת	3,840 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.05	0.15	0.20	0.45	0.85	3.48
	Armature ON	0.11	0.29	0.41	0.93	1.63	6.61
Must operate voltage		80\% max. of rated voltage					
Must release voltage		10\% min. of rated voltage					
Max. voltage		200% of rated voltage at $23^{\circ} \mathrm{C}$					
Power consumption		Approx. 150 mW					

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

Contact Ratings

Load	Resistive load $(\cos \phi=1)$
Rated load	0.5 A at $125 \mathrm{VAC} ; 1 \mathrm{~A}$ at 24 VDC
Contact material	$\mathrm{Ag}+$ Au-Alloy
Rated carry current	2 A
Max. switching voltage	$125 \mathrm{VAC}, 60 \mathrm{VDC}$
Max. switching current	1 A
Max. switching power	$62.5 \mathrm{VA}, 30 \mathrm{~W}$
Failure rate (reference value) (See note.)	1 mA at 5 VDC

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation
This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$ and the criterion of contact resistance is 100Ω. This value may vary depending on the operating environment. Always double-check relay suitability under actual operating conditions.

Characteristics

Contact resistance (See note 1.)	$100 \mathrm{~m} \Omega$ max.
Operate time (See note 2.)	$5 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.2.5 ms)
Release time (See note 2.)	$5 \mathrm{~ms} \mathrm{max}. \mathrm{(approx}$.0.9 ms)
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)
Insulation resistance (See note 2.)	$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC between coil and contacts, at 250 VDC between contacts of same polarity.)
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts $400 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	1,500 V (10 x $160 \mu \mathrm{~s}$) between coil and contacts (conforms to FCC Part 68)
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude (3.3-mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 1.65-\mathrm{mm}$ single amplitude ($3.3-\mathrm{mm}$ double amplitude)
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$
Endurance	Mechanical: 5,000,000 operations min. (at 18,000 operations/hr) Electrical: 100,000 operations min. (under rated load, at 1,800 operations/hr)
Ambient temperature	Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%
Weight	Approx. 2 g

Note: The values here are initial values.
Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
2. Values in parantheses are actual values.
3. The insulation resistance was measured with a $500-\mathrm{VDC}$ megohmmeter between coil and contacts and a $250-\mathrm{VDC}$ megohmmeter between contacts with the same polarity applied to the same parts as those used for checking the dielectric strength.

Approved Standards

UL1950 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings
G5V-1	SPDT	to 24 VDC	$0.5 \mathrm{~A}, 125$ VAC (general use) 0.3 A, 110 VDC (resistive load) 1 A, 30 VDC (resistive load)

Engineering Data

Ambient Temperature vs. Maximum Coil Voltage

Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Numbers in parentheses are reference values.
3. Tolerance: ± 0.1
4. Orientation marks are indicated as follows: $\square \square \square$

Precautions

Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts, because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. Be sure to use a fail-safe circuit design that provides protection against contact failure or coil burnout.

Relay Handling

When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

