Non-Contact Safety Switches

More than safety.

Around the world - the Swabian specialists in motion sequence control for mechanical and systems engineering.

EUCHNER's history began in 1940 with the establishment of an engineering office by Emil Euchner. Since that time, EUCHNER has been involved in the design and development of switchgear for controlling a wide variety of motion sequences in mechanical and systems engineering. In 1953, Emil Euchner founded EUCHNER + Co., a milestone in the company's history. In 1952, he developed the first multiple limit switch - to this day a symbol of the enterprising spirit of this familyowned company.

Automation - Safety - ManMachine

Today, our products range from electromechanical and electronic components to complex system solutions. With this wide range of products we can provide the necessary technologies to offer the right solution for special requirements - regardless of whether these relate to reliable and precise positioning or to components and systems for safety engineering in the automation sector.
EUCHNER products are sold through a world-wide sales network of competent partners. With our closeness to the customer and the guarantee of reliable solutions throughout the globe, we enjoy the confidence of customers all over the world.

Quality, reliability, precision

Quality, reliability and precision are the hallmarks of our corporate philosophy. They represent concepts and values to which we feel totally committed.
At EUCHNER, quality means that all our employees take personal responsibility for the company as a whole and, in particular, for their own field of work. This individual commitment to perfection results in products which are ideally tailored to the customers' needs and the requirements of the market. After all: our customers and their needs are the focus of all our efforts. Through efficient and effective use of resources, the promotion of personal initiative and courage in finding unusual solutions to the benefit of our customers, we ensure a high level of customer satisfaction. We familiarize ourselves with their needs, requirements and products and we learn from the experiences of our customers' own customers.

EUCHNER - More than safety.

Quality - made by EUCHNER

Non-Contact Safety Switches CES/CEM

General information 4
Selection table safety switches CES/CEM 6
Evaluation unit 8
Connection of 1 read head 8
Connection of up to 2 or 4 read heads 14
Evaluation unit in standard housing 24
Evaluation unit in standard housing with position sensor 30
Read heads/actuators CES 36
CES series read heads 36
CES series actuators 44
Read heads/actuators CEM 48
Functional description 48
CEM series read heads 50
CEM series actuators 60

Accessories

Connection cables 62
Plug connector 66
Safety screws 66
Insertion tool for actuator CES-A-BMB 66

Appendix

Definition of terms 67
Index 68

General information

According to EN 1088, interlocking devices are mechanical or electrical devices which are designed to prevent the operation of a machine element for as long as the movable safety guard is left open.

Non-contact safety switches are interlocking devices which are designed to protect people and machines.
Compared with electromechanical safety switches, they are used if:

Functional description

The Coded Electronic Safety switch CES manufactured by EUCHNER comprises three components:

- Coded actuator
- Read head
- Evaluation unit

The non-contact safety switches described here operate on the basis of a uniquely electronically coded actuator (transponder).

The name transponder is a combination of the two terms transmitter and responder.
The function of a transponder is easily explained: the transponder (actuator) receives and processes the electromagnetic field from a transceiver (read head), and the data signals are then sent back to the receiver (evaluation unit) as a response depending on the transponder coding.

This transponder technology has been used successfully in electronic immobilizers for many years by almost all automotive manufacturers.
Transponder technology is also used on the non-contact safety switches series CES from EUCHNER and is an advanced solution for a new safety concept.

Power is supplied and data transmitted to the coded actuator using a non-contact, inductive read head. The major advantage of the system is the battery-less actuator technology that will give the user many years of service-free operation.

Every transponder is unique and absolutely secure against tampering.
The configuration of the system can be changed using a "teach-in operation". In service new actuators can be taught very simply. Each delivered actuator possesses a unique electronic coding and so is a unique element in the system used. The code of the actuator cannot be reprogrammed.
Signal transmission between the actuator and the read head is achieved via a homogeneous field. It is permissible to rotate the actuator within the operating distance of the read head.

- a high level of protection against tampering must be achieved
- extremely hygienic environmental conditions are required (e.g. in the food industry)
- a precise door guide is not possible
- machine doors are subjected to strong vibrations
- a high safety category is determined in the risk analysis

Thanks to the highly integrated circuits contained in the actuator and the read head, switches with transponder technology can be produced in units of virtually any tiny design.
EUCHNER also supplies read heads and actuators in rectangular and circular designs, with or without plug connectors.

The read head is fastened to the fixed part of the safety guard and is connected to the evaluation unit via a two-core screened cable.
The actuator fastened to the safety guard is moved towards the read head by closing the door. When the switch-on distance is reached, power is supplied to the actuator by the inductive read head and data can be transferred.
The bit pattern read is compared with the code saved in the evaluation unit; if the data matches, the safety outputs are enabled and the door monitoring output OUT (semiconductor output) is also set HIGH.

Actuator and read head have a wide operating distance and a broad hysteresis. Misalignment of the doors will not result in the system switching off unintentionally. If, on the other hand, the actuator is positioned exactly at the limit of the switch-on distance, vibrations at the safety guard will not cause the machine to stop unintentionally.

Polling of the read head, "actuator present," is single-channel and dynamic. All potential faults (e.g. broken cable, short circuit, failure of the actuator) are reliably detected. Thanks to the redundant, diverse design of the evaluation unit in combination with two safety outputs, the evaluation unit enters the safe state with every detectable fault.

Your advantages

- Uniquely coded actuator
- Every actuator is unique
- Absolutely secure against tampering
- Homogeneous magnetic field
- It is possible to rotate the actuator within the operating distance of the read head
- Actuator and read head have a wide operating distance and a broad hysteresis
- Misalignment of the doors will not result in the system switching off unintentionally
- Precise door guides are not required
- Fully encapsulated read head and actuator
- Degree of protection IP 67
- Can be used in harsh environment
- Dirt on the surface does not reduce the switching distance
- Flush installation in door panel is possible
- No static magnetic field between actuator and read head
- Metallic parts are not attracted
- Housing materials for actuator and read head
- Fortron (as standard)
- PE-HD (housing material resistant to aggressive chemicals, e.g. acids and alkaline)
- Small design of the actuator and read head
- Cube-shaped
- Cylindrical
- Read head with M8 plug connector
- Easy to replace in service
- Safety screws included
- Protection against tampering
- Approvals from BG, SIBE, UL

Selection table safety switches CES with relay output

Evaluation units

Read heads

Actuators

Connection cables

No additional connection
cable necessary

CES-A-LNA-SC Page 38

- Cube-shaped design
- Fortron housing
- M8 plug connector

CES-A-LMN-SC Page 42

- Cylindrical design M12
- M8 plug connector

M8 plug connector
Connection cable
PUR/PVC
see page 64

Selection table safety switches CES with semiconductor output

Actuators

Position actuator CES-A-NBA
 Page 45

- Fortron housing

Connection cables

M12 plug connector
PVC connection cable see page 65

M12 plug connector PVC connection cable see page 65

M12 plug connector PVC connection cable see page 65

M12 plug connector PVC connection cable see page 65

Selection table safety switches CEM with solenoids

Evaluation unit CES-A-ABA...

Housing for DIN rail mounting, IP 20
 Relay output
 1 read head can be connected

Functional description

The Coded Electronic Safety switch CES comprises three components:

- Coded actuator
- Read head
- Evaluation unit

The evaluation unit CES-A-ABA-01 is suitable for the direct connection of a read head, i.e. in each case, the code from only one actuator is read and processed.
The teaching of other actuators can be initiated with a teach-in operation. The teach-in operation can be performed up to 8 times with a new actuator; the actuator from the last teach-in is always the valid actuator. The evaluation unit in the DIN rail housing, degree of protection IP 20, is suitable for installation in the control cabinet.

The two-core connection cable to the evaluation unit is hard-wired to the read head or can be plugged in using a round M8 plug connector. In this way, the wiring work is reduced to an absolute minimum.

The read head is fastened to the fixed part of the safety guard and is connected to the evaluation unit via a two-core screened cable.
The actuator fastened to the movable part of the safety guard is moved towards the read head by closing the door. When the switchon distance is reached, power is supplied to the actuator by the inductive read head and data can be transferred.

The bit pattern read is compared with the code saved in the evaluation unit; if the data matches, the safety outputs (relay output) are enabled and the door monitoring output OUT (semiconductor output) is also set HIGH.
Due to the combination of dynamic polling of the actuator and the redundant, diverse design of the safety electronics with the two safety outputs, the evaluation unit will enter the safe state with every detectable fault.
When the safety guard is opened, the safety outputs switch off the safety circuit and the door monitoring output (OUT) is switched LOW. The state of the safety outputs is monitored internally by positively driven NC contacts (relay output).
If an internal fault occurs in the evaluation unit, the safety circuit is switched off, the diagnostic output (ERROR) is set HIGH and the ERROR LED illuminates red.

The safety contacts on the safety switch CES can switch currents from 1 mA to 6 A . Since small currents can be switched, the user has the option of connecting the safety switch CES directly to a safe control system.
Safe control systems will become increasingly important as technology progresses.

With a switching capacity of DC $24 \mathrm{~V} / 6 \mathrm{~A}$, the evaluation unit can be connected directly to the majority of power contactors, without further coupling modules.

Your advantages

- Evaluation unit teach-in function
- New actuator teach-in can be performed without any other equipment
- The number of teach-in operations is restricted to eight to provide security against tampering
- Two redundant relay outputs (safety outputs) with internally monitored contacts, suitable for:
- Safety category 3 according to EN 954-1 (according to BG)
- Safety category 4 according to EN 954-1 for monitoring short circuits of safety outputs (according to SIBE)
- Dynamic data transmission to the read head
- All faults (e.g. broken cable, short circuit, failure of the actuator) are reliably detected
- High safety due to dynamic performance
- Suitable for connection to a safe control system with or without pulse signals
- Several evaluation units can be connected in series
- Suitable for monitoring systems with several safety guards
- Switching capacity DC $24 \mathrm{~V} / 6 \mathrm{~A}$
- Direct connection to power contactor possible without extra coupling modules
- Self-test without opening the safety guard
- Monitoring output available
- Control system can poll the state of the safety guard
- Fault diagnostics possible using LED indicator
- Coded plug-in terminals
- Avoidance of faults in service
- Large operating distance of 6 mm (CES-A-ABA-01) and 15 mm (CES-A-ABA-01B) with additional hysteresis
- Large mechanical tolerances possible for door guide
- Approvals from BG, UL, SIBE

Evaluation unit CES-A-ABA...

Housing for DIN rail mounting, IP 20
Relay output
1 read head can be connected
In combination with read head CES-A-L... and actuator CES-A-B..

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/EC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- The plug-in and coded terminals on the evaluation unit enable the cable connections to be pre-assembled and so facilitate rapid final installation.
- The $\mathrm{H} 1 / \mathrm{H} 2$, ERR and OUT connections are not short circuit-proof.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Switching characteristics

2 safety outputs (relay outputs)
1 door monitoring output (semiconductor output, not a safety output)

Safety guard	
closed (actuator detected)	open (actuator not in operating distance)
Read head Actuator	Read head
$13 \ldots-14$	$13-14$
$23 \longrightarrow \longrightarrow 24$	$23-24$
$24 \mathrm{~V} \longrightarrow \longrightarrow$ OUT	$24 \mathrm{~V}-0 \quad 0-\mathrm{OUT}$

Notes on installation

The evaluation unit must be mounted in a control cabinet with a minimum degree of protection of IP 54. A snap-in element on the back of the evaluation unit is used for fastening to the standard rail (35 mm DIN rail).

Safety precautions

- The evaluation unit has a redundant switching design with self-monitoring. This means that the safety system is still effective even if a component fails.
- The door monitoring output OUT is not failsafe (not a safety output).
- To ensure safety, it is imperative that the safety outputs $13 / 14$ and $23 / 24$ are connected.

Technical data

1) If a switching current $>300 \mathrm{~mA}$ is switched once using the relay outputs, it is no longer possible to reliably switch small currents (< 10 mA) due to the contact erosion on the gold contacts
2) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator.
3) The fault detection time is the time for the detection of an internal fault in the device. At least one of the relay outputs is opened safely. The welding of one of the relay contacts is only detected after the safety guard is opened.
4) After the operating voltage is switched on, the relay outputs are switched off and the door auxiliary contact is set LOW during the ready delay
5) The dwell time of an actuator inside and outside the operating distance must be at least 0.5 s to ensure reliable detection of internal faults in the evaluation unit (self-monitoring)
6) Not short circuit-proof
7) In case of monitoring with feedback loop, the actuators must remain outside the operating distance, e.g. with a door open, until the feedback circuit is closed

Ordering table

Series	Switch-on distance $\mathbf{S}_{\mathbf{a} 0}[\mathbf{m m}]$	Number of read heads	Item	Order No.
CES-A-ABA...	6	1	CES-A-ABA-01	071850
	15	1	CES-A-ABA-01B ${ }^{8)}$	083513

8) No UL approval

Wiring and block diagram CES-A-ABA...

System functions evaluation unit CES-A-ABA...

Teach-in function for actuator

The actuator must be allocated to the evaluation unit using a teachin function before the system forms a functional unit.
During a teach-in operation, the safety outputs and the door monitoring output are LOW, i.e. the system is in the safe state.

Teach-in function for first actuator

(default setting on delivery)
(1) Apply the operating voltage to the evaluation unit

- green LED flashes fast (approx. 4 Hz)
(2) Move actuator to the read head
(Observe distance $<\mathrm{SaO}_{\mathrm{a}}$)
- teach-in operation starts, green LED flashes slowly (approx. 1 Hz)
(3) Teach-in operation completed (after 60 seconds)
- green LED goes out
(4) To activate the actuator code from the teach-in operation in the evaluation unit, the operating voltage must then be switched off for min. 10 seconds.

Notes

- Repeated teach-in of the same actuator on the same evaluation unit is not possible
- The number of teach-in operations on one evaluation unit is limited to a maximum of 8
- The evaluation unit can only be operated with the last actuator taught
- A teach-in operation is invalid if:
- The teach-in operation is cancelled before the green flashing LED goes out
- The power supply is switched off during the teach-in operation
- When switching on the evaluation unit (application of operating voltage), the STATE LED signals the number of possible remaining teach-in operations (see system status table)

Function test (self-test)

On electromechanical safety switches or magnetic switches, the function test can be performed by cyclically opening the safety guard. From safety category 2, according to EN 60204-1 : 1997 (sec. 9.4.2.4), a function test must be performed on the entire safety system on start-up or after defined intervals.
The testing of the internal function of the safety switch CES is not necessary because the device monitors itself in real time. Wear on an output contact (relay output) is detected by the device at the latest the next time the safety guard is opened. A short circuit in the output cable is not detected by the device. In addition, the entire safety circuit can be tested without opening the safety guard.

Teach-in function for a new actuator

(1) Apply the operating voltage to the evaluation unit
(2) Move new actuator to the read head
(Observe distance < SaO)

- teach-in operation starts, green LED flashes (approx. 1 Hz)
(3) Teach-in operation completed (after 60 seconds)
- green LED goes out, new code saved, old code deactivated
(4) To activate the new actuator code from the teach-in operation in the evaluation unit, the operating voltage must then be switched off for min. 10 seconds.

Warning

- After the eighth teach-in operation or if an "old" actuator is placed against the actuator head, the system automatically switches to the teach-in mode. In both cases, a teach-in operation with a duration of 60 seconds is started; however, the last actuator code remains active (see system status table) in the memory - a new code is not taught.

For this purpose, the opening of the safety guard can be simulated by applying DC 24 V to the test input TST.
The safety outputs are switched off, enabling testing of the complete safety circuit. The diagnostic output ERR on the evaluation unit is also set HIGH as a monitoring function.
When the test input TST is reset, the evaluation unit resets the diagnostic output ERR to LOW, the red LED switches off and the safety outputs are switched on again. This permits self-testing of the safety system without opening the safety guard.
In the Manual start operating mode, the start button must be pressed again to start the system.

Evaluation unit CES-A-AEA...

Housing for DIN rail mounting, IP 20
 Relay output
 2 or 4 read heads can be connected

Functional description

The Coded Electronic Safety switch CES comprises three components:

- Coded actuator
- Read head
- Evaluation unit

Based on the concept of the safety switch CES-A-ABA..., the evaluation units described in this chapter have the option of connecting $1 . . .2$ or $1 . . .4$ read heads. As a result, up to four safety guards can be monitored. The evaluation unit also has connection terminals for a start button and for the feedback loop for monitoring power contactors. The start button and the feedback loop are monitored for short-circuits.
The following settings can be made optionally using DIP switches on the evaluation unit:

- Number of read heads $1 . . .2$ or 1... 4
- Manual or automatic start
- Operation with or without feedback loop

The configuration of the entire system can be changed as often as required using a "teach-in operation". After appropriate preparations (fitting a jumper to the evaluation unit), a new actuator can also be taught-in as often as required in service.

The non-contact safety switch CES-A-AEA... has a relatively large operating distance of 15 mm . Compared with mechanical safety switches, the assembly of the unit is much easier and the need for precision in the door rails is also reduced considerably. Therefore the assembly and maintenance costs are much lower. The two-core connection cable to the evaluation unit is hard-wired to the read head or can be plugged in using a round M8 plug connector. In this way, the wiring work is reduced to an absolute minimum.

The read heads are fastened to the fixed part of the safety guard and are each connected to the evaluation unit via a two-core screened cable. The actuator fastened to the movable part of the safety guard is moved towards the read head by closing the door. When the switch-on distance is reached, power is supplied to the actuator by the inductive read head and data can be transferred.
The bit pattern read is compared with the code saved in the evaluation unit. If the data match, the door monitoring output 01 ... 02 or 01 ... 04 (semiconductor output) on the related read head is set HIGH. If all data for all read heads activated match, the safety outputs (relay outputs) are then enabled. The OUT LED illuminates.
Due to the combination of dynamic polling of the actuators and the redundant, diverse design of the safety electronics with the two safety outputs, the evaluation unit will enter the safe state with every conceivable fault.

When a safety guard is opened, the safety outputs switch off the safety circuit and the OUT LED goes out. The state of the safety outputs is monitored internally by positively driven NC contacts (relay output). Independent of the switching state of the safety circuit, the position of all safety doors can be polled via the outputs 01 ... 02 or 01... 04 .
If an internal fault occurs in the evaluation unit, the safety circuit is switched off, the diagnostic output (DIA) is set HIGH and the DIA LED illuminates red.

The start button is also monitored. This is achieved by evaluating the falling edge of the start signal. In this way it is not possible for a signal continuously present on the input of the evaluation unit (e.g. stuck button contact) to result in the automatic start of the system.
The evaluation unit provides the option of monitoring power contactors connected in series.
The evaluation unit can only be started with the feedback loop closed. A welded contactor contact in the release path will thus be detected when a start request is made.

The safety contacts on the new evaluation unit can switch switching currents from 1 mA to 6 A . Since small currents can be switched, the user has the option of connecting the safety switch CES directly to a safe control system. Safe control systems will become increasingly important as technology progresses.

With a switching capacity of DC $24 \mathrm{~V} / 6 \mathrm{~A}$ or $\mathrm{AC} 230 \mathrm{~V} / 1.5 \mathrm{~A}$, the evaluation unit can be connected directly to the majority of power contactors, without further coupling modules.

With its new safety switch CES, EUCHNER has introduced an integrated solution on the market. With a single system, the user can realize such applications as the monitoring of safety guards, wiring, evaluation and even the monitoring of externally connected devices. The user thus achieves maximum safety at a reasonable cost without the need for further equipment, e.g. emergency-stop switchgear.

Due to the internal design of the device and the monitoring facility for the external connected devices, the non-contact safety switch CES-A-AEA... can be used for the highest safety requirements of safety category 4 according to EN 954-1 with approval from BG and SIBE Switzerland.

Your advantages

- Evaluation units for the connection of $1 \ldots 2$ or $1 \ldots 4$ read heads

Selectable via DIP switches:

- Number of read heads (1...4)
- Manual or automatic start
- Operation with or without a feedback loop for monitoring power contactors
- Monitored start button and feedback loop
- Short circuits are reliably detected
- Evaluation unit teach-in function
- Teach-in of a new actuator using simple aids (fitting a jumper to the evaluation unit)
- Unlimited number of teach-in operations possible
- Two redundant relay outputs (safety outputs) with internally monitored contacts, suitable for:
- Safety category 4 according to EN 954-1 (according to BG and SIBE)
- Dynamic data transmission to the read head
- All faults (e.g. broken cable, short circuit, failure of the actuator) are reliably detected
- High safety due to dynamic performance
- Suitable for connection to a safe control system with or without pulse signals
- Several evaluation units can be connected in series
- Suitable for monitoring systems with several safety guards
- Switching capacities DC $24 \mathrm{~V} / 6 \mathrm{~A}$ or AC $230 \mathrm{~V} / 1.5 \mathrm{~A}$
- Direct connection to power contactor possible without extra coupling modules
- Self-test without opening the safety guard
- Monitoring output available
- Control system can poll the state of the safety guard
- Fault diagnostics possible using LED indicator
- Large operating distance and 15 mm with additional hysteresis
- Large mechanical tolerances possible for door guide
- Approvals from BG, UL, SIBE

Evaluation unit CES-A-AEA-02B

Housing for DIN rail mounting, IP 20
Relay output
2 read heads can be connected
In combination with read head CES-A-L... and actuator CES-A-B..

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/EC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- The connections $\mathrm{H} 1 \mathrm{a} / \mathrm{H} 1 \mathrm{~b} \ldots \mathrm{H} 2 \mathrm{a} / \mathrm{H} 2 \mathrm{~b}$ are not short circuit-proof.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Switching characteristics

2 safety outputs (relay outputs)
2 door monitoring outputs (semiconductor outputs, not safety outputs)

$\begin{array}{c}\text { Safety guard } \\ \text { closed } \\ \text { (all actuators } \\ \text { detected) }\end{array}$		
Read head 1 Actuator 1		
(e.g. actuator 1 not		
in the operating distance)		

Notes on installation

The evaluation unit must be mounted in a control cabinet with a minimum degree of protection of IP 54. A snap-in element on the back of the evaluation unit is used for fastening to the standard rail (35 mm DIN rail).

Safety precautions

- The evaluation unit has a redundant switching design with self-monitoring. This means that the safety system is still effective even if a component fails.
- The door monitoring outputs 01 ... 02 are not fail-safe (not safety outputs)
- To ensure safety, both safety outputs 13/14 and $23 / 24$ must always be evaluated.

Technical data

1) If a switching current $>300 \mathrm{~mA}$ in conjunction with a switching voltage $>15 \mathrm{~V}$ or an inductive or capacitive load is switched once using the relay outputs, it is no longer possible to reliably switch small currents ($<15 \mathrm{~mA}$) due to the contact erosion on the gold contacts.
2) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator.
3) The fault detection time is the time for the detection of an internal fault in the device. At least one of the relay outputs is opened safely. The welding of one of the relay contacts is only detected after the safety guard is opened.
4) After the operating voltage is switched on, the relay outputs are switched off and the monitoring outputs are set LOW during the ready delay. For the visual indication of the delay, the green STATE LED flashes at a frequency of approx. 15 Hz .
5) In case of monitoring with feedback loop, the actuators must remain outside the operating distance, e.g. with a door open, until the feedback circuit is closed
6) Without taking into account the load currents on the monitoring outputs.

Ordering table

Series	Safety category	Number of read heads	Item	Order No.
CES-A-AEA...	4	2	CES-A-AEA-02B	092560

Evaluation unit CES-A-AEA-04B

Housing for DIN rail mounting, IP 20
Relay output
4 read heads can be connected
In combination with read head CES-A-L... and actuator CES-A-B..

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/EC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- The connections $\mathrm{H} 1 \mathrm{a} / \mathrm{H} 1 \mathrm{~b}$... $\mathrm{H} 4 \mathrm{a} / \mathrm{H} 4 \mathrm{~b}$ are not short circuit-proof.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Switching characteristics

2 safety outputs (relay outputs)
4 door monitoring outputs (semiconductor outputs, not safety outputs)

Safety guard	
closed (all actuators detected)	open (e.g. actuator 1 not in the operating distance)
Read head 1 Actuator 1	Read head 1
$\begin{aligned} & 13 \multimap \backsim-14 \\ & 23 \multimap \multimap-24 \end{aligned}$	$\begin{aligned} & 13-14 \\ & 23-24 \end{aligned}$
$24 \mathrm{~V} \rightarrow \square \mathrm{O}$	$24 \mathrm{~V} \rightarrow$ - 01
$24 \mathrm{~V} \longrightarrow \ldots \mathrm{O}$	$24 \mathrm{~V} \longrightarrow \ldots \mathrm{O}$
$24 \mathrm{~V} \ldots \bigcirc 03$	$24 \mathrm{~V} \longrightarrow \square \mathrm{O}$
24 V - -O 4	24 V - -04

Notes on installation

The evaluation unit must be mounted in a control cabinet with a minimum degree of protection of IP 54. A snap-in element on the back of the evaluation unit is used for fastening to the standard rail (35 mm DIN rail).

Safety precautions

- The evaluation unit has a redundant switching design with self-monitoring. This means that the safety system is still effective even if a component fails.
- The door monitoring outputs 01 ... 04 are not fail-safe (not safety outputs)
- To ensure safety, both safety outputs 13/14 and 23/24 must always be evaluated.

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Plastic PA6.6			
Dimensions	$114 \times 99 \times 45$			mm
Weight	0.25			kg
Ambient temperature at $\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$	-20		+55	C
Atmospheric humidity	Max. 80 \%, not condensing			
Degree of protection to IEC/EN 60529	IP20			
Degree of contamination / material group	2/II			
Mounting	35 mm DIN rail according to EN 50022-35			
Number of read heads	Max. 4 read heads per evaluation unit			
Connection (screw terminals)	0.14	-	2.5	mm^{2}
Operating voltage U_{B} (regulated, residual ripple $<5 \%$)	21	24	27	V DC
For the approval according to (4lus the following applies	Operation with UL-class 2 power supply only			
Current consumption I_{B} (with relay energized) ${ }^{6}$)	-	220	270	mA
External fuse (operating voltage)	0.4	-	8	A
Safety outputs	2 safety relays with positively driven contacts			
Switching current (relay outputs)				
- At switching voltage $1 \ldots 60 \mathrm{~V}$ AC/DC	$1{ }^{11}$	-	300	
- At switching voltage $17 \ldots 30 \mathrm{~V}$ AC/DC	15		6000	mA
- At switching voltage $17 \ldots 230 \mathrm{~V}$ AC	15		1500	
Switching load according to ©(1)us	Max. AC 30 V , class 2 / max. DC 60 V , class 2			
External fuse (safety circuit) according to IEC/EN 60269-1	6 AgG			
Utilization category according to IEC/EN 60947-5-1	AC-12 $60 \mathrm{~V} 300 \mathrm{~mA} 50 \mathrm{~Hz} / \mathrm{DC}-1260 \mathrm{~V} 300 \mathrm{~mA}$ AC-12 30V 6A / DC-12 30V 6A AC-15 230V 1.5A 50Hz / DC-13 24V 1.2A			
Classification according to IEC/EN 60947-5-3	PDF-M			
Suitable for safety category according to EN 954-1	4			
Rated insulation voltage U_{i}	250			V
Rated impulse withstand voltage U $\mathrm{U}_{\text {imp }}$	4			kV
Resilience to vibration	According to IEC/EN 60947-5-2			
Mechanical life (relays)	10×10^{6}			
Switching delay from state change ${ }^{2 /}$				ms
- 4 activated actuators	-	-	450	
- 3 activated actuators	-	-	370	
- 2 activated actuators	-	-	290	
- 1 activated actuator	-		210	
Fault detection time ${ }^{31}$	-		500	ms
Switching frequency ${ }^{51}$	-	-	1	Hz
Difference time between the switching points of the two relays (for 4 activated actuators)	-	-	400	ms
Manual start operating mode				
- Duration of operation of start button	250	200	300	ms
- Start button response delay	$\overline{5}$	200	300	
Current via feedback loop Y1/\%2	5	8	10	mA
Permissible resistance via feedback loop		-	600	Ω
Ready delay ${ }^{4}$	-	10	12	S
Monitoring outputs (diagnostics DIA, enable 01...04, semiconductor output, p-switching, short circuit-proof) - Output voltage - Max load	${ }_{-}^{0.8 \times U_{B}}$	-	$\begin{aligned} & U_{B} \\ & 20 \end{aligned}$	$\begin{gathered} \text { V DC } \\ \mathrm{mA} \end{gathered}$
Start button input S, test input TST				
- Input voltage LOW	0	-	2	V DC
HIGH	15		U_{B}	V DC
- Input current HIGH	5	8	10	mA
EMC protection requirements	as per IEC/EN 60947-5-3			

1) If a switching current > 300 mA in conjunction with a switching voltage $>15 \mathrm{~V}$ or an inductive or capacitive load is switched once using the relay outputs, it is no longer possible to reliably switch small currents $<15 \mathrm{~mA}$) due to the contact erosion on the gold contacts.
2) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator
3) The fault detection time is the time for the detection of an internal fault in the device. At least one of the relay outputs is opened safely. The welding of one of the relay contacts is only detected after the safety guard is opened.
4) After the operating voltage is switched on, the relay outputs are switched off and the monitoring outputs are set LOW during the ready delay. For the visual indication of the delay, the green STATE LED flashes at a frequency of approx. 15 Hz .
5) In case of monitoring with feedback loop, the actuators must remain outside the operating distance, e.g. with a door open, until the feedback circuit is closed
6) Without taking into account the load currents on the monitoring outputs.

Ordering table

Series	Safety category	Number of read heads	Item	Order No.
CES-A-AEA...	4	4	CES-A-AEA-04B	072000

Wiring and block diagram CES-A-AEA-O2B

Wiring and block diagram CES-A-AEA-04B

System functions evaluation unit CES-A-AEA...

Setup procedure

During setup, the parameters are set in the evaluation unit by the user using a teach-in operation (number of connected read heads, assignment of the actuators to the read heads, with or without automatic start, with or without feedback loop). During this process the read heads are activated.
These configuration parameters are saved in the non-volatile memory in the evaluation unit.
To trigger a teach-in operation, the user must perform the following actions in the stipulated order:
(1) Prepare for teach-in operation

- Switch off power supply U_{B}
- Fit a jumper between terminals J1 and J2
(2) Set required configuration on DIP switches

Switch marking	Slider position left (OFF)	Slider position right (ON)
1	No read head connected to terminals	
H1a, H1b, SH1	Read head connected to terminals	
H1a, H1b, SH1		

(3) Set required configuration on machine

- Close all doors to be monitored (the actuators must be in the operating distance of the related read head)
- For Manual start operating mode: connect terminal S to 24 V (or keep start button pressed)
- For With feedback loop operating mode: keep feedback loop closed
(4) Start teach-in operation
- Switch on operating voltage
- Wait for self-test (STATE LED flashes for approx. 10 seconds at 15 Hz)
- Teach-in operation starts (STATE LED flashes at approx. 1 Hz)
- Wait for acknowledgement of the teach-in operation (STATE LED goes out after approx. 10 seconds)
(5) End teach-in operation
- Switch off operating voltage for at least 10 seconds
- Remove jumper between J1 and J2
- For Manual start operating mode: connect start button to terminal S
- For With feedback loop operating mode: connect feedback loop
- Switch on operating voltage
- Wait for self-test (STATE LED flashes for approx. 10 seconds at 15 Hz)
(6) Check all safety guards for effectiveness \triangle

Note

During the teach-in operation the following conditions must be met:

- There must be no state change, e.g. opening a safety door or closing a further safety door
- The power supply must not be switched off

If these conditions are not met, the evaluation unit switches to the safe fault state (diagnostics LED illuminates) and signals this operating fault with the STATE LED by 3 short flashes that are repeated every second. The teach-in operation must be repeated.

Warning

- The number of teach-in operations is unlimited. The evaluation unit can be re-configured as often as required.
- Actuators cannot be interchanged without a renewed teach-in operation.
- An actuator that has not been subjected to teach-in will not be detected by the related read head.
\Rightarrow Even if only one new actuator needs to be taught, a complete new teach-in operation must be carried out as described in the section "Setup procedure".
- Do not change DIP switches during operation.

Function test CES-A-AEA... (self-test)

On electromechanical safety switches or magnetic switches, the function test can be performed by cyclically opening the safety guard. From safety category 2, according to IEC/EN 60204-1 : 1997 (sec. 9.4.2.4), a function test must be performed on the entire safety system on start-up or after defined intervals.
The testing of the internal function of the safety switch CES is not necessary because the device monitors itself in real time. Wear on an output contact (relay output) is detected by the device at the latest the next time the safety guard is opened. A short circuit in the output cable is not detected by the device.
In addition, the entire safety circuit can be tested without opening the safety guard. For this purpose the opening of the safety guard can be simulated by applying DC 24 V to the test input.
The safety outputs are switched off, enabling testing of the complete safety circuit. The diagnostic output DIA of the evaluation unit is also set HIGH as a monitoring function.
When the test input is reset, the evaluation unit resets the diagnostic output DIA to LOW, the red LED switches off and normal operation continues. This permits self-testing of the safety system without opening the safety guard.

LED indicators

LED labels	Gelor	Significance
STATE	Green	State display (multifunction display using flashing modes)
OUT	Red	Safety circuit closed
DIA	Operating fault,	
		external fault (fault in the feedback loop)
	or internal device fault	
		TST input activated (function test active)

System status table CES-A-AEA-04B

STATE LED (green)	OUT LED (yellow)	DIA LED (red)	State
Setup			
Flashes continuously at approx. 4 Hz	Off	Off	Initial setup after delivery without jumper connected to J1, J2
Flashes at approx. 1 Hz	Off	Off	Teach-in operation
Off	Off	Off	Acknowledgement of completion of teach-in operation
Normal operation			
Flashes at approx. 15 Hz	Off	Off	Self-test, duration approx. 10 seconds, is performed after the application of the operating voltage U_{B}
On	Off	Off	Normal operation, not all monitored doors are closed
On	On	Off	Normal operation, all monitored doors are closed (After pressing the start button, for Manual start operating mode)
Function test			
On	Off	On	Function test active (TST input $=24 \mathrm{~V}$)
Fault display			
Off	Off	On	Component failure inside the device or actuator in the operating distance for less than 0.5 s or actuator CES-A-BMB in the inadmissible range
Operating fault			
3 flashes repeated after 1 s	Off	On	Configuration fault: Teach-in operation must be performed again Possible causes:

- State change during the teach-in operation
- None of the DIP switches in ON position
- DIP switch setting and connected configuration did not match during teach-in operation
- DIP switch setting has been changed without teach-in operation
- The teach-in jumper (J1, J2) was fitted with power supply switched on
- Connected feedback loop (Y1,Y2) present, although a feedback loop was not present during teach-in
- 24 V signal present at the start button input (S) although teach-in was performed with "Automatic start" operating mode
4 flashes repeated after $1 \mathrm{~s} \quad$ Off \quad On Fault in feedback loop

Non-contact safety switches CES-A-C5...

Standard housing according to IEC/EN 60947-5-
2, IP 67
Read head and evaluation unit integrated in the standard housing
Semiconductor output
Connection of the safety circuit using M12 plug connector

Functional description

The Coded Electronic Safety switch CES comprises two components:

- Coded actuator
- Evaluation unit / read head

The evaluation unit described in this chapter is integrated with the read head in a standard housing according to IEC/EN 60947-5-2.

Thanks to the high degree of protection IP67, this switch can be used directly on the safety guard in a very harsh environment. Semiconductor technology allows for a compact design of the evaluation unit and wear-free switching with a theoretically unlimited number of operating cycles.
The information from the coded actuator is read by the evaluation unit and processed at the same point. The transfer of static signals (information on whether door open or closed) to the higher level switchgear permits the use of connecting cables up to 300 m long with the system.
Serial wiring, i.e. the cascading of several evaluation units, is possible. In this way, you can implement decentralized wiring concepts with the safety switch CES.
Specifically, the major advantage of the system is that the positioning of the evaluation unit directly at the safety guard saves space in the control cabinet.
The system operator can read the current state of the safety switch on the two LED indicators (one with double function). If the actuator is in the operating distance, the OUT LED illuminates yellow. Even a possible fault in the evaluation unit is displayed by a red LED. In service, the safety switch connected with an M12 plug connector can be replaced in seconds. The required approach direction can also be set quickly on the compact housing. After two fastening screws have been undone, the active face of the read head can be set in 5 different positions.

The non-contact safety switch CES-A-C5E... has a relatively large operating distance of 20 mm . Compared with mechanical safety switches, the assembly of the unit is much easier and the need for precision in the door rails is also reduced considerably. Therefore the assembly and maintenance costs are much lower.

The safety switch with integrated evaluation unit and read head is fastened to the fixed part of the safety guard.
The actuator attached to the movable part of the safety guard is moved towards the read head fitted in the safety switch by closing the doors. When the switch-on distance is reached, power is supplied to the actuator by the inductive read head and data can be transferred.
The bit pattern read is compared with the code saved in the evaluation unit; if the data matches, the safety outputs (semiconductor outputs) and the door monitoring output (semiconductor output) are also set HIGH.
Due to the combination of dynamic polling of the actuator and the redundant, diverse design of the safety electronics with the two feedback safety outputs, the evaluation unit will enter the safe state with every detectable fault.
When the safety guard is opened, the safety outputs switch off the safety circuit and the door monitoring output (OUT) is switched LOW. The state of the safety outputs is monitored internally by two microprocessors.
On an internal fault in the evaluation unit, the safety circuit is switched off and the OUT/ERROR LED illuminates red.
The evaluation unit has a redundant switching design with selfmonitoring. This means that the safety system is still effective even if a component fails.

Your advantages

- Evaluation unit teach-in function
- New actuator teach-in can be performed without any other equipment
- The number of teach-in operations is restricted to eight to provide security against tampering
- Safety switch in standard housing according to IEC/EN 60947-5-2
- Two redundant design semiconductor outputs (safety outputs) with internal monitoring:
- CES-A-C5E-01: Safety category 3 according to EN 954-1 (according to BG and SIBE Switzerland)
- CES-A-C5H-01: Safety category 4 according to EN 954-1 (according to BG and SIBE Switzerland)
- Read head and evaluation unit form a compact unit
- Reduction of wiring faults during setup
- Relocation of the evaluation unit from the control cabinet to the system
- Space-saving in the control cabinet
- Decentralized wiring concept possible
- Connection via M12 plug connector
- Prevention of wiring faults
- Easy adjustment of the read head in 5 approach directions
- Short circuit-proof monitoring and safety outputs
- High reliability
- Large operating distance of 20 mm with additional hysteresis
- Large mechanical tolerances possible for door guide
- Small design of the actuator (cube-shaped)
- Flush installation in door panel is possible
- Approval from BG

Safety switch CES-A-C5...

Read head and evaluation unit integrated in the standard housing
Semiconductor output

- Connection via M12 plug connector
(Connection cabel see page 65)
- In combination with actuator CES-A-BBA

Dimension drawing

Notes on the electrical connection

\Rightarrow The operating voltage U_{B} is reverse polarity protected.
The contacts LA/LB, -LA $/-\mathrm{LB}$ and OUT are short circuit-proof, however they are not reverse polarity protected

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/EC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.
Typical operating distance (only in conjunction with actuator CES-A-BBA)

For a side approach direction for the actuator and safety switch, a minimum distance of $s=3 \mathrm{~mm}$ must be maintained so that the operating distance of the side lobes is not entered.

Switching characteristics

2 safety outputs (semiconductor outputs) 1 door monitoring output (semiconductor output, not a safety output)

Safety precautions

To ensure safety, both safety outputs (LA and LB) must always be evaluated.

Changing the approach direction

The active face of the read head can be adjusted in 5 directions. The face is marked with the EUCHNER logo. The center of the circle corresponds to the middle of the read head.

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Plastic PBT V0 GF30			
Dimensions	According to EN 60 947-5-2			
Weight	0.4			kg
Ambient temperature at $\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$	-20	-	+55	${ }^{\circ} \mathrm{C}$
Degree of protection to IEC/EN 60529	IP67			
Safety class according to IEC/EN 61558	III			
Installation position	Any			
Connection type	M12 plug connector, 8-pin, screen can be applied			
Operating voltage U_{B} (reverse polarity protected, regulated, residual ripple < 5%)	18	24	27	V DC
For the approval according to ©(L)ws the following applies	Operation with UL-class 2 power supply only			
Current consumption	80			mA
Switching load according to ©(1)us	DC 24 V , class 2			
External fuse (operating voltage)	0.25	-	8	A
Power supply for load U(+LA) / U(+LB)	18	-	27	V DC
Safety outputs (LA / LB, 2 semiconductor outputs, p-switching, short circuit-proof, electrically decoupled) - Output voltage U(LA) / U(LB) ${ }^{1)}$ HIGH U(LA) HIGH U(LB) LOW U(LA) / U(LB)	$\begin{aligned} & U(+L A)-1.5 \\ & U(+L B)-1.5 \\ & 0 \end{aligned}$	-	$\begin{gathered} U(+L A) \\ U(+L B) \\ 1 \end{gathered}$	V DC
Switching current per safety output	1	-	400	mA
External fuse $\mathrm{U}(+\mathrm{LA}) / \mathrm{U}(+\mathrm{LB})$, Safety circuit	400 mA medium slow-blow			
Utilization category according to IEC/EN 60947-5-2	DC-13 24V 400 mA			
Classification according to IEC/EN 60947-5-3	PDF-M			
Door monitoring contact (OUT, semiconductor output, p-switching, short circuit-proof) - Output voltage - Max load	${ }_{0}^{0.8 \times \mathrm{U}_{B}}$	-	$\begin{aligned} & U_{B} \\ & 20 \end{aligned}$	$\begin{gathered} \text { V DC } \\ \mathrm{mA} \end{gathered}$
Rated insulation voltage U_{i}	-	-	30	V
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	-	-	1.5	kV
Resilience to vibration	According to IEC/EN 60947-5-2			
Switching delay from state change ${ }^{2)}$	-	-	180	ms
Fault detection time ${ }^{3)}$	-	-	500	ms
Difference time between the two safety outputs	-	-	120	ms
Ready delay ${ }^{4 /}$			3	S
Dwell time ${ }^{5}$	0.5	-	-	S
Switching frequency	-	-	1	Hz
Operating distance for center offset $=0^{6}$ Switch-on distance Sa_{a} Switching hysteresis Safe switch-off distance $\mathrm{Sar}^{\text {ar }}$	$\begin{gathered} 18 \\ 2 \end{gathered}$	20 3	40	mm
Mounting distance between two read heads or two actuators	80	-	-	mm
EMC protection requirements	As per IEC/EN 60947-5-3			
LED indicators	STATE OUT/ERROR OUT/ERROR		ation ration ected ctivated tronics fault h-in operation	

1) Values at a switching current of 50 mA without taking into account the cable lengths.
2) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator.
3) The fault detection time is the time for the detection of an internal fault in the device. At least one of the semiconductor outputs is switched off safely.
4) After the operating voltage is switched on, the semiconductor outputs are switched off and the monitoring outputs are set LOW during the ready delay.
5) The dwell time of an actuator inside and outside the operating distance must be at least 0.5 s to ensure reliable detection of internal faults in the evaluation unit (selffmonitoring)
6) The values apply for surface installation of the actuator.

Ordering table

Series	Switch-on distance $\mathbf{s a O}_{\mathbf{a}}[\mathrm{mm}]$	Safety category	Item	Order No.
CES-A-C5...	20	3	CES-A-C5E-01	077750
		4	CES-A-C5H-01	091458

Wiring and block diagram CES-A-C5...

System functions safety switches CES-A-C5... and CES-A-S5..

Teach-in function for actuator

The actuator must be allocated to the evaluation unit using a teachin function before the system forms a functional unit.
During a teach-in operation, the safety outputs and the door monitoring output OUT are LOW, i.e. the system is in the safe state.

Teach-in function for first actuator

(default setting on delivery)
(1) Apply the operating voltage to the evaluation unit green LED flashes fast (approx. 4 Hz)
(2) Move actuator to the read head
(Observe distance < $\mathrm{S}_{\mathrm{a} 0}$)

- teach-in operation starts, green LED flashes slowly (approx. 1 Hz)
(3) Teach-in operation completed (after 60 seconds)
- green LED goes out
(4) To activate the actuator code from the teach-in operation in the evaluation unit, the operating voltage must then be switched off for min. 10 seconds.

Note

- Repeated teach-in of the same actuator on the same evaluation unit is not possible
- The number of teach-in operations on one evaluation unit is limited to a maximum of 8
- The evaluation unit can only be operated with the last actuator taught
- A teach-in operation is invalid if:
- The teach-in operation is cancelled before the green LED goes out
- The power supply is switched off during the teach-in operation
When switching on the evaluation unit (application of operating voltage), the STATE LED signals the number of possible remaining teach-in operations (see system status table)

Teach-in function for a new actuator

(1) Apply the operating voltage to the evaluation unit
(2) Move new actuator to the read head
(Observe distance < S ${ }_{\mathrm{a} 0}$)

- teach-in operation starts, green LED flashes (approx. 1 Hz)
(3) Teach-in operation completed (after 60 seconds)
- green LED goes out, new code saved, old code deactivated
(4) To activate the new actuator code from the teach-in operation in the evaluation unit, the operating voltage must then be switched off for min. 10 seconds.

Warning

- After the eighth teach-in operation or if an "old" actuator is placed against the read head, the system automatically switches to the teach-in mode. In both cases, a teach-in operation with a duration of 60 seconds is started; however, the last actuator code remains active (see status table) - a new code is not taught.

Non-contact safety switches CES-A-S5...

```
Standard housing according to IEC/EN 60947-5-2,
    IP67
Read head and evaluation unit integrated in the
    standard housing
Semiconductor output
Connection of the safety circuit using M12 plug
connector
```


Functional description

The non-contact safety switch CES-A-S5H-01 combines two different functions in one device:

- Safety function
- Identification function/position sensor

The safety function is the same as the functionality of the EUCHNER safety switch CES-A-C5H-01 in the compact housing with semiconductor output employing proven transponder technology:

- Two safety semiconductor outputs LA and LB signal the presence of a safety actuator and the closed position of the safety guard.
- Every safety actuator is unique, the actuator can be used with all non-contact EUCHNER safety switches CES.

The identification function or position sensor in the device is largely identical to the EUCHNER identification system CIS3 and its proven read head CIT3PL:

- Using 14 different position actuators, 14 different positions of a moving guard can be detected.

Every position actuator has a number that is saved in the integrated transponder.
For ease of use during installation and maintenance of the system, laser marking is used to apply the related transponder number in plain text to the housing of the position actuators. In addition, for clear differentiation between the actuators, different housing colors are used for safety actuators (red) and position actuators (green).

The related transponder number $2,3,4 \ldots 9, \mathrm{~A}, \mathrm{~B} \ldots \mathrm{~F}$ for the position actuator (in total 14 different dogs) is signaled to the higher level control system using the 4 semiconductor outputs D0, D1, D2, D3 in binary code. These data outputs have no safety function.
The position actuators cannot switch the safety outputs LA and LB. The safety outputs on the switch are only activated by the current safety actuator.
The safety actuator is always signaled on the data outputs as number 1 (0001)
(The no. 1 on the 4 data outputs corresponds to the OUT output on the EUCHNER safety switches CES-A-C5...).
Using the binary code 0000 it is signaled that neither the safety actuators nor a position actuator is within the operating distance of the read head (see pulse diagram on page 35).

Using 4 yellow LEDs (D0, D1, D2, D3) on the safety switch, the data outputs currently set are indicated visually based on the actuators within the operating distance.

The non-contact switch CES-A-S5H-01 has a large operating distance of 20 mm for the safety actuators and the position actuators. Compared to mechanical safety switches, significantly less effort is required here for the adjustment of the door guide.

The maximum relative speed of the position actuator towards the read head is extremely high and is max. $2.0 \mathrm{~m} / \mathrm{sec}$. To enable the higher level control system to reliably detect the signals read, the position actuators are "stretched" electronically, i.e. the signals remain set on the data outputs D0, D1, D2, D3 for an additional delay of approx. 0.2 seconds.

With conventional transponder systems, undefined states occur if the transponder is at the edge of the operating distance. These states manifest themselves in the form of irregular state changes and the flickering of the optical indicators.

The EUCHNER safety switches CES are equipped with a special internal circuit. This circuit provides exact operating points for the approach and removal (with shutdown hysteresis) of the actuators (transponder) with the following advantages:

- Reliable operation is ensured at all permissible movement speeds
- Sporadic failure to detect the transponder or the reading of incorrect data is effectively prevented.

If the actuator is positioned exactly at the limit of the switch-on distance, vibrations at the safety guard will not cause the machine to stop unintentionally.

A possible application example for the safety switch CES-A-S5H-01 is the monitoring of automatic roller doors.
Instead of fastening, adjusting and wiring several mechanical position switches as well as two electromechanical safety switches, it is only necessary to fasten the safety switch CES-A-S5H-01 (safety category 4) to the stationary part of the safety guard and connect it using a 12 -pin plug connector.
The position actuators (dogs) are mounted at the necessary positions of the moving part of the safety guard. The safety actuator is fitted with the safety guard in the closed position. As a result the roller door can be closed at high speed (max. $2.0 \mathrm{~m} / \mathrm{s}$). On the detection of the last position actuator, the number of the actuator is forwarded over the data outputs to the control system and the roller door speed reduced. When the safety guard (roller door) is in the closed position, the safety actuator is detected, the safety outputs on the CES-A-S5H-01 switched and the system can be started.

The fastening and wiring effort for the mechanical position switches is reduced to zero.
In addition, all further advantages of non-contact transponder technology such as freedom from wear, large operating distance with highly tolerant door guiding.

Your advantages

- Safety and identification functions integrated into one switch

D Detection of 14 different position actuators

- High approach speed $(2.0 \mathrm{~m} / \mathrm{s})$ of the position actuators
- Safety switch in standard housing according to EN 60947-5-2
- Read head and evaluation unit form a compact unit
- Relocation of the evaluation unit from the control cabinet to the system
- Space-saving in the control cabinet
- Decentralized wiring concept possible
- Two redundant design semiconductor outputs (safety outputs) with internal monitoring
- Connection using 12-pin plug connector
- Reduction of wiring faults during setup
- Safety category 4 according to EN 954-1
- BG approval (approval pending)

Safety Switch CES-A-S5H-01

Safety and identification functions

Read head and evaluation unit integrated in the standard housing
Semiconductor output
Connection using 12-pin plug connector (Plug connector see page 66)
In combination with safety actuator CES-A-BBA and position actuator CES-A-NBA-

Dimension drawing

Safety precautions

To ensure safety, both safety outputs ($L A$ and $L B$) must always be evaluated.

For a side approach direction for the actuator and safety switch, a minimum distance of $s=3 \mathrm{~mm}$ must be maintained so that the operating distance of the side lobes is not entered.

Switching characteristics

2 safety outputs (semiconductor outputs)
4 data outputs for actuator number (semiconductor outputs, not safety output)

Safety guard	
closed (actuator detected)	open (actuator not in the operating distance)
	Read head
$+\mathrm{LB} \ldots \ldots \mathrm{LB}$	$+\mathrm{LB}-1 / \mathrm{LB}$
24 V ———D0	24 V - - D0
$24 \mathrm{~V}-1$	$24 \mathrm{~V} \longrightarrow \quad-\mathrm{D} 1$
$24 \mathrm{~V}-\square \square \mathrm{D} 2$	$24 \mathrm{~V}-\square \mathrm{D} 2$

Notes on the electrical connection

- The operating voltage U_{B} is reverse polarity protected.
- The data outputs D0, D1, D2, D3 have no safety function.
- Both safety outputs LA and LB must be evaluated.
- The safety outputs LA and LB as well as the data outputs D0, D1, D2, D3 are short circuit-proof.
- All the electrical connections must either be isolated from the mains supply by a safety transformer according to IEC/EN 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Changing the approach direction

The active face of the read head can be adjusted in 5 directions. The face is marked with the EUCHNER logo. The center of the circle corresponds to the middle of the read head.

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Plastic PBT V0 GF20			
Dimensions	According to EN 60 947-5-2			
Weight	0,4			kg
Ambient temperature at $\mathrm{U}_{\mathrm{B}}=\mathrm{DC} 24 \mathrm{~V}$	-20	-	+55	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC/EN 60529	IP67			
Safety class according to IEC/EN 61558	III			
Installation position	Any			
Connection type	M23 plug connector, 12-pin			
Operating voltage U_{B} (reverse polarity protected, regulated, residual ripple $<5 \%$)	18	24	27	V DC
Current consumption	50			mA
External fuse (operating voltage)	0,25	-	8	A
Power supply for load U(+LA) / U(+LB)	18	-	27	V DC
Mounting distance between two read heads or actuators	80	-	-	mm
Classification according to IEC/EN 60947-5-3	PDF-M			
EMC protection requirements	As per IEC/EN 60947-5-3			
Safety outputs (LA / LB, 2 semiconductor outputs, p-switching, short circuit-proof, electrically decoupled)				
- Output voltage U(LA) / U(LB) ${ }^{11}$				
HIGH U(LA)	U(+LA) - 1,5	-	U(+LA)	
HIGH U(LB)	$U(+L B)-1,5$		U(+LB)	V DC
LOW U(LA) / U(LB)	0	-	1	
Switching current per safety output	1	-	400	mA
External fuse U(+LA) / U(+LB), safety circuit	400 mA medium slow-blow			
Utilization category according to IEC/EN 60947-5-2	DC-13 24V 400 mA			
Rated insulation voltage U_{i}	-	-	30	V
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$	-	-	1,5	kV
Resilience to vibration	According to IEC/EN 60947-5-2			
Switching delay from state change ${ }^{2)}$	-	-	180	ms
Fault detection time ${ }^{3 /}$	-	-	500	ms
Difference time between the two safety outputs	-	-	120	ms
Ready delay ${ }^{4 /}$			3	S
Dwell time ${ }^{5}$	0,5	-	-	S
Switching frequency	-	-	1	Hz
Operating distance for center offset $=0{ }^{6}$				
Switch-on distance $\mathrm{S}_{\mathrm{a}} 0$	15	20		
Switching hysteresis	2	3	-	mm
Safe switch-off distance $\mathrm{S}_{\text {ar }}$			40	
Data outputs (D0, D1, D2, D3)				
Semiconductor push-pull outputs short circuit-proof) - Output voltage HIGH - Output voltage LOW	$\begin{gathered} 0,8 \times U_{B} \\ 0 \end{gathered}$	-	$\begin{gathered} U_{B} \\ 2 \end{gathered}$	V DC
Load current per output			20	mA
Switch-on time-delay from state change (with position actuators)	4	-	9	ms
Switch-off time-delay from state change (with position actuators)	-	200	-	ms
Relative speed with position actuators	-	-	2	m / s
With permissible read distance s	6	-	10	mm
Mounting distance between position actuators or position actuators and safety actuators	75	-	.	mm
Operating distance at read distance $s=6 \ldots 10 \mathrm{~mm}^{6}$ - Side operating point on center offset - Switching hysteresis	$\begin{gathered} \pm 10 \\ 0,3 \end{gathered}$	$\begin{gathered} \pm 14 \\ 0,7 \end{gathered}$	-	mm

1) Values at a switching current of 50 mA without taking into account the cable lengths
2) Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator.
3) The fault detection time is the time for the detection of an internal fault in the device. At least one of the semiconductor outputs is switched off safely.
4) After the operating voltage is switched on, the semiconductor outputs are switched off and the monitoring outputs are set LOW during the ready delay.
5) The dwell time of an actuator inside and outside the operating distance must be at least 0.5 s to ensure reliable detection of internal faults in the evaluation unit (self-monitoring).
6) The values apply for surface installation of the actuator.

Ordering table

Wiring and block diagram CES-A-S5...

LEDs

Safety switch LED displays

LED labels	LED color	Significance
STATE	Green	Normal operation
	Green flashing	Teach-in operation
OUT/ERROR	Yellow	Safety actuator detected
	Red	Internal electronics error or invalid teach-in operation

Position sensor LED displays

LED labels	LED color	Significance
D0, D1, D2, D3	Yellow	Indication of the actuator number (binary code)

Allocation table

Allocation of the actuator numbers to the safety outputs and data outputs

Actuator	Safety outputs LA		Data outputs			
	LB	D3	D2	D1	D0	
Safety actuator	1	1	0	0	0	1
Actuator 2	0	0	0	0	1	0
Actuator 3	0	0	0	0	1	1
Actuator 4	0	0	0	1	0	0
Actuator 5	0	0	0	1	0	1
Actuator 6	0	0	0	1	1	0
Actuator 7	0	0	0	1	1	1
Actuator 8	0	0	1	0	0	0
Actuator 9	0	0	1	0	0	1
Actuator A	0	0	1	0	1	0
Actuator B	0	0	1	0	1	1
Actuator C	0	0	1	1	0	0
Actuator D	0	0	1	1	0	1
Actuator E	0	0	1	1	1	0
Actuator F	0	0	1	1	1	1

Pulse diagram

Read head CES-A-LNA...

Cube-shaped design $42 \times 25 \mathrm{~mm}$
Hard-wired cable
In combination with evaluation units CES-A-A... and actuators CES-A-BBA

Dimension drawing type CES-A-LNA...
 included

Notes on installation

- The connection cable must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly.
Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed.
-They are not used as a mechanical stop.
-They are positively mounted on the safety guard, e.g. by using the safety screws included.

Safety precautions

- If the read head and/or actuator is/are installed flush, the switching distance changes as a function of the installation depth and the safety guard material.

Typical operating distance

Technical data

1) The dwell time is the time that the actuator must be inside or outside the operating distance
2) These values apply for flush installation of the read head and the actuator in aluminum.
3) These values apply for surface installation of the read head and the actuator.

Pin assignment

Ordering table

Series	Cable type Cable length „" (meters)	$\begin{aligned} & V=P V C \\ & P=P U R \end{aligned}$	Item	Order No.
CES-A-LNA...	-05	V	CES-A-LNA-05V	071845
	-10	V	CES-A-LNA-10V	071846
	-15	V	CES-A-LNA-15V	071847
	-25	V	CES-A-LNA-25V	071975
	-50	V	CES-A-LNA-50V	077795
	-05	P	CES-A-LNA-05P	077806
	-10	P	CES-A-LNA-10P	077807
	-15	P	CES-A-LNA-15P	084682

Read head CES-A-LNA-SC

Cube-shaped design $42 \times 25 \mathrm{~mm}$
M8 plug connector (snap-action and screw terminals)
(M8 connection cable see page 64)
In combination with evaluation units CES-A-A... and actuators CES-A-BBA

Dimension drawing type CES-A-LNA-SC

Cable outlet with angled
plug connector

Notes on installation

- The connection cable must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly (see page 66). Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed.
-They are not used as a mechanical stop.
-They are positively mounted on the safety guard, e.g. by using the safety screws included.

Safety precautions

- If the read head and/or actuator is/are installed flush, the switching distance changes as a function of the installation depth and the safety guard material.

Typical operating distance

Technical data

1) The dwell time is the time that the actuator must be inside or outside the operating distance
2) These values apply for flush installation of the read head and the actuator in aluminum.
3) These values apply for surface installation of the read head and the actuator.

Pin assignment

Read head with plug connector

Ordering table

Item	Order No.
CES-A-LNA-SC	077715

Read head CES-A-LCA...

Cube-shaped design $42 \times 25 \mathrm{~mm}$

- Plastic PE-HD housing material, suitable for use in aggressive media (e.g. acids, alkaline)
In combination with evaluation units CES-A-A... and actuators CES-A-BCA

Dimension drawing type CES-A-LCA...

Notes on installation

- The flat seal provided must be used during assembly.
- The connection cable must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly (see page 66). Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{20}$ or closer (see technical data) with the safety guard closed. - They are not used as a mechanical stop. They are positively mounted on the safety guard, e.g. by using the safety screws included.

Safety precautions

2 safety screws M4x14
included
Flat seal included

Technical data

1) The dwell time is the time that the actuator must be inside or outside the operating distance.
2) These values apply for flush installation of the read head and the actuator in aluminum.
3) These values apply for surface installation of the read head and the actuator.

Pin assignment

Ordering table

Series	Cable type Cable length "I" (meters)	V = PVC $\mathbf{P}=$ PUR	Item	Order No.
CES-A-LCA...	-10	V	CES-A-LCA-10V	088785

Read head series CES-A-LMN-SC

Cylindrical design M12
M8 plug connector (snap-action and screw terminals) (M8 connection cable see page 64)
In combination with evaluation units CES-A-A... and actuators CES-A-BMB

Dimension drawing type CES-A-LMN-SC

${ }^{11}$ Clear zone (area of the active face without metal housing)

Notes on installation

- The connection cable must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly (see page 66). Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed.
- They are not used as a mechanical stop.
-They are positively connected to the safety guard, e.g. by using adhesive.
- The read head is allowed to be installed as a maximum up to the clear zone (area of the active face without metal housing).

Safety precautions

- If the read head is installed flush, the switching distance changes as a function of the installation depth and the safety guard material.

Typical operating distance

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Nickel-plated CuZn housing sleeve Plastic PBT GF20 cap			
Dimensions	M12 x 1, length 38			mm
Weight (incl. 10 m cable)	0.2			kg
Ambient temperature	-25	-	+70	${ }^{\circ} \mathrm{C}$
Degree of protection	\|P67			
Installation position	Any			
Method of operation	Inductive			
Dynamic data transfer to the evaluation unit	2			kbps
Power supply	Via evaluation unit			
Dwell time ${ }^{1)}$	0.5	-	-	S
Operating distance for center offset $\mathrm{m}=0^{2)}$ (Evaluation unit CES-A-ABA-01 with CES-A-BMB) - Safe switch-off distance Sar Cable length I $=0$ to 10 m - Switch-on distance Sa_{a} - Switching hysteresis	$\begin{aligned} & 1.6 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 0.3 \\ & \hline \end{aligned}$	8.5	mm
Operating distance for center offset $\mathrm{m}=0^{2)}$ (Evaluation unit CES-A-ABA-01B/CES-A-AEA-04B with CES-A-BMB) - Safe switch-off distance $S_{a r}$ Cable length $\mathrm{I}=0$ to 10 m - Switch-on distance Sa_{a} - Switching hysteresis	$\begin{aligned} & 3.5 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{gathered} 5 \\ 0.3 \end{gathered}$	10	mm
Connection	M8 plug connector (snap-action and screw terminals), 3-pin			
Connection cable	-	-	15	m

1) The dwell time is the time that the actuator must be inside or outside the operating distance.
2) These values apply for surface installation of the read head in steel.

Pin assignment

Read head with plug connector

Evaluation unit CES-A-ABA...

View
on plug connector
for the read head

Evaluation unit CES-A-AEA on plug connector for the read head

Ordering table

Item

Order No.
CES-A-LMN-SC

Actuator CES-A-BBA / CES-A-BCA

Cube-shaped design $42 \times 25 \mathrm{~mm}$
CES-A-BCA suitable for use in aggressive media
(e.g. acids, alkaline)

In combination with evaluation units CES-A-A..., read head CES-A-LNA... and safety switches CES-A-C5...

Dimension drawing CES-A-BBA

Dimension drawing CES-A-BCA

2 safety screws M4x14
included

Notes on installation

> Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed.
-They are not used as a mechanical stop.
-They are positively mounted on the safety guard, e.g. by using the safety screws included.

- CES-A-BCA: The flat seal provided must be used during assembly.

Technical data

Parameters		Value			Unit
		min.	typ.	max.	
Housing material	CES-A-BBA	Fortron, reinforced thermoplastic, fully encapsulated			
	CES-A-BCA	Plastic PE-HD without reinforcing, fully encapsulated			
Flat seal material	CES-A-BCA	Fluororubber 75 FPM 4100			
Dimensions		$42 \times 25 \times 12$			mm
Weight		0.02			kg
Ambient temperature	CES-A-BBA	-25	-	+70	${ }^{\circ} \mathrm{C}$
	CES-A-BCA	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection		IP67			
Installation position		Active face opposite read head			
Power supply		Inductive via read head			
Dwell time ${ }^{1)}$		0.5	-	-	s

1) The dwell time is the time that the actuator must be inside or outside the operating distance.

Ordering table

Item	Order No.
CES-A-BBA	071840
CES-A-BCA	(flat seal included)

Position Actuator CES-A-NBA-.

In combination with safety switch CES-A-S5H-01

Dimension drawing

Notes on installation

Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0,8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed.
They are not used as a mechanical stop.
-They are positively mounted on the safety guard, e.g. by using the safety screws included.

2 safety screws M4x14 are supplied

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Fortron, reinforced thermoplastic, fully encapsulated			
Housing color	Green			
Dimensions	$42 \times 25 \times 12$			mm
Weight	0,02			kg
Ambient temperature	-25	-	+70	${ }^{\circ} \mathrm{C}$
Degree of protection	IP67			
Installation position	Active face opposite read head			
Power supply	Inductive via read head			
Storage capacity	4 bits (1 BCD digit)			S
Data retention time ($\mathrm{T}=22^{\circ} \mathrm{C}$)	20 years			

Ordering table

Item	Actuator number	Order No.
CES-A-NBA-2	2	090682
CES-A-NBA-3	3	090683
CES-A-NBA-4	4	090684
CES-A-NBA-5	5	090685
CES-A-NBA-6	6	090686
CES-A-NBA-7	7	090687
CES-A-NBA-8	8	090688
CES-A-NBA-9	9	090689
CES-A-NBA-A	A	090690
CES-A-NBA-B	B	090691
CES-A-NBA-C	C	090692
CES-A-NBA-D	D	090693
CES-A-NBA-E	E	090694
CES-A-NBA-F	F	090695

Actuator CES-A-BDA

Round design $\varnothing 20 \mathrm{~mm}$
In combination with evaluation units CES-A-ABA-O1 and read head CES-A-LNA/LCA...

Dimension drawing

Typical operating distance

With evaluation unit CES-A-ABA-01 and actuator CES-A-LNA

Notes on installation

- Assembly on or in aluminum is not allowed.
- The safety guard must be designed so that: -A hazard is excluded up to a distance of $\mathrm{S}_{\mathrm{ar}}=24 \mathrm{~mm}$ (safe switching distance).
In the case that the adhesive joint for the actuator breaks, it is ensured that the actuator leaves the operating distance with a distance $>\mathrm{S}_{\mathrm{ar}}$ when the safety guard is opened.
- Actuator and read head must be fitted so that:
The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a} 0}$ or closer (see technical data) with the safety guard closed. - They are not used as a mechanical stop.
- For a side approach direction for the actuator and read head, a minimum distance of $s=1$ mm must be maintained so that the operating distance of the side lobes is not entered.

Switching distances with read head cable length $\mathbf{0}$ to $\mathbf{2 5} \mathbf{m}^{1)}$

Surrounding material / i	tion m	Non-metallic	Steel, surfa	Steel, flush	
Switch-on distance Sa_{a}	min./typ.	6.0 / 7.0	3.6 / 4.4	3.0 / 3.6	mm
Switching hysteresis	min./typ.	0.5 / 1.5	0.4 / 1.2	0.3 / 1.0	
Safe switch-off distance $\mathrm{S}_{\text {ar }}$	max.	24			

1) With a cable length from 25 to 50 m , the values for the switch-on distance and the switching hysteresis reduce to 80% of the value given.

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Plastic PC			
Dimensions	$\varnothing 20 \times 2.2$			mm
Weight	0.0008			kg
Ambient temperature	-25		+70	${ }^{\circ} \mathrm{C}$
Degree of protection	IP67			
Installation position	Active face opposite read head			
Power supply	Inductive via read head			
Dwell time ${ }^{2)}$	0.5	-	-	s

2) The dwell time is the time that the actuator must be inside or outside the operating distance.

Ordering table

Actuator CES-A-BMB

Cylindrical design M12 x 0.75
In combination with evaluation units CES-A-A..., read head CES-A-LMN-SC and read head CES-A-LNA.../LCA... (operating distance on request)

Dimension drawing

Notes on installation

- Actuator and read head must be fitted so that:
-The active faces (front faces) are at the switch-on distance $0.8 \times \mathrm{S}_{\mathrm{a0}}$ or closer (see technical data) with the safety guard closed.
- They are not used as a mechanical stop.
- They are positively connected to the safety guard, e.g. by using adhesive.
- The actuator can be screwed into the M12 $\times 0.75$ thread provided with the aid of an insertion tool (Order No. 037 662).
- Flush installation of the actuator in steel is allowed.

Technical data

Parameters	Value			Unit
	min.	typ.	max.	
Housing material	Stainless steel, Niro			
Dimensions	M12 x 0.75, depth 6			mm
Weight	0.002			kg
Ambient temperature	-25	-	+70	${ }^{\circ} \mathrm{C}$
Degree of protection	IP67			
Installation position	Active face opposite read head			
Power supply	Inductive via read head			
Dwell time ${ }^{1)}$	0.5	-	-	S

1) The dwell time is the time that the actuator must be inside or outside the operating distance.

Ordering table

Item	Order No.
CES-A-BMB	077791

Non-contact safety switches CEM

With transponder coding

Integrated solenoid (without monitoring of the guard locking) Up to safety category 4

Functional description

Non-contact safety switches CES have no guard locking. Therefore, there is a risk that the machining process may be interrupted if the safety door is opened unintentionally.
The safety switch CEM is the ideal solution for all customers who must achieve a high level of safety when securing a safety guard and also need guard locking to protect the process.
The guard locking on the safety switch CEM is not monitored by the system as per EN 1088. As a consequence, the switch can be used in all applications in which there are no hazardous, overtravel machine movements.
If the overtravel machine movements do not represent a hazard for the operator, the safety switch CEM can be used.

Design and functionality

The safety switch CEM comprises a CEM actuator and read head. A CES read head and a solenoid are integrated into the CEM read head. The CEM read head is connected to the CES evaluation unit with a round M8 plug connector. The CEM actuator of identical design also has a metal plate in addition to the transponder; this plate acts as an armature for the solenoid coil.
When the safety door is closed, the CEM actuator enters the operating distance of the CEM read head. The transponder signals are transferred, and then the evaluation unit closes the safety contacts and sets the OUT output "high". By applying voltage to the solenoid for the CEM read head, strong magnetic forces can be generated between the coil (in the read head) and the armature (in the actuator).
Depending on the switch design - EUCHNER provides two different housing sizes - adhesive forces of approx. 500 N or 1000 N respectively are applied between the CEM actuator and the CEM read head. Practical experience has shown that these magnetic adhesive forces effectively prevent any opening, even if the user applies an enormous amount of effort.

Use of the switch even in extremely harsh environments

The safety switches CEM have an extremely robust design. The high degree of protection IP 67 and the metal housing allow the switch to be used in extremely harsh environments. The armature plate for the CEM actuator has spring bearings and can be tilted up to an angle of $\pm 4^{\circ}$. Therefore, when a maladjusted safety door is closed, the CEM actuator adjusts itself independently to the surface of the CEM read head. It is not necessary to readjust the safety door when using the safety switch CEM. When mounting the safety switch CEM, it is only necessary to ensure that the CEM actuator is guided in front of the CEM read head when the door is closed, so that the strong adhesive forces can be generated.
Because the switch has only a small number of moving parts which can wear, the mechanical life of the CEM switch is virtually unlimited.

Different designs

EUCHNER provides two CEM housing designs. The two versions differ in their dimensions, according to the size of the solenoid. The safety switches CEM with an adhesive force of 1000 N are used with large, heavy safety doors. This read head has an additional M8 plug connector for connecting an external LED display. When voltage is applied to the coil, it is indicated to the user that the safety door is in the locking position. An LED display in the immediate vicinity of the door handle is extremely advantageous, especially in the case of large, solid doors.
The smaller version of the safety switch CEM has an adhesive force of approx. 500 N . It is suitable for securing smaller safety doors and safety flaps.
An LED indicator in the M8 plug on the CEM A LEO5K S2 read head indicates to the user when voltage is applied to the solenoid.

Highest possible level of safety is achieved

EUCHNER offers various evaluation units for the safety switch CEM:

- For the connection of one read head, the evaluation unit CES-A-ABA-01B (safety category 3)
- For the connection of one/two read heads, the evaluation unit CES-A-ABA-O2B (safety category 4)
- For the connection of up to four read heads, the evaluation unit CES-A-ABA-04B (safety category 4).

In combined operation, it is possible to connect both CES read heads (without guard locking) and CEM read heads to an evaluation unit.
In the case of relatively large systems with several safety doors to be monitored, it is advisable to lock the frequently used doors during the production cycle - e.g. the doors in a cycling loading station - to prevent the process being interrupted if the door is opened. On doors that are not opened very often - e.g. maintenance doors - a safety switch without guard locking is adequate in many applications.

As the safety switch CEM only safely monitors the position of the door and not the function of the guard locking, the switch can be used in all systems without dangerous, overtravel machine movements. The solenoid has the task of protecting the process; it effectively prevents the unintentional opening of the safety guard by the user.

With the two safety switches CES and CEM, EUCHNER has launched on the market a totally new safety concept that is significantly different to competitive solutions.

Your advantages

- Safety switch with transponder coding
- Every actuator is unique
- Absolutely secure against tampering
- Very high level of safety with one switch
- With evaluation unit CES-A-ABA-01B safety category 3 according to EN 954-1
- With evaluation unit CES-A-AEA-O2B and CES-A-AEA-04B safety category 4 according to EN 954-1
- Integrated solenoid for process protection
- Unintentional opening of the safety door is prevented
- Safety switch and solenoid form a single compact unit
- High adhesive forces from the solenoids (500 N or 1000 N)
- Protection of the machining process
- Simple operating principle
- No wearing parts
- Robust housing for harsh environments
- Connection via M8 plug connector
- Low wiring effort
- Easy to replace if servicing is required
- Approval from BG

Read head CEM-A-LE05K-S2

Adhesive force 500 N
In combination with evaluation unit CES-A-ABA-01B/
CES-A-AEA.../CES-A-F1B-01B-AS1 and actuator CEM-A-BE05
M8 plug connector
Connection cable for evaluation unit, see page 64
Connection cable for solenoid operating voltage, see page 62

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/IEC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Typical operating distance

Note

- The actuators and read heads CEM... can only be used with the evaluation units given above.
- The plug connectors S1 and S3 are suitable for snap-action and screw terminals.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

- The connection cable to the CES evaluation unit must only must be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly (see page 66). Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
- They are positively connected to the safety guard, e.g. by using safety screws.
When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Direction of opening

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, read head CES	Plastic (PPS)			
Solenoid material	Galvanized steel			
Weight	Approx. 0.3			kg
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Any			
Solenoid				
Adhesive force in axial direction	500			N
Adhesive force due to remanence ${ }^{1)}$	Approx. 15			N
Solenoid center offset max.	± 2.5			mm
Solenoid operating voltage U_{B} plug S1	$24+10 \% /-15 \%$			V DC
Reverse polarity protection	Yes			
Current consumption	100			mA
Power consumption	Approx. 2.5			W
Solenoid operating voltage connection	M8 plug connector (plug), 4-pin Yellow LED integrated in the plug connector (see circuit diagram)			
Read head				
Operating distance for center offset $\mathrm{m}=0$ - Safe switch-off distance Sar	-	-	20	
Cable length I $=0$ to 25 m - Switch-on distance Sa0 - Switching hysteresis	-	$\begin{gathered} 2 \\ 0.7 \end{gathered}$	-	mm
Cable length I $=25$ to 50 m - Switch-on distance $\mathrm{Sa}_{\mathrm{a} 0}$ - Switching hysteresis	-	$\begin{aligned} & 1.6 \\ & 0.6 \end{aligned}$	-	
Connection evaluation unit plug S3	M8 plug connector (plug), 3-pin			
Connection cable	-	-	50	m

1) The residual remanence disappears immediately when the door is opened and over time in solenoids through which there is no current flow.

Pin assignment

Ordering table

Read head CEM-A-LE05R-S2

Adhesive force 500 N
Without remanence
In combination with evaluation unit CES-A-ABA-01B/
CES-A-AEA.../CES-A-F1B-01B-AS1 and actuator CEM-A-BE05
M8 plug connector

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/IEC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Typical operating distance

Note

- The actuators and read heads CEM... can only be used with the evaluation units given above.
- The plug connectors S1 and S3 are suitable for snap-action and screw terminals.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

- The connection cable to the CES evaluation unit must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly. Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-They are positively connected to the safety guard, e.g. by using safety screws.
-When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Direction of opening

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, read head CES	Plastic (PPS)			
Solenoid material	Galvanized steel			
Weight	Approx. 0.3			kg
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Any			
Solenoid				
Adhesive force in axial direction	500			N
Adhesive force due to remanence	Approx. 0.5			N
Solenoid center offset max.	$\pm 2,5$			mm
Solenoid operating voltage U_{B} plug S1	20.4	24	26.4	V DC
Reverse polarity protection	Yes			
Current consumption at connection S 1.2 (U_{B}) at connection S 1.1 (Mon)	$\begin{gathered} 100 \\ 15 \end{gathered}$			mA
Power consumption	Approx. 2.8			W
Switch-off delay	500			ms
Solenoid operating voltage connection	M8 plug connector (plug), 4-pin Yellow LED integrated in the plug connector (see circuit diagram)			
Read head				
Operating distance for center offset $\mathrm{m}=0$ - Safe switch-off distance S_{ar}	-	-	20	
Cable length I = 0 to 25 m - Switch-on distance Sa_{a} - Switching hysteresis	-	$\begin{gathered} 2 \\ 0.7 \end{gathered}$	-	mm
Cable length I = 25 to 50 m - Switch-on distance $\mathrm{Sa}_{\mathrm{a} 0}$ - Switching hysteresis	-	$\begin{aligned} & 1.6 \\ & 0.6 \\ & \hline \end{aligned}$	-	
Connection evaluation unit plug S3	M8 plug connector (plug), 3-pin			
Connection cable	-	-	50	m

Pin assignment

Ordering table
Item Adhesive force [N]

Order No.
CEM-A-LE05R-S2
500
095792

Read head CEM-A-LH1OK-S3

Adhesive force 1000 N
In combination with evaluation unit CES-A-ABA-O1B/
CES-A-AEA.../CES-A-F1B-O1B-AS1 and actuator CEM-A-BH10
Connection for external LED indicator
M8 plug connector
Connection cable for evaluation unit, see page 64
Connection cable for external LED indicator, see page 63
Connection cable for solenoid operating voltage, see page 62

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/IEC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Typical operating distance

Note
> The actuators and read heads CEM... can only be used with the evaluation units given above.

- The plug connectors S1 and S3 are suitable for snap-action and screw terminals.
- The plug connector S1 does not have an integrated LED.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

- The connection cable to the CES evaluation unit must only must be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly (see page 66).

Intermediate terminals must not be used.

- Actuator and read head must be fitted so that:
- They are positively connected to the safety guard, e.g. by using safety screws.
-When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Direction of opening

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, read head CES	Plastic (PPS)			
Solenoid material	Galvanized steel			
Weight	Approx. 0.9			kg
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Any			
Solenoid				
Adhesive force in axial direction	1000			N
Adhesive force due to remanence ${ }^{1 /}$	Approx. 60			N
Solenoid center offset max.	± 2.5			mm
Solenoid operating voltage U_{B} plug 1	$24+10 \% /-15 \%$			V DC
Reverse polarity protection	Yes			
Current consumption	200			mA
Power consumption	Approx. 5			W
Solenoid operating voltage connection	M8 plug connector (plug), 4-pin			
External LED indicator connection	M8 plug connector (socket), 4-pin			
Read head				
Operating distance for center offset $\mathrm{m}=0$ - Safe switch-off distance S_{ar}	- -		20	mm
Cable length I $=0$ to 25 m - Switch-on distance $\mathrm{S}_{\mathrm{a} 0}$ - Switching hysteresis	-	$\begin{gathered} 2 \\ 0.7 \end{gathered}$	-	
Cable length I = 25 to 50 m - Switch-on distance Sa_{a} - Switching hysteresis	-	$\begin{aligned} & 1.6 \\ & 0.6 \\ & \hline \end{aligned}$	-	
Connection evaluation unit plug S3	M8 plug connector (plug), 3-pin			
Connection cable	-	-	50	m
Connection external LED indicator plug S2				
Current consumption	-	-	500	mA

1) The residual remanence disappears immediately when the door is opened and over time in solenoids through which there is no current flow.

Pin assignment

Solenoid operating voltage
S1.1
S1.2
S1.3
S 1.4

S2
S3
S1

S3/M8 plug

Ordering table

Read head CEM-A-LH1OR-S3

Adhesive force 1000 N
Without remanence
In combination with evaluation unit CES-A-ABA-O1B/
CES-A-AEA.../CES-A-F1B-O1B-AS1 and actuator CEM-A-BH10
Connection for external LED indicator
M8 plug connector

Dimension drawing

Notes on the electrical connection

- All the electrical connections must either be isolated from the mains supply by a safety transformer according to EN/EC 61558 with limited output voltage in the event of a fault, or by other equivalent isolation measures.
- If a common power supply is used, all the inductive and capacitive loads (e.g. contactors) connected to the power supply must be connected to appropriate interference suppression units.

Typical operating distance

Note

- The actuators and read heads CEM... can only be used with the evaluation units given above.
- The plug connectors S1 and S3 are suitable for snap-action and screw terminals.
- The plug connector S 1 does not have an integrated LED.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

- The connection cable to the CES evaluation unit must only be extended using EUCHNER plug connectors and adequate consideration must be given to EMC during assembly.
Intermediate terminals must not be used.
- Actuator and read head must be fitted so that:
-They are positively connected to the safety guard, e.g. by using safety screws.
-When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Direction of opening

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, read head CES	Plastic (PPS)			
Solenoid material	Galvanized steel			
Weight	Approx. 0.9			kg
Ambient temperature	-25		+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Any			
Solenoid				
Adhesive force in axial direction	1000			N
Adhesive force due to remanence	Approx. 0.7			N
Solenoid center offset max.	± 2.5			mm
Solenoid operating voltage U_{B} plug S1	20.4	24	26.4	V DC
Reverse polarity protection	Yes			
Current consumption at connection $\mathrm{S} 1.2\left(\mathrm{U}_{\mathrm{B}}\right)$ at connection S 1.1 (Mon)	15 (without external LED)			mA
Power consumption	Approx. 5.8			W
Switch-off delay	750			ms
Solenoid operating voltage connection	M8 plug connector (plug), 4-pin			
External LED indicator connection	M8 plug connector (socket), 4-pin			
Read head				
Operating distance for center offset $\mathrm{m}=0$ - Safe switch-off distance $\mathrm{Sar}_{\mathrm{ar}}$	-		20	mm
Cable length I $=0$ to 25 m - Switch-on distance $\mathrm{Sa}_{\mathrm{a} 0}$ - Switching hysteresis	-	$\begin{gathered} 2 \\ 0.7 \end{gathered}$	-	
Cable length I = 25 to 50 m - Switch-on distance $\mathrm{Sa}_{\mathrm{a} 0}$ - Switching hysteresis	-	$\begin{aligned} & 1.6 \\ & 0.6 \end{aligned}$	-	
Connection evaluation unit plug S3	M8 plug connector (plug), 3-pin			
Connection cable	-	-	50	m
Connection external LED indicator plug S2				
Current consumption	-	-	500	mA

Pin assignment

Ordering table

External LED indicator connection

S2.1	-	LED +UB
S2.2	-	-
S2.3	-	LED 0 V
S2.4	-	-

S3/M8 plug

Wiring and block diagram CEM
(connection of read head CEM-A-LD4-S2 to evaluation unit CES-A-AEA-04B)

Connection variants read head CEM-A-LEO5K-S2

Cable outlet, straight plug connector

Cable outlet, angled plug connector
\square
Connection cable
Solenoid operating voltage

Connection cable Evaluation unit CES-A-KWB...

Connection variants read head CEM-A-LH1OK-S3

Cable outlet, straight plug connector

Actuator CEM-A-BE05

Adhesive force 500 N
In combination with read head CEM-A-LEO5K-S2 or CEM-A-LE05R-S2

Dimension drawing

Note

- The actuators CEM... can only be used with the evaluation units given above.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

- Actuator and read head must be fitted so that:
- They are positively connected to the safety guard, e.g. by using safety screws.
-When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, actuator CES	Plastic (PPS)			
Solenoid mating plate material	Galvanized steel			
Weight	Approx. 0.18			kg
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Active face opposite read head			
Adjustment angle (around point X , see dimension drawing)	± 4			-

Ordering table

Item Order No.
CEM-A-BE05

Actuator CEM-A-BH1O

Adhesive force 1000 N
In combination with read head CEM-A-LH1OK-S3 or CEM-A-LH1OR-S3

Dimension drawing

Note

- The actuators CEM... can only be used with the evaluation units given above.
- For detailed information see the operating instructions for the CES evaluation unit used.

Notes on installation

$>$ Actuator and read head must be fitted so that:
They are positively connected to the safety guard, e.g. by using safety screws.
When the safety door is opened, the actuator is moved in the axial direction (frontal) away from the read head.

Safety precautions

- The surface of the solenoid and the mating plate may become hot.
Protection against accidental contact or adequate heat dissipation must be provided by mounting the read head on metal.
- The safety switch CEM... with solenoid is not allowed to be used for the protection of personnel as per EN 1088.

Technical data

Parameters	Value			Unit
General	min.	typ.	max.	
Housing material	Aluminum			
Material, actuator CES	Plastic (PPS)			
Solenoid mating plate material	Galvanized steel			
Weight	Approx. 0.3			kg
Ambient temperature	-25	-	+50	${ }^{\circ} \mathrm{C}$
Degree of protection according to IEC 60529	IP67			
Installation position	Active face opposite read head			
Adjustment angle (around point X , see dimension drawing)	± 4			。

Ordering table

Item	Order No.
CEM-A-BH10	095175

Accessories

Connection cable with M8 plug connector for solenoid operating voltage on read head CEM

Technical data

Parameters	Value
Plug connector	4-pin M8 female connector, screw terminals
	Plug housing, black PUR
	Union nut, nickel-plated CuZn
Connection cable	$4 \times 0.25 \mathrm{~mm}^{2}$ screened, $\varnothing 5.0 \mathrm{~mm}$, outer sheath PVC
	Bending radius 70 mm min.

Ordering table

Plug connector	Cable length "I" (meters)	Cable type V=PVC	Order No.
straight	-05	V	088813
	-10	V	088814
	-15	V	088815
angled	-25	V	095035

Connection cable with M8 plug connector for LED indicator on read head CEM-A-LH1OK-S3

Technical data

Parameters	Value
Plug connector	4-pin M8 plug, straight, screw terminals
	Plug housing, black PUR
	Union nut, nickel-plated CuZn
Connection cable	$4 \times 0.25 \mathrm{~mm}^{2}$ screened, $\varnothing 5.0 \mathrm{~mm}$, outer sheath PVC
	Bending radius 70 mm min.

Ordering table

Plug connector	Cable length "I" (meters)	Cable type V=PVC	Order No.
	-02	V	088841
straight	-05	V	088842
	-10	V	088843
angled	-15	V	088844

Connection cable with M8 plug connector for read head CES-A-L... and CEM-A-L

Angled plug connector

Technical data

Parameters
Plug connector

Value

3-pin M8 female connector, straight Screw terminals
Knurled nut not connected to cable screen
$2 \times 0.25 \mathrm{~mm}^{2}$ screened, $\varnothing 4.6 \mathrm{~mm}$, outer sheath PVC
$2 \times 0.25 \mathrm{~mm}^{2}$ screened, $\varnothing 4.8 \mathrm{~mm}$, outer sheath PUR, suitable for drag chain
max. 50 m
taking into account the switching distance

Ordering table

Plug connector	Cable length "I" (meters)	Cable type V=PVC / P=PUR	Type designation	Order No.
straight	-03	V	CES-A-KSB-03V	077935
	-05	V	CES-A-KSB-05V	077793
	-10	V	CES-A-KSB-10V	077767
	-20	V	CES-A-KSB-20V	077716
	-25	V	CES-A-KSB-25V	077717
	-50	V	CES-A-KSB-50V	077718
	-05	P	CES-A-KSB-05P	084762
	-10	P	CES-A-KSB-10P	084763
	-15	P	CES-A-KSB-15P	084764
	-20	P	CES-A-KSB-20P	084765
	-25	P	CES-A-KSB-25P	084766
	-50	P	CES-A-KSB-50P	084767
angled	-10	V	CES-A-KWB-10V	084701

Connection cable with M12 plug connector for safety switch CES-A-C5...

Safety switch CES-A-C5...
Voltage drop as a function of switching current and cable length (examples)

Switching current $[\mathrm{mA}]$	Cable length "I" $[\mathrm{m}]$	Voltage drop Output [V]	Max. voltage drop Cable [V]	Max. voltage drop Total [V]
6 (safety control system with pulsed signals)	$1-100$	1.4	0.1	1.5
	$101-300$	1.4	0.4	1.8
50 (safety relay)	$1-15$	$16-50$	1.5	0.2
	$51-100$	1.5	0.5	1.7
	$101-300$	$1-15$	1.5	1.0
400	$16-50$	1.7	3.0	2.0
(e.g. small contactor)	$51-100$	1.7	1.2	3.5
	$101-300$	1.7	4.0	2.9

Technical data
Parameters

Value

Plug connector
8-pin M12 female connector, straight
Screw terminals
Knurled nut electrically connected to cable screen
Connection cable
$8 \times 0.25 \mathrm{~mm}^{2}$ screened
Outer sheath PVC
Cable length
Max. 300 m
Taking into account the voltage drop due to the cable resistance (see table)

Ordering table

Cable length "I"	Order No.
5 m	077751
10 m	077752
15 m	077753
20 m	077871
25 m	077872
50 m	077873

Plug connector for safety switch CES-A-S5...

Item

Order No.
Plug connector for safety switch CES-A-S5...

Plug connector for read head CES-A-L...

Using EUCHNER couplings / plug connectors, the user can cut the read head cable to size on site at any point and connect the couplings / plug connectors.

Note

The connection cable for the read head can only be extended using these self-assembly couplings / plug connectors under the following conditions:

- The total maximum cable length is 50 m , taking into account the switch-on distance.
- The cable specified by EUCHNER must be used for the extension (screened, conductor cross-section $2 \times 0.25 \mathrm{~mm}^{2}$).
- The plug connector housing must be electrically isolated from the machine ground.

Technical data

Parameters

Housing material	CuZn, matt chromium-plated
Degree of protection according	IP 65
to EN 60529 (inserted)	

Ordering table

Item	Order No.
Flange socket KD4C1851	077434
Female connector BS4C1851	077435

Safety screws

Screw type	Use	Packaging unit	Type	Order No.
M4x14	for read head CES-A-L... for read head CES-A-B... for actuator CES-A-BBA	20 pieces	M4x14-CES $/ N 20$	071863

Insertion tool for actuator CES-A-BMB

With the aid of the insertion tool, the actuator CES-A-BMB (cylindrical design) can be screwed into a prepared M12 $\times 0.75$ thread in safety doors.

Ordering table

Item	Order No.
Insertion tool for actuator CES-A-BMB	037662

Appendix

Definition of terms
 Index

Definition of terms

Door monitoring output

Dwell time

Fault detection time

PDF
PDF-M

PDF-S

Safety class III

Safety extra-low voltage

Safety output

$S_{a r}$
$S_{a 0}$

Switching delay from

state change

The door monitoring output is not a safety-related output; it may not be connected to the safety circuit. The door monitoring output is generally connected to a higher-level control system to indicate the position of the doors (open/closed) on a visual display.

The dwell time is the time that the actuator must be inside or outside the operating distance.
The fault detection time is the time for the detection of an internal fault in the device. At least one of the relay outputs is opened safely. The welding of one of the relay contacts is only detected after the safety guard is opened.

Proximity device with defined behavior under fault conditions (see EN 60 947-5-3).
PDF proximity devices with automatic control that do not lose their defined behavior in spite of several faults (see EN 60 947-5-3).

PDF proximity devices that do not lose their defined behavior in spite of a single fault (see EN 609475 3).

Equipment of safety class III is equipment on which protection against electric shock is based on safety extra-low voltage and is equipment in which no voltages higher than the safety extralow voltage are produced.

Voltage of a magnitude that does not pose an immediate risk to people. It provides safe electrical isolation from higher voltage power circuits and is used isolated from ground.

The safety output is a safety-related output that may be connected to the safety circuit. A safety output can be switched via relay contacts or semiconductor elements.

Assured switch-off distance S_{ar}
Distance from the active face within which the correct detection of the absence of a defined object is achieved under all defined environmental conditions, manufacturer's tolerances and internal component faults.

Assured switch-on distance $\mathrm{S}_{\mathrm{a} 0}$
Distance from the active face within which the correct detection of the presence of a defined object is achieved under all defined environmental conditions and manufacturer's tolerances.

Corresponds to the risk time according to EN 60947-5-3. This is the maximum switch-off delay for the safety outputs following removal of the actuator.

Index sorted by article

Item	Or	e
CEM-A-LH1OK-S3	095170	55
CEM-A-LH1OR-S3	095793	57
CES-A-ABA-01	071850	11
CES-A-ABA-01B	083513	11
CES-A-AEA-02B	092560	17
CES-A-AEA-04B	072000	19
CES-A-BBA	071840	44
CES-A-BCA	088786	44
CES-A-BDA	084720	46
CES-A-BMB	077791	47
CES-A-C5E-01	077750	27
CES-A-C5H-01	091458	27
CES-A-KSB-03V	077935	64
CES-A-KSB-05P	084762	64
CES-A-KSB-05V	077793	64
CES-A-KSB-10P	084763	64
CES-A-KSB-10V	077767	64
CES-A-KSB-15P	084764	64
CES-A-KSB-20P	084765	64
CES-A-KSB-20V	077716	64
CES-A-KSB-25P	084766	64
CES-A-KSB-25V	077717	64
CES-A-KSB-50P	084767	64
CES-A-KSB-50V	077718	64
CES-A-KWB-10V	084701	64
CES-A-LCA-10V	088785	41
CES-A-LMN-SC	077790	43
CES-A-LNA-05P	077806	37
CES-A-LNA-05V	071845	37
CES-A-LNA-10P	077807	37
CES-A-LNA-10V	071846	37
CES-A-LNA-15P	084682	37
CES-A-LNA-15V	071847	37
CES-A-LNA-25V	071975	37
CES-A-LNA-50V	077795	37
CES-A-LNA-SC	077715	39
CES-A-NBA-2	090682	45
CES-A-NBA-3	090683	45
CES-A-NBA-4	090684	45
CES-A-NBA-5	090685	45
CES-A-NBA-6	090686	45
CES-A-NBA-7	090687	45
CES-A-NBA-8	090688	45
CES-A-NBA-9	090689	45
CES-A-NBA-A	090690	45
CES-A-NBA-B	090691	45
CES-A-NBA-C	090692	45
CES-A-NBA-D	090693	45
CES-A-NBA-E	090694	45
CES-A-NBA-F	090695	45
CES-A-S5H-01	090640	33
Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, angled, length 10 m	084705	63
Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, straight, length 2 m	088841	63
Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, straight, length 5 m	088842	63
Connection cable M8 for LED indicator read head CEM-A-LH1OK-S3, plug connector, straight, length 10 m	088843	63
Connection cable M8 for LED indicator read head CEM-A-LH1OK-S3, plug connector, straight, length 15 m	088844	63
Connection cable M8 for solenoid operating voltage C EM, plug connector, angled, length 10 m	084703	62
Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 5 m	088813	62
Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 10 m	088814	62
Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 15 m	088815	62

Item	Order No. Page	
Connection cable M8 for solenoid operating voltage	095035	62
CEM, plug connector, straight, length 25 m	077751	65
Connection cable M12 for CESA-C5... length 5 m	05	
Connection cable M12 for CESA-C5... length 10 m	077752	65
Connection cable M12 for CESA-C5... length 15 m	077753	65
Connection cable M12 for CESA-C5... length 20 m	077871	65
Connection cable M12 for CESA-C5... length 25 m	077872	65
Connection cable M12 for CESA-C5... length 50 m	077873	65
Flange scket KD4C1851	077434	66
Insertion tool for actuator CES-ABMB	037662	66
Plug connector for safety switch CES-AS5...	096490	66
Safety screws M4x14-CESN20	071863	66

Index sorted by catalog number

Order No. Item		Page
037662	Insertion tool for actuator CES-ABMB	66
071840	CES-ABBA	44
071845	CES-ALNA-05V	37
071846	CESALINA-10V	37
071847	CESA-ALA-15V	37
071850	CES-AABA-01	11
071863	Safety screws M4x14-CESN20	66
071975	CES-ALNA-25V	37
072000	CES-AAEA-04B	19
077434	Flange socket KD4C1851	66
077715	CES-ALNA-SC	39
077716	CES-AKSB-20V	64
077717	CES-AKSB-25V	64
077718	CES-AKSB-50V	64
077750	CESAC5E-01	27
077751	Connection cable M12 for CES-AC5... length 5 m	65
077752	Connection cable M12 for CESA-C5... length 10 m	65
077753	Connection cable M12 for CESAC5... length 15 m	65
077767	CES-AKSB-10V	64
077790	CES-ALMN-SC	43
077791	CES-ABMB	47
077793	CES-AKSB-05V	64
077795	CES-ALNA-50V	37
077806	CESALALA-05P	37
077807	CES-ALNA-10P	37
077871	Connection cable M12 for CESAC5... length 20 m	65
077872	Connection cable M12 for CESA-C5... length 25 m	65
077873	Connection cable M12 for CES-AC5... length 50 m	65
077935	CES-AKSB-03V	64
083513	CES-AABA-01B	11
084682	CES-ALNA-15P	37
084701	CESAKWB-10V	64
084703	Connection cable M8 for solenoid operating voltage CEM, plug connector, angled, length 10 m	62
084705	Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, angled, length 10 m	63
084720	CES-ABDA	46
084762	CES-AKSB-05P	64
084763	CES-AKSB-10P	64
084764	CES-AKSB-15P	64
084765	CES-AKSB-20P	64
084766	CES-AKSB-25P	64
084767	CES-AKSB-50P	64
088785	CES-ALCA-10V	41
088786	CES-ABCA	44
088813	Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 5 m	62
088814	Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 10 m	62
088815	Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 15 m	62
088841	Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, straight, length 2 m	63
088842	Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, straight, length 5 m	63
088843	Connection cable M8 for LED indicator read head CEM-ALH1OK-S3, plug connector, straight, length 10 m	63
088844	Connection cable M8 for LED indicator read head CEM-ALLH10K-S3, plug connector, straight, length 15 m	63
090687	CES-ANBA-7	45
090640	CES-AS5H-01	33
090682	CES-ANBA-2	45
090683	CES-ANBA-3	45
090684	CESAANBA-4	45
090685	CES-ANBA-5	45
090686	CES-ANBA-6	45
090688	CES-ANBA-8	45
090689	CES-ANBA-9	45
090690	CESAANBAA	45

Order No. Item		Page
090691	CES-A-NBA-B	45
090692	CESAANBA-C	45
090693	CESAANBA-D	45
090694	CES-ANBAE	45
090695	CES-ANBAF	45
091458	CES-A.C5H-01	27
092560	CES-AAEA-02B	17
095035	Connection cable M8 for solenoid operating voltage CEM, plug connector, straight, length 25 m	62
095170	CEM-ALH10K-S3	55
095793	CEM-A-LH10R-S3	57
096490	Plug connector for safety switch CES-AS5...	66

Australia
Micromax Pty. Ltd.
PO Box 1238
Wollongong NSW 2500
Tel. +61-(0)2-4271-1300
Fax +61-(0)2-4271-8091
micromax@micromax.com.au

Austria

EUCHNER Ges.mbH
Süddruckgasse 4
2512 Tribuswinkel
Tel. +43-(0)2252-421-91
Fax +43-(0)2252-452-25
info@euchner.at

Benelux

EUCHNER (BENELUX) BV
Postbus 119
3350 AC Papendrecht
Tel. +31-(0)78-6154-766
Fax +31-(0)78-6154-311
info@euchner.nl

Brazil

EUCHNER Ltda
Av. Prof. Luiz Ignácio Anhaia Mello,
no. 4387
S. Lucas

São Paulo - SP - Brasil
CEP 03295-000
Tel. +55-11-6918-2200
Fax +55-11-6101-0613
euchner@euchner.com.br
Canada
IAC \& Associates Inc.
1925 Provincial Road
Windsor, Ontario
N8W 5V7
Tel. +01-519-966-3444
Fax +01-519-966-6160
sales@iacnassociates.com

China

EUCHNER Electric (Shanghai) Ltd
No. 8 High Technology Zone
No. 503 Meinengda Road
Songjiang, Shanghai, 201613
Tel. +86-(0)21-5774-7090
Fax +86-(0)21-5774-7599
info@euchner.com.cn
KNOWHOW I\&C Co.
C-2204 Webok Time Center No. 17 Zhongguancun Nandajie Beiijng, 100081
Tel. $+86-(0) 10-8857-8899$
Fax +86-(0)10-8857-8844
info@knowhow.cn
Czech Republic
AMTEK s.r.o.
Videňská 125
61900 Brno
Tel. +420-547-125-570
Fax +420-547-125-556
amtek@amtek.cz

Denmark
Robotek EI \& Teknik A/S
Blokken 31
3460 Birkerød
Tel. $+45-4484-7360$
Fax +45-4484-4177
info@robotek.dk
Eastern Europe
Hera Elektrotechnische Produkte
Handels Ges.mbH
Hauptstraße 61
2391 Kaltenleutgeben
Tel. $+43-(0) 2238-77518$
Fax +43-(0)2238-77528
hera_gesmbh@chello.at

Finland

Sähkölehto $O y$
Holkkitie 14
00880 Helsinki
Tel. +358-(0)9-774-6420
Fax +358-(0)9-759-1071
office@sahkolehto.fi

France

EUCHNER France S.A.R.L
Parc d'Affaires des Bellevues
Rue Rosa Luxembourg
Bâtiment le Colorado
95610 ERAGNY sur OISE
Tel. +33-(0)1-3909-9090
Fax +33-(0)1-3909-9099
info@euchner.fr
Hong Kong
Imperial Engineers \& Equipment Co. Ltd.
Unit B 12/F Cheung Lee Industrial Building
9 Cheung Lee Street Chai Wan
Hong Kong
Tel. +852-2889-0292
Fax +852-2889-1814
info@imperial-elec.com

Hungary

EUCHNER Ges.mbH
Magyarországi Fióktelep
2045 Törökbálint
Tópark utca $1 / a$.
Tel. $+36-2342-8374$
Fax +36-2342-8375
info@euchner.hu

India

TEKNIC CONTROLGEAR PVT. LTD.
703, Madhava,
Bandra Kurla Complex
Bandra (East)
Mumbai 400051
Tel. +91-(0)22-2659-2392
Fax +91-(0)22-2659-2391
teknic@vsnl.com

Iran

INFOCELL IRAN CO.
\# 84, Manoucheri Ave.
P.O. Box 81655-861

Isfahan
Tel. +98-(0)311-2211-358
Fax +98-(0)311-222-6176
info@infocell-co.com

Italy
TRITECNICA S.r.L
Viale Lazio 26
20135 Milano
Tel. +39-02-5419-41
Fax +39-02-5501-047
info@tritecnica.it

Japan

Solton Co. Ltd
2-13-7, Shin-Yokohama
Kohoku-ku, Yokohama
Japan 222-0033
Tel. +81 -(0) $45-471-7711$
Fax +81-(0)45-471-7717
sales@solton.co.jp

Korea

EUCHNER Korea Co., Ltd.
RM 810 Daerung Technotown 3rd
\#448 Gasang-Dong
Kumchon-Gu, Seoul
Tel. +82-(02)-2107-3500
Fax +82-(02)-2107-3999
sijang@euchner.co.kr

Mexico

SEPIA S.A. de C.V.
Maricopa \# 10
302, Col. Napoles.
Del. Benito Juarez
03810 Mexico D.F.
Tel. $+52-55-5536-7787$
Fax +52-55-5682-2347
sepia@prodigy.net.mx
New Zealand
W Arthur Fisher Limited
11 Te Apunga Place
Mt Wellington
Auckland
Tel. $+64-(0) 9270-0100$
Fax +64-(0)9270-0900
chrisl@waf.co.nz

Norway

Norway
ELIS ELEKTRO AS
Jerikoveien 16
1067 Oslo
Tel. +47-22-9056-70
Fax +47-22-9056-71
post@eliselektro.no

Poland

ELTRON
PI. Wolności 7B
50-071 Wroclaw
Tel. +48 -(0) $71-3439-755$
Fax +48-(0)71-3460-225
eltron@eltron.pl

Portugal

PAM Serviços Tecnicos Industriais Lda
Rua de Timor - Pavilhão 2A
Zona Industrial da Abelheira
4785-123 TROFA
Tel. +351-252-418431
Fax +351-252-494739
pam@mail.telepac.pt

Singapore

Sentronics Automation \& Marketing Pte Ltd.
Blk 3, Ang Mo Kio Industrial Park 2A
\#05-06
Singapore 568050
Tel. +65-6744-8018
Fax +65-6744-1929
sentronics@pacific.net.sg

Slovenia
SMM d.o.o
Jaskova 18
2000 Maribor
Tel. +386-(0)2450-2326
Fax + 386-(0)2462-5160
franc.kit@smm.si

Spain

EUCHNER, S.L.U.
Gurutzegi 12 - Local 1
Polígono Belartza
20018 San Sebastian
Tel. $+34-943-316-760$
Fax +34-943-316-405
euchner@edunet.es

Sweden

Censit AB
Box 331
33123 Värnamo
Tel. +46-(0)370-6910-10
Fax +46-(0)370-1888-8
info@censit.se

Switzerland

EUCHNER AG
Grofstraße 17
8887 Mels
Tel. +41-(0)81-720-4590
Fax +41-(0)81-720-4599
euchner.schweiz@bluewin.ch

Taiwan

Daybreak Int'I (Taiwan) Corp.
3F, No. 124, Chung-Cheng Road
Shihlin 11145, Taipei
Tel. +886 -(0) 2-8866-1234
Fax +886-(0)2-8866-1239
day111@ms23.hinet.net
Thailand
Aero Automation Co., Ltd
600/441 Moo 14 Phaholyothin Rd.
Kukot, Lamlukka
Patumthanee 12130
Tel. +66 -(0) $2-536-7660-1$
Tel. +66-(0) 2-536-7660-1
Fax +66-(0)2-536-7877
aeroautomation@yahoo.co.th

Turkey

ARI Endustri Urunleri SAN. Ve Tic.Ltd.Sti.
Perpa Ticaret Merkezi
A Blok Kat 11 No:1406
34384 Okmeydani/Sisli Istanbul
Tel. +90-(0)212-3204-334
Fax +90-(0)212-210-0201
euchner@ariendustri.com.tr

United Kingdom

EUCHNER (UK) Ltd
Unit 2 Petre Drive,
Sheffield
South Yorkshire
S4 7PZ
Tel. $+44-(0) 114-256-0123$
Fax +44-(0)114-242-5333
info@euchner.co.uk

USA

EUCHNER USA Inc.
6723 Lyons Street
East Syracuse, NY 10357
Tel. +01-315-7010-315
Fax +01-315-7010-319
info@euchner-usa.com

Head office

EUCHNER GmbH + Co. KG
Kohlhammerstraße 16
70771 Leinfelden-Echterdingen
Germany
Tel. +49-(0)711-7597-0
Fax +49-(0)711-753316
info@euchner.de
www.euchner.de

Automation

Safety

More
ManMachine

