omROn

Sealed DIP Switch

Completely Sealed Construction Allows Immersion Cleaning Without Taping

■ Designed to standards of DIL-IC; top actuated types are auto insertable.

- Bifurcated movable contacts offer superb reliability.
- Smooth, sure switching action.

Ordering Information

No. of poles	Top actuated	Tube quantity	Raised actuated	Tube quantity	Side actuated	Box quantity
$\mathbf{2}$	A6D-2100	74	A6D-2103	74	A6DR-2100	100
$\mathbf{3}$	A6D-3100	54	A6D-3103	54	-	-
$\mathbf{4}$	A6D-4100	43	A6D-4103	43	A6DR-4100	50
$\mathbf{5}$	A6D-5100	35	A6D-5103	35	-	-
6	A6D-6100	30	A6D-6103	30	A6DR-6100	50
$\mathbf{7}$	A6D-7100	26	A6D-7103	26	-	-
$\mathbf{8}$	A6D-8100	23	A6D-8103	23	A6DR-8100	50
$\mathbf{9}$	A6D-9100	21	A6D-9103	21	-	-
$\mathbf{1 0}$	A6D-0100	19	A6D-0103	19	A6DR-0100	50

Specifications

■ Ratings/Characteristics

Switching capacity	$100 \mathrm{~mA}, 5 \mathrm{VDC}$; 30mA, 30VDC
Min. permissible load	$10 \mu \mathrm{~A}, 3.5 \mathrm{VDC}$
Carry current	100 mA
Contact resistance	$100 \mathrm{~m} \Omega$ max.
Insulation resistance	$100 \mathrm{M} \Omega$ min. (at 250 VDC)
Dielectric strength	500 VAC for 1 minute
Vibration	Malfunction durability: 10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ total amplitude
Shock	Malfunction durability: Approx. $300 \mathrm{~m} / \mathrm{s}^{2}$ (30G)
Materials	Base/cover: PBT (Polybutylene sulfide) Rotor: PBT (Polyphenylene sulfide) O-ring: Acryl nitril butadiene rubber Movable contact: Beryllium copper Terminal: 42-alloy plate (nickel-iron alloy)
Ambient temperature	Operating: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	35\% to 90\%
Life expectancy	Mechanical: 5,000 operations min. Electrical: 2,000 operations min.
Weight	A6D (Top actuated) 2-pin: $0.25 \mathrm{~g}, 4$-pin: $0.45 \mathrm{~g}, 6$-pin: $0.65 \mathrm{~g}, 8$-pin: $0.80 \mathrm{~g}, 10$-pin: 1.0 g A6DR (Side actuated) 2-pin: $0.4 \mathrm{~g}, 4$-pin: $0.8 \mathrm{~g}, 6$-pin: 1.2g, 8-pin: 1.7g, 10-pin: 2.2g

Dimensions

Model	Dimensions A $\pm \mathbf{0 . 2}$
A6D-2100	7.1
A6D-3100	9.7
A6D-4100	12.2
A6D-5100	14.7
A6D-6100	17.3
A6D-7100	19.8
A6D-8100	22.4
A6D-9100	24.9
A6D-0100	27.4

Model	Dimensions A $\pm \mathbf{0 . 2}$
A6D-2103	7.1
A6D-3103	9.7
A6D-4103	12.2
A6D-5103	14.7
A6D-6103	17.3
A6D-7103	19.8
A6D-8103	22.4
A6D-9103	24.9
A6D-0103	27.4

A6D-D103
(Raised actuated type)

Model	Dimensions A $\pm \mathbf{0 . 2}$
A6DR-2100	7.1
A6DR-4100	12.2
A6DR-6100	17.3
A6DR-8100	22.4
A6DR-0100	27.4

A6DR-■100
(Side actuated type)

Mounting holes
(Bottom view)

$2.54 \times$ (No. of switches-1)

Internal connections (Top view)

Precautions

The terminal pitch of all OMRON DIP switches is the same as a digital IC chip, which has a 2.54 mm pitch. Moreover, Models A6C and A6D DIP switches are also identical to an DIL-IC chip in shape, so that they can be mounted on a PC board in exactly the same manner as ordinary IC chips.
When using these OMRON DIP switches, pay attention to the following points:

Circuit Design

Design the circuit for the DIP switch so that the switch can be used within the rated voltage and current ranges. The rated maximum voltage and current must not be exceeded (even momentarily) when the switch breaks or makes contact. The rated minimum current is $10 \mu \mathrm{~A}$ (at 3.5 VDC). When CMOS iCs are used on the same PC board as the DIP switch, the momentary current applied to the DIP switch can be increased to improve the contact reliability on some occasions. At this time, however, the peak value of the current must not exceed the rated maximum value.

Mounting

The rotor is set to position 0 at the factory. Do not move the rotor to any other position, until after the switch has been mounted on a PC board, soldered, cleaned and dried.

1.Automatic mounting

The top actuated types of models A6C and A6D are in the same shape as DIL-IC packages. Therefore, an automatic IC chip mounter can be used to mount these DIP switches without modification or, at worst, by slightly modifying the stopper. (A body stopper is recommended as the stopper for the shoot. Do not use a half-lead stopper. However, this depends on the automatic chip mounter to be used. Check the specifications of the chip mounter in advance.)
Use a PC board 1.2 to 1.6 mm thick.
The mounting holes on the PC board should be 0.9 mm or larger in diameter.

2.Manual mounting or use of IC socket

Use a commercially available IC chip inserting tool.
IC sockets (such as OMRON model XR) can be used to mount the DIP switch on a PC board as the terminal size and pitch of the switch are the same as ordinary IC chips.
When manually inserting the DIP switch terminal into the mounting holes on a PC board, position the Dip switch so that the terminals can be inserted into the respective mounting holes on the PC board (or on an IC socket) all at once. Then push down the switch as far as it will go. Apply the force at right angles to the PC board. When removing the DIP switch from the PC board or IC socket, do not twist the tip of a screwdriver or similar object inserted between the switch and the PC board or IC socket. Convenient pullout tools are commercially available.

Soldering

Before soldering, confirm that all the terminals of the DIP switch have been deeply inserted into the mounting holes on the PC board. Dip the PC board on which the DIP switch(es) are mounted in the solder flux. The flux must not come over the surface of the PC board.

Both hand and automatic soldering are possible, under the following conditions:

	Max. solder temperature	Max. solder time
Hand soldering	$350^{\circ} \mathrm{C}$	3 seconds
Automatic soldering	$260^{\circ} \mathrm{C}$	5 seconds

Cleaning

Use freon TES to remove the solder flux. Dip the switch in an ultrasonic oven, a solution oven and a vapophase oven to a depth of 5 cm , for 60 seconds each.
Ethyl acohol or isopropyl alcohol can also be used. If used, however, finish the cleaning process within 5 minutes.
Do not use cleaning solvents other than these, as the switch materials may degrade.

Operation

1 Use the tip of a standard screwdriver or similar object to operate the rotary DIP switch.
Use an appropriately sized screwdriver. If the tip is too large or small, the groove of the actuator may be damaged or deformed.
2. The actuators of a slide type DIP switch can be moved by a stick or ball-point pen having a round tip. Do not use sharp edged objects such as tweezers.
3. The top actuated types and side actuated types of the slide DIP switches can also be operated with the fingers.

