Surface Mount Oven Stabilized Oscillator DOC - Series

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

Description:

Connor-Winfield's high stability DOC series are exceptionally precise frequency standards, excellent for use in cellular base stations, test equipment, Synchronous Ethernet and VSAT applications.

These true surface mount OCXOs / OCVCXOs provide temperature stabilities in the range of ±20 ppb to ±100 ppb, over the commercial, extended commercial or the industrial temperature range.

The DOC - series is available with a CMOS output along with optional Electronic Frequency Tuning (OCVCXO). These oscillators provide outstanding phase noise characteristics that will meet the most stringent requirements.

Package Outline

Features:

OCXO / OCVCXO 3.3 Vdc Operation SMT Package Frequency Stabilities Available: ±20 ppb, ±50 ppb or ±100 ppb Temperature Ranges Available: 0 to 70°C, -20 to 75°C or -40 to 85°C Low Phase Noise LVCMOS Output Optional Electronic Frequency Tuning RoHS Compliant / Lead Free

Suggested Pad Layout

Pad Connections

- 1: N/C or Vc option
- 2: N/C
- 3 Ground:
- 4: Output
- 5: N/C
- 6: Supply Voltage (Vcc)

Ordering Information

Bulletin	Cx207
Page	1 of 4
Revision	P09
Date	04 Apr 2011

Example Part Numbers:

DOC050F-010.0M = 9x14mm package, ±50 ppb, 0 to 70°C, 3.3 Vdc, CMOS Output, OCXO, Output Frequency 10.0 MHz DOC022V-020.0M = 9x14mm package, ±20 ppb, -40 to 85°C, 3.3 Vdc, CMOS Output, OCVCXO, 20.0 MHz

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage - 3.3 Vdc (Vcc)	-0.5	-	4.5	Vdc	
Supply Voltage - 5.0 Vdc (Vcc)	-0.5	-	7.0	Vdc	
Control Voltage (Vc)	-0.5	-	Vcc+0.5	Vdc	

Operating Specifications

Parameter	Minimum	Nominal	Maximum	Units	Notes
Center Frequency: (Fo)	10	, 12.8, 19.44, 20 c	or 25	MHz	
Frequency Stability vs. Change in Temperature: (See Ordering Info	ormation)			
Stability Code 02	-20.0	-	20.0	ppb	1
Stability Code 05	-50.0	-	50.0	ppb	1
Stability Code 10	-100.0	-	100.0	ppb	1
Operating Temperature Range: (See Ordering Inf	ormation)				
Temperature Code 0	0	-	70	°C	
Temperature Code 1	-20	-	75	°C	
Temperature Code 2	-40	-	85	°C	
Frequency Calibration:	-1.0	-	1.0	ppm	2
Frequency Stability vs Load	-20	-	20	ppb	±5%
Frequency Stability vs Voltage	-20	-	20	ppb	±5%
Aging: Daily:	-10	-	10	ppb/day	3
Aging: First Year:	-300	-	300	ppb	3
Supply Voltage: (Vcc)	3.13	3.30	3.47	Vdc	±5%
Power Consumption: Vcc = Nominal Voltage					
Turn On	-	-	3.0	W	
Steady State @ 25°C	-	-	1.3	W	
Phase Jitter: (BW: 10 Hz to Fo/2)	-	-	1.0	ps RMS	
Short Term Stability	-	-	1.0E-9/s		
Start-Up Time:	-	-	1	ms	
Warm Up Time (Within Specification @ 25°C)	-	-	60	S	
Warm Up Time (Within Specification @ -40°C)	-	-	90	S	

CMOS Output Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	рF	6
Output Voltage:					
3.3 Vdc Models High (Voh)	2.70	-	-	V	
Low (Vol)	-	-	0.30		
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	8	ns	

Notes:

1 Frequency stability vs. change in temperature. [±(Fmax - Fmin)/2.Fo].

2 Initial calibration @ 25°C. For OCVCXO control voltage must be fixed.

3 After 30 days of operation

4 Positive slope. (Frequency increases as Vc voltage increases.)

5 Referenced to Fo.

6 Attention: To achieve optimal frequency stability, and in some cases to meet the specification stated on this data sheet, it is required that the circuit connected to this OCXO output must have the equivalent input capacitance that is specified by the nominal load capacitance. Deviations from the nominal load capacitance will have a graduated effect on the stability of approximately 20 ppb per pF load difference.

Bulletin	Cx207
Page	2 of 4
Revision	P09
Date	04 Apr 2011

Phase Noise Characteristics

Typical Phase Noise for DOC050F - 010.0M

Parameter	Minimu	m Nominal	Maximum	Units	Notes
@ 1 Hz offset	-	-67	-	dBC/Hz	
@ 10 Hz offset	-	-100	-	dBC/Hz	
@ 100 Hz offset	-	-130	-	dBC/Hz	
@ 1 KHz offset	-	-148	-	dBC/Hz	
@ 10 KHz offset	-	-154	-	dBC/Hz	
@ 100 KHz offset	-	-155	-	dBC/Hz	

OCVCXO Input Characteristics (Optional)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range:	0.30	1.65	3.00	V	4
Frequency Pullability:	±10.0	-	-	ppm	5
Input Impedance	100K	-	-	Ohms	
Linearity	±5	-	-	%	

Package Characteristics

DOC-Series Package

Package consisting of a FR4 substrate and a Ryton-R4 cover.

Environmental Characteristics

Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Solder Process	RoHS compliant, lead free. See solder profile on page 4.

Recommended Cleaning Process

DOC-Series Package	Wash only in a inline high pressure wash station that has an air knife and drying capabilities.
	(Drying temperature range from 85° to 100°C)

Bulletin	Cx207
Page	3 of 4
Revision	P09
Date	04 Apr 2011

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040 www.conwin.com

CMOS Output Waveform

Phase Noise Plot

CMOS Test Circuit

RoHS Solder Profile

Tape and Reel Information

Bulletin	Cx207
Page	1 of 4
Revision	P09
Date	04 Apr 2011
	•