
Data Sheet, V 1.0, April 2005

TLE4923 Dynamic Differential Hall Effect Sensor IC

Never stop thinking.

Edition 2005-04 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History:Previous Version:PageSubjects (matrix)		2005-04	V 1.0
		none	
		major changes since last revision)	
-			

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: feedback.sensors@infineon.com

Table of Contents

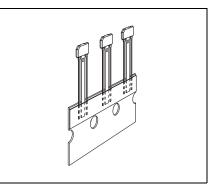
Page

1 1.1 1.2	Overview 5 Features 5 Pin Configuration 6
2 2.1 2.2 2.3	General7Block Diagram7Functional Description8Circuit Description (see Figure 2)8
3	Maximum Ratings
3 4	Maximum Ratings 9 Operating Range 10
•	-
4	Operating Range
4 5	Operating Range 10 Electrical Parameters 11

Dynamic Differential Hall Effect Sensor IC

TLE4923

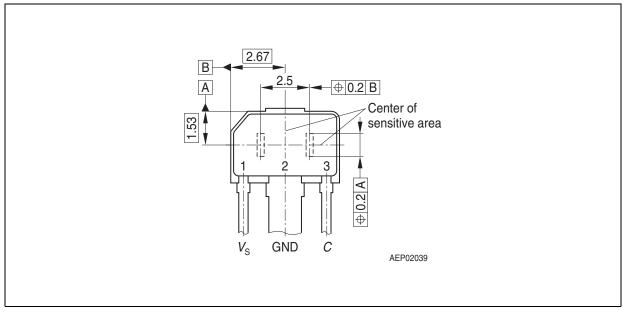
Bipolar IC


1 Overview

1.1 Features

- Advanced performance
- Higher sensitivity
- Symmetrical thresholds
- High piezo resistivity
- Reduced power consumption
- South and north pole pre-induction possible
- AC coupled
- Digital output signal
- Two-wire interface
- Large temperature range
- Large airgap
- Low cut-off frequency
- Protection against reversed polarity

The differential Hall effect sensor TLE4923 is compatible to the TLE4921-3U, except for having a 2-wire interface. The TLE4923 provides high sensitivity, a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE4923 is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as in anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing.


Туре	Marking	Ordering Code	Package
TLE4923	4923 B	Q62705-K408	PG-SSO-3-6

Overview

1.2 Pin Configuration (top view)

Figure 1

Table 1Pin Definitions and Fu	unctions
-------------------------------	----------

Pin No.	Symbol	Function
1	Vs	Supply voltage
2	GND	Ground
3	С	Capacitor

General

2 General

2.1 Block Diagram

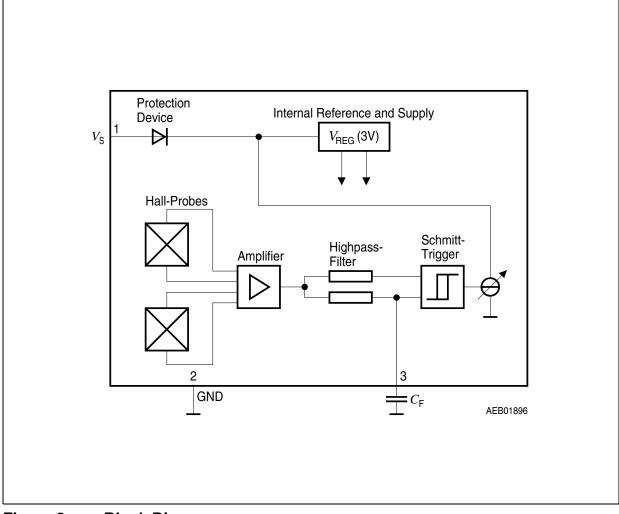


Figure 2 Block Diagram

General

2.2 Functional Description

The Differential Hall sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (**south or north** pole of the magnet attached to the rear unmarked side of the IC package).

Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with low frequency cut-off. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids aging and temperature influence from Schmitt-trigger input and eliminates device and magnetic offset.

The TLE4923 can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal.

The on and off state of the IC are indicated by high and low current consumption.

2.3 Circuit Description (see Figure 2)

The TLE4923 is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm, differential amplifier, filter for offset compensation, Schmitt-trigger, and a switched current source.

The TLE4923 was designed to have a wide range of application parameter variations. Differential fields up to ± 40 mT can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points¹⁾. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally, the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets.

Protection is provided at the input/supply (pin 1) for reverse polarity.

¹⁾ Differential bias fields exceeding ±20 mT, e. g. caused by a misaligned magnet, should be avoided.

Maximum Ratings

3 Maximum Ratings

Parameter	Symbol	Lin	nit Values	Unit	Remarks
		min.	max.		
Supply voltage	Vs	-18 ¹⁾	24	V	
Capacitor voltage	V _C	-0.3	3	V	
Junction temperature	Tj	- - -	150 160 170 190	°C	5000 h 2500 h 500 h 4 h
Storage temperature	T _S	-40	150	°C	
Thermal resistance	R _{thJA}	-	190	K/W	2)

 Table 2
 Absolute Maximum Ratings

1) Reverse current drawn by the device < 10 mA

 Can be reduced significantly by further packaging process, e. g. overmolding. The device is ESD protected up to 2 kV (HL test procedure)

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Range

4 Operating Range

Table 3Operating Range

Parameter	Symbol	Limit Values			Unit	Conditions
		min.	typ.	max.		
Supply voltage	Vs	4.5	-	18	V	
Junction temperature	T _j	-40 	- - - -	150 160 170 190	°C	5000 h 2500 h 500 h 4 h
Pre-induction	B ₀	-500	-	500	mT	At Hall probe; independent of magnet orientation
Differential induction	ΔB	-40	-	40	mT	

Note: Unless otherwise noted, all temperatures refer to junction temperature. In the operating range the functions given in the circuit description are fulfilled.

Electrical Parameters

5 Electrical Parameters

Table 4 Electrical Characteristics

The device characteristics listed below are guaranteed in the full operating range.

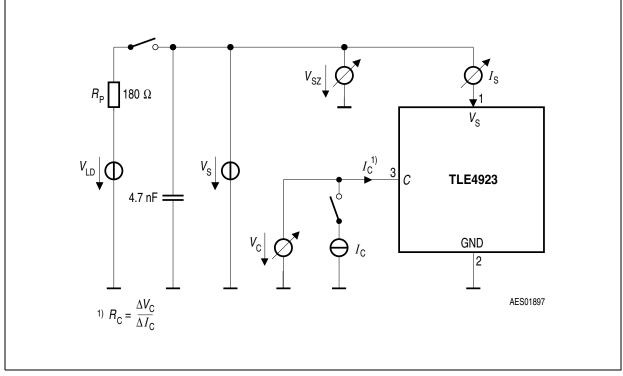
Parameter	Symbol	Limit Values			Unit	Test	Test
		min.	typ.	max.		Condition	Circuit
Supply current	I _S	3.1 8.1	4.1 10.5	5.3 13.6	mA mA		1 1
Supply current difference	I _{SON} - I _{SOFF}	5.0	6.4	8.3	mA		1
Supply current ratio	I _{SON} / I _{SOFF}	2	2.4	3			1
Center of switching points: $(\Delta B_{OP} + \Delta B_{RP}) / 2$	ΔB_{m}	-0.5	0	0.5	mT	$\Delta B = 2.0 \text{ mT},$ f = 200 Hz, $-40^{\circ}\text{C} < T_{j} \le 150^{\circ}\text{C}^{(1)(2)}$	2
Center of switching points: $(\Delta B_{OP} + \Delta B_{RP}) / 2$	ΔB_{m}	-0.7	0	0.7	mT	$\Delta B = 2.0 \text{ mT},$ f = 200 Hz, $150^{\circ}\text{C} < T_{j}$ $< 190^{\circ}\text{C}^{-1/2}$	2
Hysteresis	ΔB_{H}	1	1.5	2.2	mT	$\Delta B = 2.0 \text{ mT},$ f = 200 Hz ³⁾	2
Current rise time	t _r	_	_	0.5	μs		2
Current fall time	t _f	_	_	0.5	μs		2
Delay time ⁴⁾	t _{dop} t _{drp} t _{dop} - t _{drp}			25 10 15	μs μs μs	f = 10 kHz, $\Delta B = 5 \text{ mT}$	2
Filter input resistance	R _C	35	43	52	kΩ	25°C ±2°C	1
Filter sensitivity to ΔB	S _C		8.5		mV/ mT	25°C ±2°C	1
Filter bias voltage	V _C	1.6	2.0	2.4	V	$\Delta B = 0$	1
Frequency	f	5)		10000	Hz	$\Delta B = 5 \text{ mT}$	2

Electrical Parameters

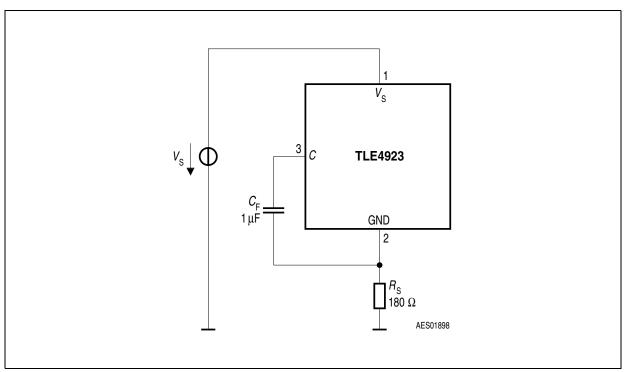
Table 4Electrical Characteristics (cont'd)The device characteristics listed below are guaranteed in the full operating range.

Parameter Symbol **Limit Values** Unit Test Test Condition Circuit min. typ. max. F = 2 N2 Resistivity $\Delta B_{\rm m}$ -0.1 0.1 mΤ $\Delta B_{\rm H}$ against -0.1 0.1 mΤ _ mechanical stress (piezo)⁶⁾ $V_{\rm S}$ modulated 2^{7} V Power supply 10 V_{PSRR} _ with V_{PSRR} , rejection ratio $f_{\text{PSRR}} = 10 \text{ kHz},$ (PSRR) $t_{\rm r,fPSRR} = 1 \ \mu s$, $\Delta B = 0$, only 1 transition may occur

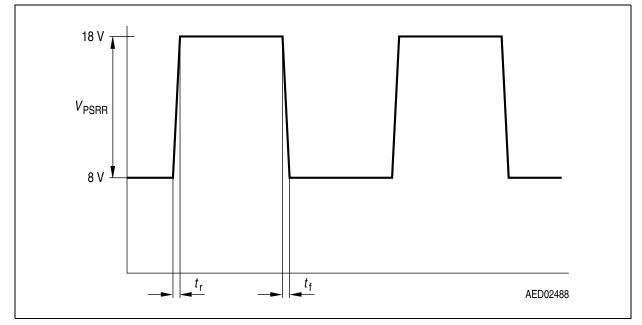
1) For ΔB values larger than ±10 mT this value may exceed the limits as follows: $|\Delta B_m| < |0.05 \times \Delta B|$

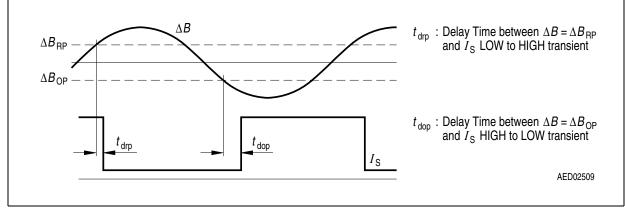

- 2) Leakage currents at pin 3 should be avoided. The bias shift of B_m caused by a leakage current I_L can be calculated by: $\Delta B_m = \frac{I_L \times R_C(T)}{S_C(T)}$. See also the typical curves on Page 22.
- 3) Differential pre-induction (e.g. by magnetic misalignment) has to be smaller than 20 mT.

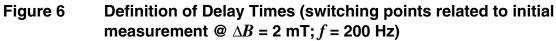
4) For definition see **Figure 6**.


- 5) Depends on filter capacitor $C_{\rm F}$. The cut-off frequency is given as $f = \frac{1}{2 \times \pi \times R_{\rm C} \times C_{\rm F}}$. The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift have to be taken into account due to the 1st order highpass filter.
- 6) For definition see Figure 7.
- 7) For definition see **Figure 5**.
- Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_j = 25^{\circ}$ C and the given supply voltage.

Electrical Parameters




Data Sheet



Electrical Parameters

Figure 5

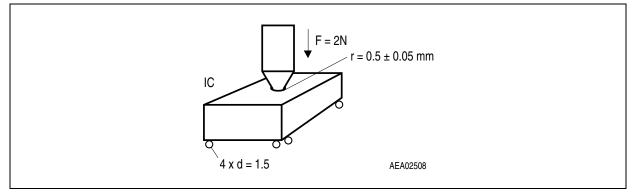
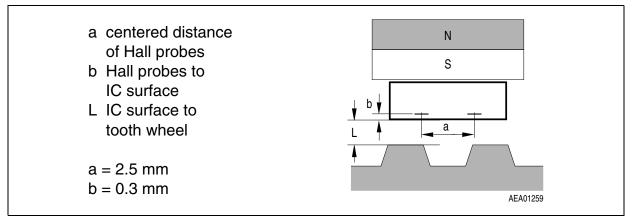


Figure 7 Setup for Piezo Measurements

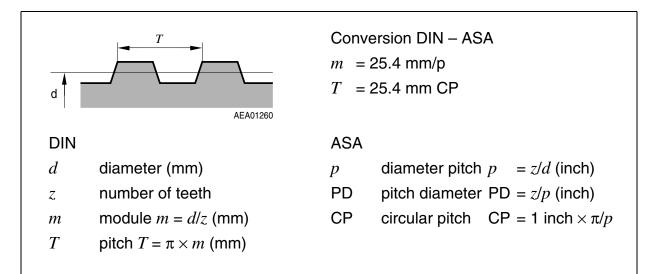
Application Notes

6 Application Notes

Two possible applications are shown in **Figure 10** and **Figure 11** (Toothed and Magnet Wheel).


Two-wire application is shown in Figure 12.

Gear Tooth Sensing


In the case of ferromagnetic toothed wheel applications the IC has to be biased by the south or north pole of a permanent magnet (e.g. $SmCo_5$ (Vacuumschmelze VX170) with the dimensions 8 mm × 5 mm × 3 mm) which should cover both Hall probes.

The maximum air gap depends on:

- the magnetic field strength (magnet used; pre-induction) and
- the tooth wheel that is used (dimensions, material, etc.; resulting differential field).

Figure 9 Tooth Wheel Dimensions

Data Sheet

Application Notes

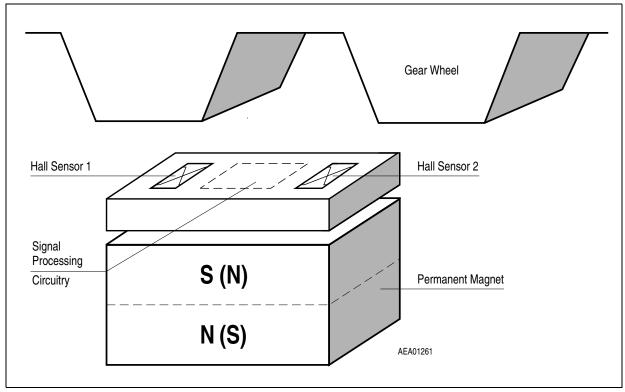


Figure 10 TLE4923, with Ferromagnetic Toothed Wheel

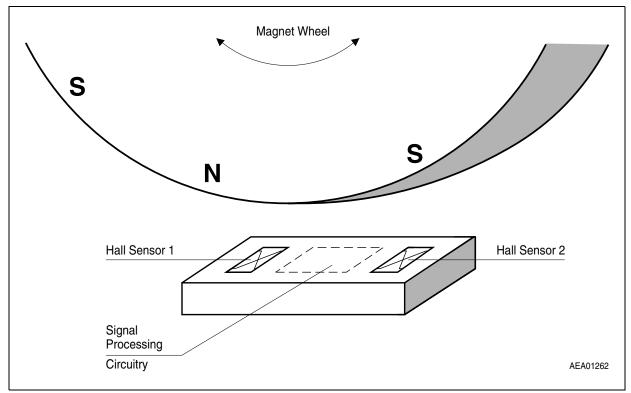


Figure 11 TLE4923, with Magnet Wheel

Application Notes

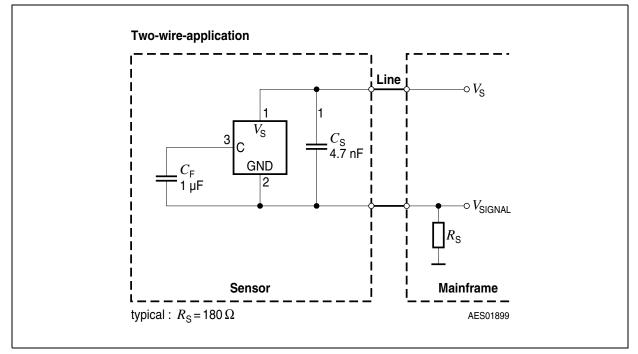
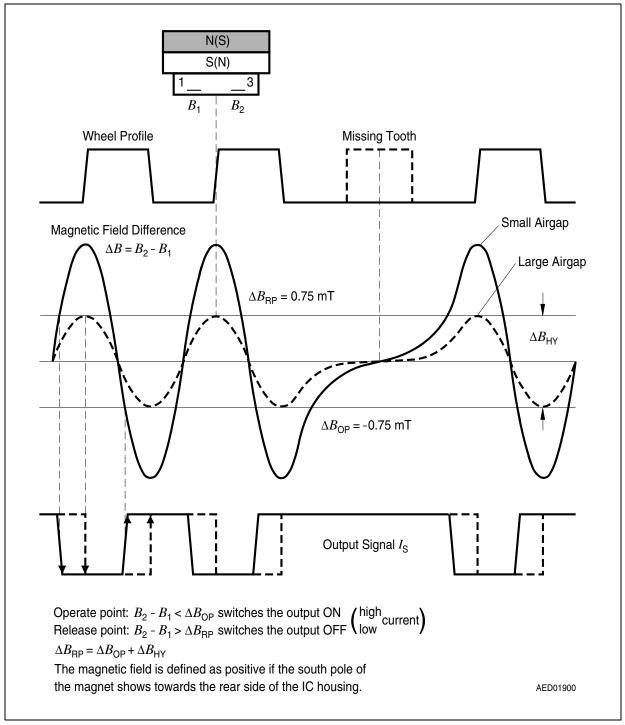
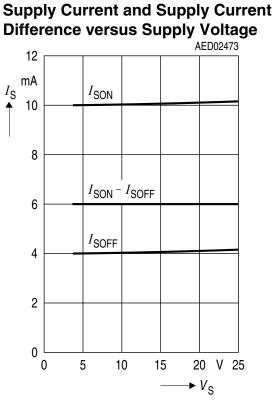
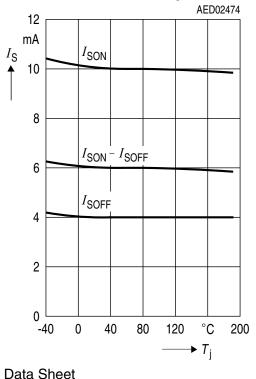


Figure 12 Application Circuit

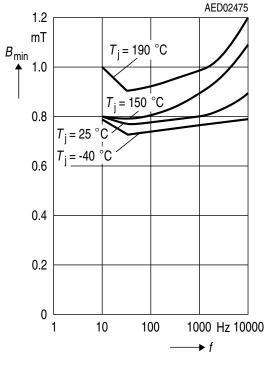
Application Notes

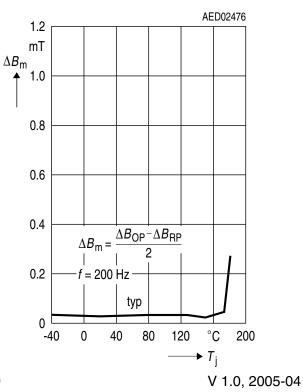


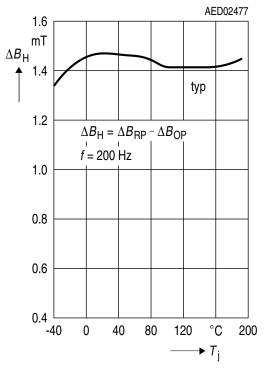

Figure 13 System Operation


Typical Performance Characteristics

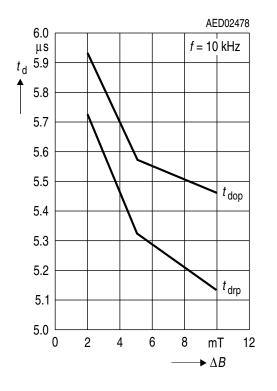
7 Typical Performance Characteristics

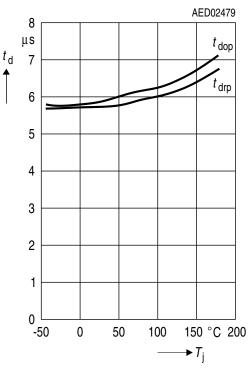

If not otherwise specified, all curves reflect typical values at $T_i = 25^{\circ}$ C and $V_s = 12$ V.


Supply Current and Supply Current Difference versus Temperature

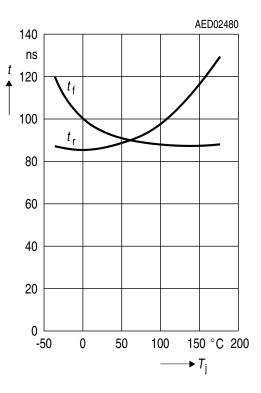

Minimum Switching Field versus Frequency

Mean Value of Switching Induction



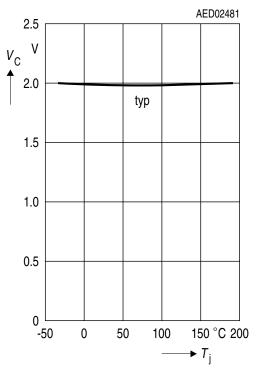

Hysteresis versus Temperature

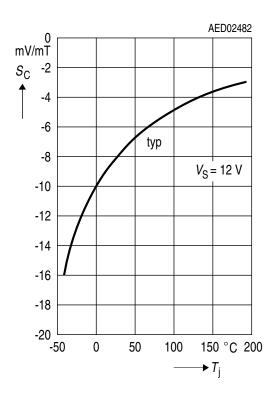
Delay Time¹⁾ versus Differential Field

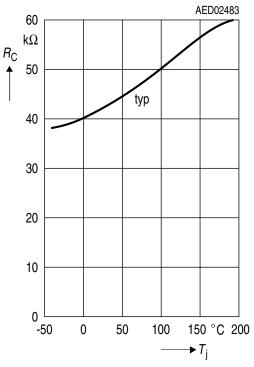


Typical Performance Characteristics

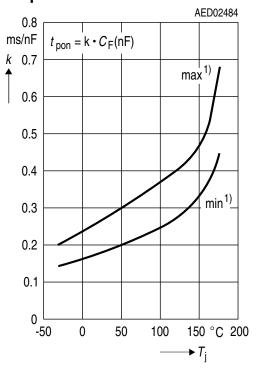
Delay Time¹⁾ versus Temperature


Rise and Fall Time versus Temperature


1) Switching points related to initial measurement $@\Delta B = 2 \text{ mT}, f = 200 \text{ Hz}$



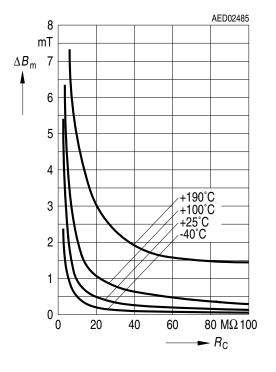
Filter Sensitivity versus Temperature



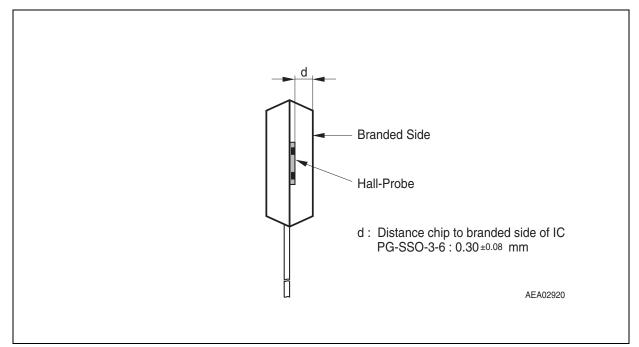
Typical Performance Characteristics

Filter Input Resistance versus Temperature

Delay Time t_{pon} for Power ON versus Temperature



1) Calculated values for minimum and maximum filter resistance, $C_{\rm F}$ at room temperature.


Data Sheet

Typical Performance Characteristics

Threshold Shift versus Filter Leakage

Figure 14 Distance Chip to Upper Side of IC

Package Outlines

8 Package Outlines

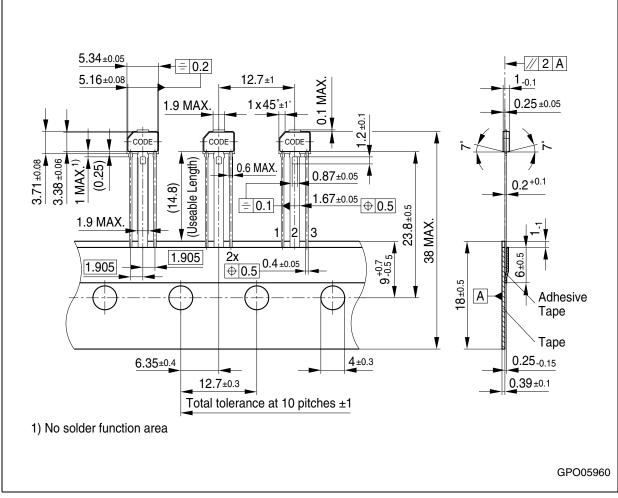


Figure 15 PG-SSO-3-6 (Plastic Single Small Outline Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm

V 1.0, 2005-04

www.infineon.com

Published by Infineon Technologies AG