GAMMA series

8 Functions

7 time ranges
Wide supply voltage range
2 change over contacts
Width 22.5 mm
Industrial design

Technical data

1. Functions	
E	ON delay
R	OFF delay with contron
Es	ON delay with contr
Wu	Single shot leading
Ws	Single shot leading
Wa	Single shot trailing
Bi	Flasher pulse first
Bp	Flasher pause first
2. Time ranges	
Time range	Adjustment range
1 s	$50 \mathrm{~ms} \quad 1 \mathrm{~s}$
10 s	$500 \mathrm{~ms} \quad 10 \mathrm{~s}$
1 min	3 s
10 min	30 s
1 h	3 min
10 h	30 min
100 h	5 h

3. Indicators

GreenLED U/t ON:
Green LED U/t flashes:
Yellow LED R ON/OFF:
indication of supply voltage indication of time period indication of relay output

4. Mechanical design

Self-extinguishing plastic housing, IP rating IP40
Mounted DIN-rail TS 35 according to EN 60715
Mounting position: any
Shockproof terminal connection according to VBG 4 (PZ1 required),
IP rating IP20
Tightening torque: max. 1 Nm
Terminal capacity:
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end

5. Input circuit

Supply voltage:
12 to 240 V AC/DC
Tolerance:
Rated consumption:
Rated frequency:
Duty cycle:
Reset time:
Residual ripple of DC:
Drop out voltage:
Overvoltage category:
Rated surge voltage:
terminals A1(+)-A2
-10% to $+10 \%$
6VA (2W)
AC 48 to 63 Hz
100\%
100 ms
10\%
$>30 \%$ minimum rated supply voltage III (in accordance with IEC 60664-1) 4 kV

6. Output circuit

2 potential free change over contacts
Rated surge: $\quad 250 \mathrm{~V}$ AC
Switching capacity: $\quad 750 \mathrm{VA}$ (3A / 250V AC)
If the distance between the devices is less than 5 mm !
Switching capacity: $\quad 1250 \mathrm{~V}$ (5A / 250V AC)
If the distance between the devices is greater than 5 mm !

Fusing:	5A fast acting
Mechanical life:	20×10^{6} operations
Electrical life:	2×10^{5} operations at 1000 VA resistive load
Switching frequency:	max. $60 / \mathrm{min}$ at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
7. Control input	
Input not potential free:	terminals A1-B1
Loadable:	yes
Max. line length:	10 m
Trigger level (sensitivity)	automatic adaption to supply voltage
Min. control pulse length: DC $50 \mathrm{~ms} /$ AC 100 ms	
8. Accuracy	
Base accuracy:	$\pm 1 \%$ of maximum scale value
Adjusting accuracy:	<5\% of maximum scale value
Repetition accuracy:	$<0.5 \%$ or $\pm 5 \mathrm{~ms}$
Voltage influence:	-
Temperature influence:	$\leq 0.01 \% /{ }^{\circ} \mathrm{C}$

9. Ambient conditions

Ambient temperature: $\quad-25$ to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1)
Storage temperature: $\quad-25$ to $+70^{\circ} \mathrm{C}$
Transport temperature: -25 to $+70^{\circ} \mathrm{C}$
Relative humidity: $\quad 15 \%$ to 85%
(in accordance with IEC 60721-3-3
Klasse 3K3)
3 (in accordance with IEC 60664-1)
Pollution degree:
Vibration resistance: 10 to 55 Hz 0.35 mm
(in accordance with IEC 60068-2-6)
15 g 11 ms
(in accordance with IEC 60068-2-27)

Functions

ON delay (E)
When the supply voltage U is applied, the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay R switches into on-position (yellow LED illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interrupted before the expiry of the interval t, the interval already expired is erased and is restarted when the supply voltage is next applied.

OFF delay (R)
The supply voltage U must be constantly applied to the device (green LED U/t illuminated). When the control contact S is closed, the output relay R switches into on-position (yellow LED illuminated). If the control contact is opened, the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay switches into off-position (yellow LED not illuminated). If the control contact is closed again before the interval t has expired, the interval already expired is erased and is restarted.

Single shot leading edge with control input (Ws)
The supply voltage U must be constantly applied to the device (green LED U/t illuminated). When the control contact S is closed, the output relay R switches into on-position (green LED U/t illuminated) and the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

Single shot trailling edge with control input (Wa)
The supply voltage U must be constantly applied to the device (green LED U/t illuminated). Closing the control contact S has no influence on the condition of the output R . When the control contact is opened, the output relay switches into on-position (yellow LED illuminated) and the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated), the ouput relay switches into off-position (yellow LED not illuminated). During the interval, the control contact can be operated any number of times. A further cycle can only be started when the cycle run has been completed.

ON delay with control input (Es)
The supply voltage U must be constantly applied to the device (green LED U/t illuminated). When teh control contact S is closed, the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay R switches into on-position (yellow LED illuminated). This status remains until the control contact is opened again. If the control contact is opened before the interval t has expired, the interval already expired is erased and is restarted with the next cycle.

Single shot leading edge voltage controlled (Wu)
When the supply voltage U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval t begins (green LED U/t flashes). After the interval t has expired (green LED U/t illuminated) the output relay switches into off-position (yellow LED not illuminated). This status remains until the supply voltage is interrupted. If the supply voltage is interruted before the interval t has expired, the output relay switches into off-position. The interval already is erased and is restarted when the supply voltage is next applied.

Flasher pause first (Bp)

When the supply voltage U is applied, the set interval t begins (green LED U/t flashes). After the interval t has expired, the output relay R switches into on-position (yellow LED illuminated) and the set interval t begins again. After the interval t has expired, the output relay switches into off-position (yellow LED not illuminated). The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

Flasher pulse first (Bi)
When the supply voltag U is applied, the output relay R switches into on-position (yellow LED illuminated) and the set interval t begins (green LED U/t flashes). After the interval thas expired, the output relay R switches into off-position (yellow LED not illuminated) and the set interval t begins again (green LED U/t flashes). The output relay is triggered at a ratio of $1: 1$ until the supply voltage is interrupted.

Connections

with control contact

without control contact

Dimensions

