OmROn

PCB Relay

Miniature Relay for Signal Circuits

■ Wide switching power of $10 \mu \mathrm{~A}$ to 2 A .

- High dielectric strength coil-contacts:1,000 VAC; open contacts: 750 VAC.
- Conforms to FCC Part 68 requirements.

■ Ag + Au clad bifurcated crossbar contacts and fully sealed for high contact reliability.
■ New $150-\mathrm{mW}$ relays with high-sensitivity.
RoHS Compliant Refer to pages 16 to 17 for details.

제자 FCC

Ordering Information

Classification	Contact form	Contact type	Contact material	Enclosure ratings	Model
Standard	DPDT	Bifurcated crossbar	$\mathrm{Ag}+$ Au-Alloy	Fully sealed	G5V-2
High-sensitivity				G5V-2-H1	

Note: When ordering, add the rated coil voltage to the model number.
Example: G5V-2 12 VDC
Rated coil voltage

Model Number Legend

1. Contact Form

2: DPDT
2. Classification

H1: High-sensitivity
3. Rated Coil Voltage

3, 5, 6, 9, 12, 24, 48 VDC

Specifications

■ Coil Ratings

Standard Models

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		166.7 mA	100 mA	83.3 mA	55.6 mA	41.7 mA	20.8 mA	12 mA
Coil resistance		18Ω	50Ω	72Ω	162 ת	288Ω	1,152 Ω	4,000 Ω
Coil inductance (H) (ref. value)	Armature OFF	0.04	0.09	0.16	0.31	0.47	1.98	7.23
	Armature ON	0.05	0.11	0.19	0.49	0.74	2.63	10.00
Must operate voltage		75\% max. of rated voltage						
Must release voltage		5\% min. of rated voltage						
Max. voltage		120% of rated voltage at $23^{\circ} \mathrm{C}$						
Power consumption		Approx. 500 mW						Approx. 580 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

High Sensitivity Models

Rated voltage		3 VDC	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VDC
Rated current		50 mA	30 mA	25 mA	16.7 mA	12.5 mA	8.33 mA	6.25 mA
Coil resistance		60Ω	166.7 ת	240 ת	540 ת	960Ω	2,880 Ω	7,680 Ω
Coil inductance (H) (ref. value)	Armature ON	0.18	0.46	0.70	1.67	2.90	6.72	20.1
	Armature OFF	0.57	0.71	0.97	2.33	3.99	9.27	26.7
Must operate voltage		75\% max. of rated voltage						
Must release voltage		5\% min. of rated voltage						
Max. voltage		180% of rated voltage at $23{ }^{\circ} \mathrm{C}$						150% of rated voltage at $23^{\circ} \mathrm{C}$
Power consumption		Approx. 150 mW					Approx. 200 mW	Approx. 300 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with a tolerance of $\pm 10 \%$.
2. Operating characteristics are measured at a coil temperature of $23^{\circ} \mathrm{C}$.
3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

- Contact Ratings

Item	Standard models	High sensitivity models
Load	Resistive load ($\cos \phi=1$)	0.5 A at 125 VAC; 1 A at 24 VDC
Rated load	0.5 A at 125 VAC; 2 A at 30 VDC	
Contact material	Ag + Au-clad	1 A
Rated carry current	2 A	$62.5 \mathrm{VA}, 24 \mathrm{~W}$
Max. switching voltage	$125 \mathrm{VAC}, 125 \mathrm{VDC}$	
Max. switching current	2 A	$6.5 \mathrm{VA}, 60 \mathrm{~W}$
Max. switching power	0.01 mA at 10 mVDC	
Failure rate (reference value) (See note.)		

Note: P level: $\lambda_{60}=0.1 \times 10^{-6} /$ operation
This value was measured at a switching frequency of 120 operations $/ \mathrm{min}$ and the criterion of contact resistance is 50Ω. This value may vary depending on the switching frequency and operating environment. Always double-check relay suitability under actual operating conditions.

■ Characteristics

Item	Standard models	High sensitivity models
Contact resistance (See note 1.)	$50 \mathrm{~m} \Omega$ max.	$100 \mathrm{~m} \Omega$ max.
Operate time	7 ms max .	
Release time	3 ms max .	
Max. operating frequency	Mechanical: 36,000 operations/hr Electrical: 1,800 operations/hr (under rated load)	
Insulation resistance (See note 2.)	$1,000 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC)	
Dielectric strength	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity 750 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity	1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between coil and contacts 1,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of different polarity 500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min between contacts of same polarity
Impulse withstand voltage	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ between coil and contacts (conforms to FCC Part 68)	
Vibration resistance	Destruction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude (1.5-mm double amplitude) Malfunction: 10 to 55 to $10 \mathrm{~Hz}, 0.75-\mathrm{mm}$ single amplitude ($1.5-\mathrm{mm}$ double amplitude)	
Shock resistance	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 20G)	Destruction: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100G) Malfunction: $100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G)
Endurance	Mechanical: 15,000,000 operations min. (at 36,000 operations/hr) Electrical: 100,000 operations min. (at 1,800 operations/hr)	
Ambient temperature	Operating: $-25^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (with no icing)	Operating: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (with no icing)
Ambient humidity	Operating: 5\% to 85\%	
Weight	Approx. 5 g	

Note: The above values are initial values.
Note: 1. The contact resistance was measured with 10 mA at 1 VDC with a voltage drop method.
2. The insulation resistance was measured with a 500-VDC megohmmeter applied to the same parts as those used for checking the dielectric strength.

- Approved Standards

UL478, UL1950, UL508 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Contact form	Coil ratings	Contact ratings	
		G5V-2	G5V-2-H1
DPDT	3 to 48 VDC	$0.6 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)	$0.5 \mathrm{~A}, 125 \mathrm{VAC}$ (general use)
		$0.6 \mathrm{~A}, 110 \mathrm{VDC}$ (resistive load)	0.2 A, 110 VDC (resistive load)
		$2 \mathrm{~A}, 30 \mathrm{VDC}$ (resistive load)	$1 \mathrm{~A}, 24 \mathrm{VDC}$ (resistive load)

Engineering Data

Maximum Switching Power G5V-2

G5V-2-H1

Endurance
G5V-2

G5V-2-H1

Note: The maximum coil voltage refers to the maxi-mum value in a varying range of operating power voltage, not a continuous voltage.
Ambient Temperature vs. Maximum Coil Voltage G5V-2

G5V-2-H1

Note: The maximum coil voltage refers to the maxi-mum value in a varying range of operating power voltage, not a continuous voltage.

Dimensions

Note: 1. All units are in millimeters unless otherwise indicated.
2. Orientation marks are indicated as follows: $\square \square$

Precautions

Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. Be sure to use a fail-safe circuit design that provides protection against contact failure or coil burnout.

Relay Handling
When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than $40^{\circ} \mathrm{C}$. Do not put the Relay in a cold cleaning bath immediately after soldering.

