Monitoring relays - GAMMA series
 Multifunction
 Monitoring of phase sequence and phase failure
 Monitoring of asymmetry selectable
 Connection of neutral wire optional
 Detection of loss of neutral wire
 Zoom voltage 24 to 240 V AC/DC
 2 change-over contacts
 Width 22.5 mm
 Industrial design

Technical data

1. Functions		
Voltage monitoring in 3-phase mains with adjustable thresholds, adjustable tripping delay, monitoring of phase sequence and phase		
failure, monitoring of asymmetry with adjustable threshold and the		
following functions which are selectable by means of rotary switch:		
UNDER Undervoltage monitoring		
UNDER+SEQ Undervoltage monitor		
WIN Monitoring of window between Min and Max		
WIN+SEQ Monitoring the window between Min and Max and monitoring of phase sequence		
2. Time ranges		
	Adju	ment ran
Start-up suppression time:		
Tripping delay:	0.1 s	10s
3. Indicators		
Red LED ON/OFF:		of fa ld
Red LED flashes:		on of trip onding
Yellow LED ON/OFF:	indic	on of re
4. Mechanical design		
Self-extinguishing plastic housing, IP rating IP40		
Mounted on DIN-Rail TS 35 according to EN 60715		
Mounting position: any		
Shockproof terminal connection according to VBG 4 (PZ1 required), IP rating IP20		
Tightening torque: max. 1 Nm		
Terminal capacity:		
1×0.5 to $2.5 \mathrm{~mm}^{2}$ with/without multicore cable end		
$1 \times 4 \mathrm{~mm}^{2}$ without multicore cable end		
2×0.5 to $1.5 \mathrm{~mm}^{2}$ with/without multicore cable end		
$2 \times 2.5 \mathrm{~mm}^{2}$ flexible without multicore cable end		
5. Input circuit		
Supply voltage:		
24 to 240 V AC/DC	termi	Is A1-A
Tolerance:		
24 to 240 V DC	-20\%	+25\%
24 to 240 V AC	-15\%	+10\%
Rated frequency:		
24 to 240 V AC	48 to	0 Hz
48 to 240 V AC	16 to	Hz
Rated consumption:	4.5VA	1W)
Duration of operation:	100\%	
Reset time:	500m	
Wave form for AC:	Sinus	
Residual ripple for DC:	10\%	
Drop-out voltage:	>15\%	f the su
Overvoltage category: surge voltage:	$\begin{aligned} & \text { III (in } \\ & 4 \mathrm{kV} \end{aligned}$	cordan
6. Output circuit		
2 potential free change-over contacts		

Rated voltage:	250V AC
Switching capacity:	750VA (3A / 250V AC)
If the distance between the devices is less than 5 mm !	
Switching capacity:	1250VA (5A / 250V AC)
If the distance between the devices is greater than 5 mm !	
Fusing:	5A fast acting
Mechanical life:	20×10^{6} operations
Electrical life:	2×10^{5} operations at 1000 VA resistive load
Switching frequency:	max. 60/min at 100VA resistive load max. $6 / \mathrm{min}$ at 1000 VA resistive load (in accordance with IEC 60947-5-1)
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
7. Measuring circuit	
Fusing:	max. 20A (in accordance with UL 508)
Measured variable:	AC Sinus (48 to 63 Hz)
Input:	
3(N)~ 115/66V	terminals (N)-L1-L2-L3 (G2PM115VSY20)
$3(\mathrm{~N}) \sim 230 / 132 \mathrm{~V}$	terminals (N)-L1-L2-L3 (G2PM230VSY20)
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	terminals (N)-L1-L2-L3 (G2PM400VSY20)
Overload capacity:	
3(N)~ 115/66V	3(N)~173/100V (G2PM115VSY20)
3(N)~ 230/132V	3(N)~345/199V (G2PM230VSY20)
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	3(N)~600/346V (G2PM400VSY20)
Input resistance:	
$3(\mathrm{~N}) \sim 115 / 66 \mathrm{~V}$	220k (G2PM115VSY20)
$3(\mathrm{~N}) \sim 230 / 132 \mathrm{~V}$	470k (G2PM230VSY20)
$3(\mathrm{~N}) \sim 400 / 230 \mathrm{~V}$	1M ${ }^{\text {(G2PM400VSY20) }}$
Switching threshold	
Max:	-20% to $+30 \%$ of UN
Min:	-30% to +20\% of UN
Asymmetry:	5\% to 25\%
Overvoltage category:	III (in accordance with IEC 60664-1)
Rated surge voltage:	4 kV
8. Accuracy	
Base accuracy:	$\leq 3 \%$ (of maximum scale value)
Frequency response:	-
Adjustment accuracy:	$\leq 5 \%$ (of maximum scale value)
Repetition accuracy:	$\leq 2 \%$
Voltage influence:	-
Temperature influence:	$\leq 0.05 \% /{ }^{\circ} \mathrm{C}$
9. Ambient conditions	
Ambient temperature:	-25 to $+55^{\circ} \mathrm{C}$ (in accordance with IEC 60068-1) -25 to $+40^{\circ} \mathrm{C}$ (in accordance with UL 508)
Storage temperature:	-25 to $+70^{\circ} \mathrm{C}$
Transport temperature:	-25 to $+70^{\circ} \mathrm{C}$
Relative humidity:	15% to 85% (in accordance with IEC 60721-3-3 class 3K3)
Pollution degree:	3 (in accordance with IEC 60664-1)
Vibration resistance:	10 to 55 Hz 0.35 mm
Shock resistance: 159	(in accordance with IEC 60068-2-6) 11 ms (in accordance with IEC 60068-2-27)

Functions

For all the functions the LEDs MIN and MAX are flashing alternating, when the minimum value for the measured voltage was chosen to be greater than the maximum value. If a failure already exists when the device is activated, the output relays remain in off-position and the LED for the corresponding threshold is illuminated.

Under voltage monitoring (UNDER, UNDER+SEQ)
When the measured voltage (mean value of phase-to-phase voltages) falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated), when the measured voltage exceeds the value adjusted at the MAX-regulator.

Window function (WIN, WIN+SEQ)
The output relays switch into on-position (yellow LED illuminated) when the measured voltage (mean value of phase-to-phase voltages) exceeds the value adjusted at the MIN-regulator. When the measured voltage exceeds the value adjusted at the MAX-regulator, the set interval of the tripping delay (DELAY) begins (red LED MAX flashes). After the interval has expired (red LED MAX illuminated), the output relays switch into off-position (yellow LED not illuminated). The output relays again switch into on-position (yellow LED illuminated) when the measured voltage falls below the value adjusted at the MAX-regulator (red LED MAX not illuminated). When the measured voltage falls below the value adjusted at the MIN-regulator, the set interval of the tripping delay (DELAY) begins again (red LED MIN flashes). After the interval has expired (red LED MIN illuminated), the output relays switch into off-position (yellow LED not illuminated).

Phase sequence monitoring (SEQ)

Phase sequence monitoring is selectable for all functions. If a change in phase sequence is detected (red LED SEQ illuminated), the output relays switch into off-position immediately (yellow LED not illuminated).

Phase failure monitoring (SEQ)
If one of the phase voltages fails, the set interval of the tripping delay (DELAY) begins (red LED SEQ flashes). After the interval has expired (red LED SEQ illuminated), the output relays switch into off-position (yellow LED not illuminated). Reverse voltages of a consumer (e.g. a motor which continues to run on two phases only) do not effect the disconnection but can be monitored by using a proper value for the asymmetry.

Asymmetry monitoring

If the asymmetry of the phase-to-phase voltages exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch into off-position (yellow LED not illuminated). If the neutral wire is connected to the device, the asymmetry of the phase voltages referred to the neutral wire (Y -voltage) is monitored also. In that case both values of the asymmetry are evaluated and if one of the values exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch into off-position (yellow LED not illuminated).

Loss of neutral wire by means of evaluation of asymmetry
A break of the neutral wire between power line and machinery is detected as soon as asymmetry between phase-to-phase voltage and neutral wire occurs. If the asymmetry exceeds the value set at the ASYM-regulator, the set interval of the tripping delay (DELAY) begins (red LED ASYM flashes). After the interval has expired (red LED ASYM illuminated), the output relays switch into off-position (yellow LED not illuminated). A break of the neutral wire between our device and the machinery can not be detected.

Connections

G2PM400VSY20 $24-240 \mathrm{~V}$, supply voltage 24 V AC/DC

Dimensions

G2PM400VSY20 24-240V, supply voltage 230 V AC

Subject to alterations and errors

