Preliminary Technical Data

FEATURES

Ultra Low Power
90mW @ 20MSPS;
135mW @ 40MSPS;
190mW @ 65MSPS
SNR = 66.5 dBc (to Nyquist);
SFDR = $82 \mathrm{dBc} @ 2.4 \mathrm{MHz}$ Analog Input
ENOB $=10.5$ bits
DNL $= \pm 0.5$ LSB
Differential Input with 500 MHz Full Power Bandwidth
Flexible and Selectable Analog Input: 4Vp-p to 1Vp-p
Data Formats Supported; Offset Binary, Twos
Complement and Gray Code
Output Enable Pin
2-step power down; Full Power down and Sleep mode

APPLICATIONS

Ultrasound and Medical Imaging
Battery Powered Instruments; Hand-Held
Scopemeters; Low Cost Digital Oscilloscopes; Low
Power Digital Still Cameras and Copiers; Low power communications

PRODUCT DESCRIPTION

The AD9237 is a monolithic, single 3V supply, 12-bit, 20/40/65MSPS Analog to Digital Converter with a high performance sample-and-hold amplifier and voltage reference. The AD9237 uses a multistage differential pipelined architecture with output error correction logic to provide 12-bit accuracy at 20/40/65MSPS data rates and guarantee no missing codes over the full operating temperature range.

The wide bandwidth, truly differential SHA allows for a variety of user-selectable input ranges and offsets including single-ended applications. It is suitable for multiplexed systems that switch full-scale voltage levels in successive channels and for sampling single-channel inputs at frequencies well beyond the Nyquist rate. With significant power savings over previously available analog to digital converters, the AD9237 is suitable for applications imaging and medical ultrasound.

A single-ended clock input is used to control all internal conversion cycles. The digital output data is presented in straight binary, twos complement, or gray code formats. An out-of-range (OTR) signal indicates an overflow condition, which can be used with the most significant bit to determine low or high overflow.

REV PrF 5/18/2005

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Fabricated on an advanced CMOS process, the AD9237 is available in a 32 -pin chip scale package and is specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

PRODUCT HIGHLIGHTS

1. Operating at 65MSPS, the AD9237 consumes a low 190 mW and only consumes 135 mW at 40 MSPS and 90 mW at 20MSPS.
2. The AD9237 operates from a single 3 V power supply, and features a separate digital output driver supply to accommodate 2.5 V and 3.3 V logic families.
3. The patented SHA input maintains excellent performance for input frequencies beyond Nyquist, and can be configured for single-ended or differential operation.
4. The AD9237 is pin compatible to the AD9235, a 12-bit, 20/40/65 MSPS A/D converter. This allows a simplified path for low power 12-bit systems.
5. The AD9237 is optimized for selectable and flexible input ranges from $4 \mathrm{Vp}-\mathrm{p}$ to $1 \mathrm{Vp}-\mathrm{p}$.
6. Output Enable pin to allow for multiplexing of the outputs.
7. Two-step power down supports a standby mode in addition to a power down mode.
8. The OTR output bit indicates when the signal is beyond the selected input range.
[^0]DC SPECIFICATIONS (AVDD $=+3 \mathrm{~V}$, DRVDD $=+3 \mathrm{~V}, 2 \mathrm{Vp}-\mathrm{p}$ Input, $-0.5 \mathrm{dBFS}, 1.0 \mathrm{~V}$ internal reference, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted)

Parameter	Temp	Test Level	AD9237BCPZ-20			AD9237BCPZ-40			AD9237BCPZ-65			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
RESOLUTION	Full	VI	12			12			12			Bits
ACCURACY No Missing Codes Guaranteed Offset Error Gain Error ${ }^{1}$ Differential Nonlinearity (DNL) Integral Nonlinearity (INL)	Full Full Full Full $25^{\circ} \mathrm{C}$ Full $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{VI} \\ & \mathrm{VI} \\ & \mathrm{VI} \\ & \mathrm{IV} \\ & \mathrm{I} \\ & \mathrm{IV} \\ & \mathrm{I} \\ & \hline \end{aligned}$	12	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \mathbf{+ 0 . 5} \\ & \mathbf{+ 0 . 5} \\ & +1.2 \\ & +1.2 \end{aligned}$		12	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & +0.5 \\ & \pm 0.5 \\ & \pm+1.2 \\ & \pm 1.2 \end{aligned}$		12	$\begin{aligned} & \pm 0.5 \\ & \pm 0.5 \\ & \mathbf{+ 0 . 5} \\ & \mathbf{+ 0 . 5} \\ & \mathbf{+ 1 . 2} \\ & \mathbf{+ 1 . 2} \end{aligned}$		Bits \%FSR \%FSR LSB LSB LSB LSB
TEMPERATURE DRIFT Offset Error Gain Error ${ }^{1}$	Full Full	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & \pm 2 \\ & \pm 12 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 12 \end{aligned}$			$\begin{aligned} & \pm 2 \\ & \pm 12 \end{aligned}$		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
INTERNAL VOLTAGE REFERENCE Output Voltage Error (1 V Mode) Load Regulation @ 1.0 mA Output Voltage Error (0.5 V Mode) Load Regulation @ 0.5 mA	Full Full Full Full	$\begin{aligned} & \mathrm{VI} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & \pm 5 \\ & 0.8 \\ & \pm 2.5 \\ & \hline 0.1 \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 5 \\ & \hline 0.8 \\ & \pm 2.5 \\ & \hline \mathbf{0 . 1} \\ & \hline \end{aligned}$			$\begin{aligned} & \pm 5 \\ & \hline 0.8 \\ & \frac{+2.5}{0.1} \end{aligned}$		mV mV mV mV
$\begin{aligned} & \text { INPUT REFERRED NOISE } \\ & \text { VREF }=0.5 \mathrm{~V} \\ & \text { VREF }=1.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		1.36				1.36			$\begin{aligned} & 1.36 \\ & 0.68 \\ & \hline \end{aligned}$		LSB rms LSB rms
```ANALOG INPUT Input Span, VREF = 0.5V; MODE 2 = 0V; Input Span, VREF = 1.0V; MODE 2 = 0V; Input Span, VREF = 0.5V; MODE2= AVDD; Input Span, VREF = 1.0V;MODE2 = AVDD; Input Capacitance }\mp@subsup{}{}{3```	Full   Full   Full   Full   Full	$\begin{aligned} & \text { IV } \\ & \text { V } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$				$\begin{aligned} & 2 \\ & 2 \\ & 4 \end{aligned}$   7			$2$		$\begin{aligned} & \text { Vp-p } \\ & \text { Vp-p } \\ & \text { Vp-p } \\ & \text { pF } \end{aligned}$
REFERENCE INPUT RESISTANCE	Full	V	7				7			7		k
POWER SUPPLIES   Supply Voltages   AVDD   DRVDD   Supply Current IAVDD ${ }^{2}$ IDRVDD ${ }^{2}$ PSRR	Full   Full   Full   Full   Full	$\begin{aligned} & \text { IV } \\ & \text { IV } \\ & \text { VI } \\ & \mathrm{VI} \\ & \mathrm{VI} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \\ & 30 \\ & 2 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \\ & 44 \\ & 5 \\ & \pm 0.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & \\ & 63 \\ & 7 \\ & \pm 0.01 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	V   mA   mA   \%FSR
POWER CONSUMPTION DC Input ${ }^{4}$ Sine Wave Input ${ }^{2}$ Power Down Mode ${ }^{5}$ Standby Power ${ }^{6}$	Full   Full   Full   Full	$\begin{aligned} & \mathrm{V} \\ & \mathrm{VI} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 90 \\ & 95 \\ & 1 \\ & 17 \end{aligned}$			$\begin{aligned} & 134 \\ & 152 \\ & 1 \\ & 17 \\ & \hline \end{aligned}$			$\begin{aligned} & 188 \\ & 216 \\ & 1 \\ & 17 \\ & \hline \end{aligned}$		mW   mW   mW   mW

## NOTES

1. Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.0 V external reference).
2. Measured at maximum Clock Rate, $\mathrm{F}_{\mathrm{IN}}=2.4 \mathrm{MHz}$, full-scale sine wave, with approximately 5 pF loading on each output bit.
3. Input Capacitance refers to the effective capacitance between one differential input pin and AGND.
4. Measured with dc input at Maximum Clock Rate.
5. Power Down Mode power is measured with a dc input, the CLK pin inactive (i.e., set to AVDD or AGND)
6. Standby Mode power is measured with a dc input, the CLK pin active.

Specifications subject to change without notice.

## Preliminary Technical Data <br> AD9237

DIGITAL SPECIFICATIONS

Parameter	Temp	Test Level	AD9237BCPZ-20			AD9237BCPZ-40			AD9237BCPZ-65			Units			
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max				
LOGIC INPUTS															
High-Level Input Voltage	Full	IV	2.0			2.0			2.0			V			
Low-Level Input Voltage	Full	IV			0.8			0.8			0.8	V			
High-Level Input Current	Full	IV	-10		10	-10		10	-10		10	$\mu \mathrm{A}$			
Low-Level Input Current	Full	IV	-10		10	-10		10	-10		10	$\mu \mathrm{A}$			
Input Capacitance	Full	V	2			2			2			PF			
LOGIC OUTPUTS ${ }^{1}$															
DRVDD $=3.3 \mathrm{~V}$															
High-Level Output Voltage ( $1 \mathrm{OH}=50 \mu \mathrm{~A}$ )	Full	IV	3.29						V						
High-Level Output Voltage ( $10 \mathrm{OH}=0.5 \mathrm{~mA}$ )	Full	IV	3.25			3.25						3.25			V
Low-Level Output Voltage (IOL=1.6mA)	Full	IV	0.2			0.2			$\begin{aligned} & 0.2 \\ & 0.05 \end{aligned}$			V			
Low-Level Output Voltage ( $1 \mathrm{OL=50} \mathrm{\mu A} \mathrm{)} \mathrm{{ }}^{\text {a }}$ ( ${ }^{\text {a }}$ (	Full	IV			0.05	0.05						V			
DRVDD $=2.5 \mathrm{~V}$						2.49									
High-Level Output Voltage ( $\mathrm{IOH}=50 \mu \mathrm{~A}$ )	Full	IV	2.49						2.49			V			
High-Level Output Voltage ( $1 \mathrm{OH}=0.5 \mathrm{~mA}$ )	Full	IV	2.45			2.45			2.45			V			
Low-Level Output Voltage ( $1 \mathrm{OL=1.6mA} \mathrm{)}$	Full	IV			0.2			0.2			0.2	V			
Low-Level Output Voltage ( $\mathrm{IOL=}=50 \mu \mathrm{~A}$ )	Full	IV			0.05			0.05			0.05	V			

## NOTES:

1. Output Voltage Levels measured with 5 pF load on each output.

Specifications subject to change without notice.

## SWITCHING SPECIFICATIONS

Parameter	Temp	Test Level	AD9237BCPZ-20			AD9237BCPZ-40			AD9237BCPZ-65			Units
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
CLOCK INPUT PARAMETERS												
Max Conversion Rate	Full	IV	20			40			65			MSPS
Min Conversion Rate	Full	V			1			1			1	MSPS
CLOCK PERIOD	Full	V	50.0			25.0			16.6			ns
CLOCK Pulsewidth High	Full	V	15			8.8			6.8			ns
CLOCK Pulsewidth Low	Full	V	15			8.8			6.8			
DATA OUTPUT PARAMETERS												
Output Delay ${ }^{1}$ (tod)	Full	V		3.5			3.5			3.5		ns
Pipeline Delay (Latency)	Full	V		9			9			9		Cycles
Output Enable Time	Full	V		6			6			6		ns
Output Disable Time	Full	V		3			3			3		ns
Aperture Delay	Full	V		1.0			1.0			1.0		ns
Aperture Uncertainty (Jitter)	Full	V		0.5			0.5			0.5		ps rms
Wake-Up time ${ }^{2}$ (Sleep Mode)	Full	V		2.5			2.5			2.5		ms
Wake-Up time (Standby Mode)	Full	V		tbd			tbd			tbd		ns
OUT-OF_RANGE RECOVERY TIME	Full	V		1			1			2		cycles

## NOTES:

1. Valid Data Delay is measured from CLOCK $50 \%$ transition to DATA $50 \%$ transition, with 5 pF load.
2. Wake-Up Time is dependant on value of decoupling capacitors, typical values shown with $0.1 \mu \mathrm{~F}$ and $10 \mu \mathrm{~F}$ capacitors on REFT and REFB. Specifications subject to change without notice.


Figure 1. Timing Diagram

AD9237 Preliminary Technical Data

AC SPECIFICATIONS (AVDD $=+3 \mathrm{~V}$, DRVDD $=+3 \mathrm{~V}, 2 \mathrm{Vp}-\mathrm{p}$ Input, $-0.5 \mathrm{dBFS}, 1.0 \mathrm{~V}$ internal reference, $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {mAx }}$, unless otherwise noted)


Specifications subject to change without notice.

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Pin Name	$\begin{gathered} \text { With } \\ \text { Respect } \\ \text { to } \end{gathered}$	Min	Max	Unit
ELECTRICAL				
AVDD	AGND	-0.3	+3.9	V
DRVDD	DGND	-0.3	+3.9	V
AGND	DGND	-0.3	+0.3	V
AVDD	DRVDD	-3.9	+3.9	V
Digital Outputs	DGND	-0.3V	DRVDD +0.3	V
CLK, OEB	AGND	-0.3V	AVDD +0.3	V
MODE, MODE2	AGND	-0.3V	AVDD +0.3	V
VIN+, VIN-	AGND	-0.3V	AVDD +0.3	V
VREF	AGND	-0.3V	AVDD +0.3	V
SENSE	AGND	-0.3V	AVDD +0.3	V
REFB, REFT	AGND	-0.3V	AVDD +0.3	V
PDWN	AGND	-0.3V	AVDD +0.3	V
ENVIRONMENTAL ${ }^{2}$				
Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
Junction Temperature			150	${ }^{\circ} \mathrm{C}$
Lead Temperature (10 sec)			300	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	150	${ }^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ Absolute maximum ratings are limiting values to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability is not necessarily implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.
${ }^{2}$ Typical thermal impedances (32-terminal LFCSP); $\theta_{\mathrm{JA}}=32.5^{\circ} \mathrm{C} / \mathrm{W}$; $\mathrm{\theta sc}$ $=32.71^{\circ} \mathrm{C} / \mathrm{W}$. These measurements were taken on a 4-layer board in still air, in accordance with EIA/JESD51-1.

## EXPLANATION OF TEST LEVELS

 Test LevelI $100 \%$ production tested.
II $100 \%$ production tested at $+25^{\circ} \mathrm{C}$ and sample tested at specified temperatures.
III Sample tested only.
IV Parameter is guaranteed by design and characterization testing.
V Parameter is a typical value only.
VI $100 \%$ production tested at $+25^{\circ} \mathrm{C}$; guaranteed by design and characterization testing for industrial temperature range; $100 \%$ production tested at temperature extremes for military devices.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD9237BCPZ-20	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Frame Chip Scale Package (LFCSP)	CP-32
AD9237BCPZ-40	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Frame Chip Scale Package (LFCSP)	CP-32
AD9237BCPZ-65	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead Frame Chip Scale Package (LFCSP)	CP-32
AD9237BCP-20EB		LFCSP Evaluation Board (w/ AD9237BCPZ-20)	
AD9237BCP-40EB		LFCSP Evaluation Board (w/ AD9237BCPZ-40)	
AD9237BCP-65EB		LFCSP Evaluation Board (w/ AD9237BCPZ-65)	

[^1]
## DEFINITIONS OF SPECIFICATIONS INTEGRAL NONLINEARITY (INL)

INL refers to the deviation of each individual code from a line drawn from "negative full scale" through "positive full scale." The point used as "negative full scale" occurs $1 / 2$ LSB before the first code transition. "Positive full scale" is defined as a level 1 1/2 LSB beyond the last code transition. The deviation is measured from the middle of each particular code to the true straight line.

## DIFFERENTIAL NONLINEARITY (DNL, NO MISSING CODES)

An ideal ADC exhibits code transitions that are exactly 1 LSB apart. DNL is the deviation from this ideal value. Guaranteed no missing codes to 12 -bit resolution indicates that all 4096 codes, respectively, must be present over all operating ranges.

## ZERO ERROR

The major carry transition should occur for an analog value $1 / 2$ LSB below VINA = VINB. Zero error is defined as the deviation of the actual transition from that point.

## GAIN ERROR

The first code transition should occur at an analog value $1 / 2$ LSB above negative full scale. The last transition should occur at an analog value $11 / 2$ LSB below the positive full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

## TEMPERATURE DRIFT

The temperature drift for zero error and gain error specifies the maximum change from the initial $\left(25^{\circ} \mathrm{C}\right)$ value to the value at TMIN or TMAX.

## POWER SUPPLY REJECTION

The specification shows the maximum change in full scale from the value with the supply at the minimum limit to the value with the supply at its maximum limit.

## APERTURE JITTER

Aperture jitter is the variation in aperture delay for successive samples and can be manifested as noise on the input to the ADC.

## APERTURE DELAY

Aperture delay is a measure of the sample-and-hold amplifier (SHA) performance and is measured from the rising edge of the clock input to when the input signal is held for conversion.

## SIGNAL-TO-NOISE AND DISTORTION (S/N+D, SINAD) RATIO

$\mathrm{S} / \mathrm{N}+\mathrm{D}$ is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for $\mathrm{S} / \mathrm{N}+\mathrm{D}$ is expressed in decibels.

## EFFECTIVE NUMBER OF BITS (ENOB)

For a sine wave, SINAD can be expressed in terms of the number of bits. Using the following formula,

$$
\mathrm{N}=(\mathrm{SINAD}-1.76) / 6.02
$$

it is possible to obtain a measure of performance expressed as N , the effective number of bits.

Thus, effective number of bits for a device for sine wave inputs at a given input frequency can be calculated directly from its measured SINAD.

## TOTAL HARMONIC DISTORTION (THD)

THD is the ratio of the rms sum of the first six harmonic components to the rms value of the measured input signal and is expressed as a percentage or in decibels.

## SIGNAL-TO-NOISE RATIO (SNR)

SNR is the ratio of the rms value of the measured input signal to the rms sum of all other spectral components below the Nyquist frequency, excluding the first six harmonics and dc. The value for SNR is expressed in decibels.

## SPURIOUS FREE DYNAMIC RANGE (SFDR)

SFDR is the difference in dB between the rms amplitude of the input signal and the peak spurious signal.

## CLOCK PULSEWIDTH AND DUTY CYCLE

Pulsewidth high is the minimum amount of time that the clock pulse should be left in the logic " 1 " state to achieve rated performance: pulse width low is the minimum time the clock pulse should be left in the low state. At a given clock rate, these specs define an acceptable clock duty cycle.

## MINIMUM CONVERSION RATE

The clock rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

## MAXIMUM CONVERSION RATE

The clock rate at which parametric testing is performed.

## OUTPUT PROPAGATION DELAY

The delay between the clock logic threshold and the time when all bits are within valid logic levels.

## TWO TONE SFDR

The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IMD product. May be reported in dBc (i.e., degrades as signal levels are lowered) or in dBFS (always related back to converter full scale).

## Preliminary Technical Data <br> AD9237

## PIN FUNCTION DESCRIPTIONS (32 Pin LFCSP Package)

Pin No.	Name	Function			
1	MODE 2	SHA Gain Select and Power Control (see Figure 2)			
		MODE2 Connection		SHA Gain	Auto Power Control
		AVDD		1	Disabled
		2/3 AVDD		1	Enabled
		1/3 AVDD		2	Enabled
		AGND		2	Disabled
2	CLK   OE   PDWN				
3		Output Enable Pin (active low)			
4		Power-Down function selection.			
		PWDN Function			
		AVDD	Power Down Mode: All circuits powered down, no clock		
		1/3 AVDD	Standby Mode: Only current \& voltage references powered up		
		AGND $\quad$ Power Up			
5,6	DNC	Do Not Connect			
7-14, 17-20	D0 (LSB) - D11 (MSB)	Data Output Pins			
15	DGND	Digital ground.			
16	DRVDD	Digital Output Driver Supply.			
21	OTR	Out of Range Flag			
22	MODE	Output Data Format Select and Duty Cycle Stabilizer Control			
		MODE Connection		Output Data Format	Duty Cycle Stabilizer
		AVDD		Twos Complement	Disabled
		2/3 AVDD		Twos Complement	Enabled
		1/3 AVDD		Offset Binary	Enabled
		AGND		Offset Binary	Disabled
23	SENSE	Reference mode/Input Full Scale Select			
24	VREF	Voltage Reference Input/Output.			
25	REFB	Differential Reference (-).			
26	REFT	Differential Reference (+).			
27,32	AVDD	Analog Power Supply.			
28,31	AGND	Analog ground.			
29	VIN+	Analog Input Pin (+).			
30	VIN-	Analog Input Pin (-).			

## Preliminary LFCSP Pin Configuration



## TYPICAL PERFORMANCE CHARACTERISTICS

$\left(\mathrm{AVDD}=3.0 \mathrm{~V}, \mathrm{DRVDD}=3.0 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=65 \mathrm{MSPS}\right.$, DCS Disabled, $2 \mathrm{Vp}-\mathrm{p}$ Differential Input, $\mathrm{A}_{\mathrm{IN}}=-0.5 \mathrm{dBFS}, 1.0 \mathrm{~V}$ internal reference, $\mathrm{T}_{\mathrm{A}}=$ $25^{\circ} \mathrm{C}$, unless otherwise noted.)


Figure 2. AD9237-65 Analog Current vs. Clock Frequency vs. Power Scaling


## 32-LFCSP Package Dimensions


[^0]:    One Technology Way, P.O Box 9106, Norwood, MA 02062-9106, U.S.A.
    Tel: 617/329-4700
    World Wide Web Site: http://www.analog.com
    Fax: 617-326-8703 © Analog Devices, Inc., 2005

[^1]:    ${ }^{1}$ It is recommended that the exposed paddle be soldered to the ground plane. There is an increased reliability of the solder joints, and maximum thermal capability of the package is achieved with the exposed paddle soldered to the customer board.

