

Ambient Light Sensor IC Series

Analog Current Output Type Ambient Light Sensor IC BH1603FVC

Descriptions

BH1603FVC is an analog current output ambient light sensor. This IC is the most suitable to obtain the ambient light data for adjusting LCD and Keypad backlight of Mobile phone for power saving and better visibility

Features

- 1) Compact surface mount package 3.0 × 1.6 mm
- 2) Spectral sensitivity close to human eyes sensitivity.
- 3) Output current in proportion to brightness.
- 4) Minimum supply voltage 2.4V
- 5) Built-in shutdown function
- 6) 3 steps controllable output current gain.
- 7) 1.8V logic input interface
- 8) Low sensitivity variation (+/-15%)

Applications

Mobile phone, LCD TV, PDP TV, Laptop PC, Portable game console, Digital camera, Digital video camera, Car navigation, PDA, LCD display

Absolute Maximum Ratings

Parameter	Symbol	Limits	Units
Supply Voltage	Vmax	7	V
Operating Temperature	Topr	-40~85	°C
Storage Temperature	Tstg	-40~100	°C
lout Current	loutmax	7.5	mA
Power Dissipation	Pd	260 _*	mW

^{* 70}mm × 70mm × 1.6mm glass epoxy board. Derating at 3.47mW/°C for operating above Ta=25°C.

Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
VCC Voltage	Vcc	2.4	3.0	5.5	٧

June 2008

● Electrical Characteristics (VCC = 3.0V, Ta = 25°C, unless otherwise noted)

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Supply Current1 (Operate)	Icc1	51	74	97	uA	Ev=100 lx (H-Gain Mode) 🐰
Supply Current2 (0 lx)	Icc2	4.5	9	13.5	uA	Ev=0 lx (H-Gain Mode)
Supply Current3(Shutdown)	Icc3sd	-	0.2	0.4	uA	V _{GC1} =V _{GC2} =0 No Input Light
IOUT Output Current1 (Dark Current)	Iout1	-	-	0.2	uA	Ev=0 lx
IOUT Output Current2	Iout2	51	60	69	uA	Ev=100 lx (H-Gain Mode) **
Peak Wave Length	λр	-	560	-	nm	
Incandescent/Fluorescent Light Current Ratio	rlF	-	1.0	-	times	Ev=100 lx
Saturated Output Voltage	V _{OMAX}	2.6	2.9	3.0	٧	Ev=100 lx, RL=220kΩ (H–Gain Mode) _※
GC1, GC2 Input 'L' Voltage	$V_{\scriptscriptstyle { m IL}}$	0	_	0.4	V	
GC1,GC2 Input 'H' Voltage1	V_{IH1}	1.4	_	Vcc	٧	2. 4V ≤ VCC ≤ 3. 6V
GC1,GC2 Input 'H' Voltage2	V_{IH2}	2.0	_	Vcc	٧	$3.6V < VCC \leq 5.5V$
Wake-up Time	twu	-	45	128	us	Shutdown → H-Gain Mode Ev=100lx _※
Gain Ratio H-Gain Mode/M-Gain Mode	rHM	9.5	10	10.5	times	Ev=100lx **
Gain Ratio M-Gain Mode/L-Gain Mode	rML	9.5	10	10.5	times	Ev=100lx **

 $_{\mbox{\tiny \#}}$ White LED is used as optical source

Reference Data

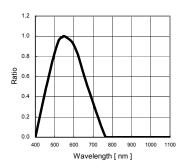


Fig.1 Spectral Response

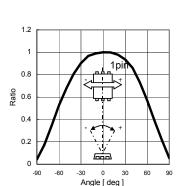


Fig.4 Directional Characteristics 1

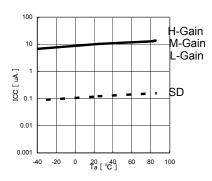


Fig.7 Ta - ICC (0 lx)

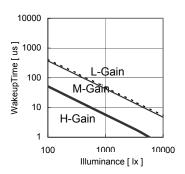


Fig.10 Illuminance - Wake up Time

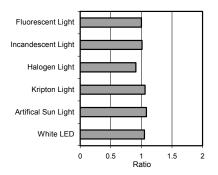


Fig.2 Light Source Dependency (Fluorescent Light is set to '1')

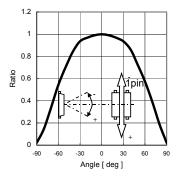


Fig.5 Directional Characteristics 2

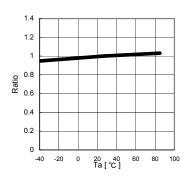


Fig.8 IOUT Temperature dependency (100 lx)

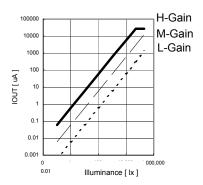


Fig.3 Illuminance – IOUT Characteristics

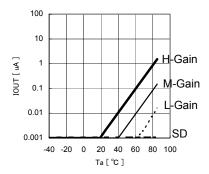


Fig.6 Ta - IOUT (0 lx)

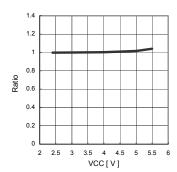
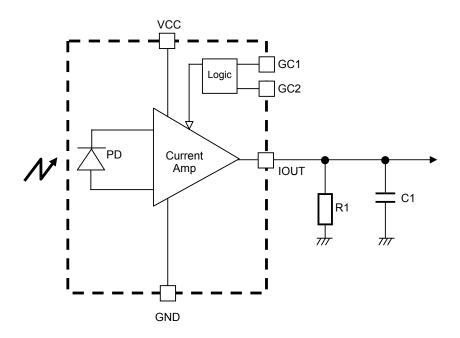



Fig.9 IOUT VCC dependency

Block Diagram

Block Diagram Descriptions

PD

Photo diode close to human eyes sensitivity.

Current AMP

To amplify Photo diode current (H-Gain / M-Gain / L-Gain) Gain controllable in 3 steps by input voltage from GC1 and GC2.

Logic

Logic block for mode setting by input voltage from GC1 and GC2

Mode Setting

GC2	GC1	Mode
0	0	Shutdown
0	1	H-Gain Mode
1	0	M-Gain Mode
1	1	L-Gain Mode

External parts Setting

1) Gain setting of BH1603FVC

Please select the best gain controlled by 5 and 6pin based on the required illuminance range.

The reference is as follows.

Illuminance detection range [lx]	Gain Mode
~1,000	H-Gain Mode
~10,000	M-Gain Mode
~100,000	L-Gain Mode

This device will be mounted under the optical window in actual designing. Therefore, there is a possibility that the illuminance to ALS(Ambient Light Sensor) will be less than the illuminance on the final product surface.

Please consider the attenuation of light through the optical window.

Please set output resistance value(R1) within the range of 1 k Ω ~ 1M Ω which needs to be smaller than the input impedance of the next circuit.

2) Approximate formula of IOUT output voltage in each Gain Mode

(1) H-Gain mode

The output voltage is calculated as below.

Viout= 0.6 x 10⁻⁶ x Ev x R1

Viout is IOUT output voltage [V]. Ev is an illuminance of the ALS surface [Ix].

R1 is IOUT output resistor[Ω].

(For example) In case you want to convert the illuminance value up to 500 lx by ADC.

If the maximum voltage of ADC input is 2V, output resistor value will be as below.

R1 = Viout/(0.6 x 10⁻⁶ x Ev)
= 2 /(0.6 x 10⁻⁶ x 500) = 6667[
$$\Omega$$
]
 \Rightarrow 6.8[k Ω]

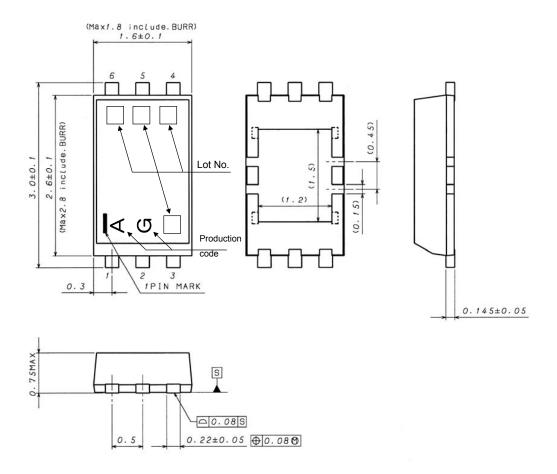
(2) M-Gain mode

The output voltage is calculated as follows.

(3) L-Gain mode

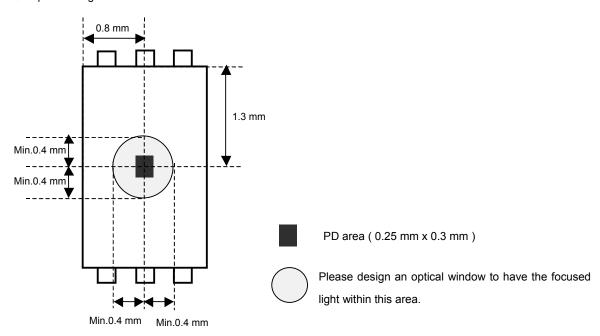
The output voltage is calculated as follows.

3) C1


In case IOUT output is R1 only and an ALS receives the artificial lights such as fluorescent lamps and incandescent lamps synchronized with 50/60 Hz of AC power supplies, the output current has a ripple. Therefore, please add C1 to R1 in parallel if necessary.

When you control back light by using illuminance value, C1 is effective to control smoothly for a rapid changing of the illuminance. In general, please set it to C1 x R1 = about 1 \sim 10 as a time constant. In this case, the rise time becomes slow at power-on and recovery from shutdown mode to operation mode.

Terminal Descriptions


PIN No.	Terminal Name	Equivalent Circuit	Function
1	IOUT	VCC VCC VCC	This terminal outputs current depending on illuminance level. Use this pin by putting resistor between GND.
2	GND		GND Terminal
3	VCC		Power Supply Terminal
4	NC		NC(Non connection)Terminal Open or short to GND
5	GC1	VCC VCC	Mode Setting Terminal 1
6	GC2	VCC VCC	Mode Setting Terminal 2

Package Outlines

WSOF6 (Unit:mm)

Optical design for the device

Cautions on use

1) Absolute Maximum Ratings

An excess in the absolute maximum ratings, such as supply voltage (Vmax), temperature range of operating conditions (Topr), etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc.

2) GND voltage

Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient.

3) Short circuit between terminals and erroneous mounting

In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between terminals or between the terminal and the power supply or the GND terminal, the ICs can break down.

4) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.

5) Inspection with set PCB

On the inspection with the set PCB, if a capacitor is connected to a low-impedance IC terminal, the IC can suffer stress. Therefore, be sure to discharge from the set PCB by each process. Furthermore, in order to mount or dismount the set PCB to/from the jig for the inspection process, be sure to turn OFF the power supply and then mount the set PCB to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount it from the jig. In addition, for protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set PCB.

6) Input terminals

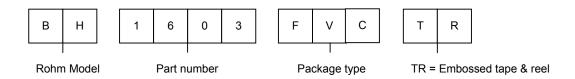
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input terminal. Therefore, pay thorough attention not to handle the input terminals; such as to apply to the input terminals a voltage lower than the GND respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input terminals a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.

7) Thermal design

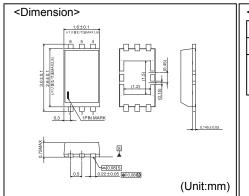
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (pd) in actual states of use.

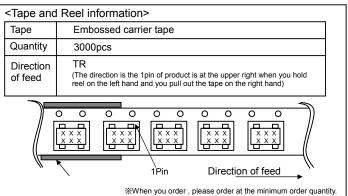
8) Treatment of package

Dusts or scratch on the photo detector may affect the optical characteristics. Please handle it with care.


9) Rush current

When power is first supplied to this IC, rush current may flow instantaneously. Because it is possible that the charge current to the parasitic capacitance of internal photo diode or the internal logic may be unstable. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.


10) The exposed central pad on the back side of the package


There is an exposed central pad on the back side of the package. But please do it non connection. (Don't solder, and don't do electrical connection.) Please mount by Footprint dimensions described in the Jisso Information for WSOF6. This pad is GND level, therefore there is a possibility that LSI malfunctions and heavy-current is generated.

Product Designations (ROHM part number for ordering)

WSOF6

- The contents described herein are correct as of June, 2008
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
- Any part of this application note must not be duplicated or copied without our permission.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any arranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Contact us for further information about the products.

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Excellence in Electronics

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http://www.rohm.com

Published by LSI Business Promotion Dept. San Diego Atlanta Boston Chicago Dallas Denver Detroit Nashville Mexico Düsseldorf Munich Stuttgart France United Kingdom Denmark Barcelona Hungary Poland Russia Seoul

FAX: +1-858-625-3670 FAX: +1-770-754-0691 FAX: +1-928-438-7164 TEL: +1-858-625-3630 TEL: +1-858-625-3630 TEL: +1-770-754-5972 TEL: +1-978-371-0382 TEL: +1-847-368-1006 TEL: +1-469-287-5366 TEL: +1-303-708-0908 FAX: +1-928-438-7164 FAX: +1-847-368-1008 FAX: +1-469-362-7973 FAX: +1-303-708-0858 FAX: +1-248-348-9942 TEL: +1-248-348-9920 TEL: +1-615-620-6700 FAX: +1-615-620-6702 TEL: +45-3694-4739 FAX: +45-3694-4789 FAX: +45-3694-4789 FAX: +34-9375-24410 FAX: +36-1-4719339 FAX: +48-22-5757001 FAX: +7-95-937-8290 FAX: +82-2-8182-715 TEL: +40-3694-4739 TEL: +34-9375-24320 TEL: +36-1-4719338 TEL: +48-22-5757213 TEL: +7-95-980-6755 TEL: +82-2-8182-700 TEL: +82-55-240-6234 FAX: +82-55-240-6236 TEL: +86-411-8230-8549 FAX: +86-411-8230-8537

TEL: +86-10-8525-2483 TEL: +86-22-23029181

Shanghai Hangzhou Nanjing Ningbo Qingdao Suzhou Wuxi Shenzhen Guangzhou Huizhou Xiamen Zhuhai Hong Kong Taipei Kaohsiung Singapore Philippines Thailand

Shanghai TEL: +86-21-6279-2727 FAX: +86-21-6247-2066 TEL: 486-21-82/9-2/2/ FAX: 486-21-824/-2006 TEL: 486-57-8768807-815 TEL: 486-574-8768407 FAX: 486-574-87689071 TEL: 486-52-5779-312 FAX: 486-574-8768203 TEL: 486-52-5779-312 FAX: 486-522-5779-853 TEL: 486-512-6807-1300 FAX: 486-512-6807-2300 TEL: +86-510-82702693 FAX: +86-510-82702992 TEL: +86-755-8307-3008 FAX: +86-755-8307-3003 TEL: +86-758-830/-3008 FAX: +86-758-830/-3003 TEL: +86-768-8393-3320 FAX: +86-76-8398-4140 TEL: +86-591-8801-8698 FAX: +86-591-8801-8690 TEL: +86-20-3364-9796 FAX: +86-20-3364-9707 TEL: +86-752-205-1054 FAX: +86-752-205-1059 TEL: +86-592-238-5705 FAX: +86-592-238-8380 TEL: +86-756-3232-480 FAX: +86-756-3232-460 TEL: +86-756-3232-480 TEL: +852-2-740-6262 TEL: +886-2-2500-6956 TEL: +886-7-237-0881 TEL: +65-6332-2322 TEL: +63-2-807-6872 TEL: +66-2-254-4890 FAX: +852-2-375-8971 FAX: +652-2-375-6971 FAX: +886-2-2503-2869 FAX: +886-7-238-7332 FAX: +65-6332-5662 FAX: +63-2-809-1422 FAX: +66-2-256-6334 Kuala Lumpu Penang Kyoto Yokohama TEL: +60-3-7958-8355 TEL: +60-4-2286453 FAX: +60-3-7958-8377 FAX: +60-4-2286452

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@ rohm.co.jp

Copyright © 2008 ROHM CO.,LTD.

ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

TEL:+81-75-311-2121 FAX:+81-75-315-0172

Appendix1-Rev2.0