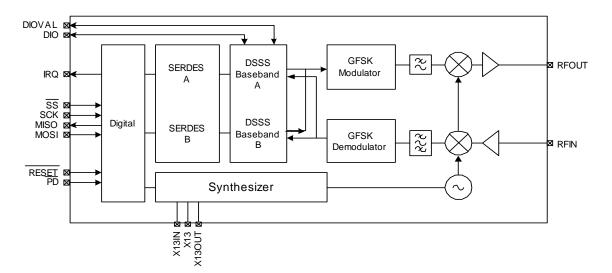


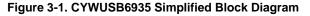
CYWUSB6935

WirelessUSB[™] LR 2.4-GHz DSSS Radio SoC

1.0 Features

- 2.4-GHz radio transceiver
- Operates in the unlicensed Industrial, Scientific, and Medical (ISM) band (2.4 GHz–2.483 GHz)
- –95-dBm receive sensitivity
- Up to 0dBm output power
- Range of up to 50 meters or more
- Data throughput of up to 62.5 kbits/sec
- Highly integrated low cost, minimal number of external components required
- Dual DSSS reconfigurable baseband correlators
- SPI microcontroller interface (up to 2-MHz data rate)
- 13-MHz input clock operation
- Low standby current < 1 μA
- Integrated 32-bit Manufacturing ID
- Operating voltage from 2.7V to 3.6V
- Operating temperature from -40° to 85°C
- Offered in a small footprint 48 QFN


2.0 Functional Description


The CYWUSB6935 transceiver is a single-chip 2.4-GHz Direct Sequence Spread Spectrum (DSSS) Gaussian Frequency Shift Keying (GFSK) baseband modem radio that connects directly to a microcontroller via a simple serial peripheral interface.

The CYWUSB6935 is offered in an industrial temperature range 48-pin QFN and a commercial temperature range 48-pin QFN.

3.0 Applications

- Building/Home Automation
 - —Climate Control
 - Lighting Control
 - Smart Appliances
 - -On-Site Paging Systems
 - Alarm and Security
- Industrial Control
 - Inventory Management
 - Factory Automation
 - Data Acquisition
- Automatic Meter Reading (AMR)
- Transportation
 - Diagnostics
 - -Remote Keyless Entry
- Consumer / PC
 - -Locator Alarms
 - Presenter Tools
 - —Remote Controls
 - —Toys

Cypress Semiconductor Corporation Document 38-16008 Rev. *A 3901 North First Street

San Jose, CA 95134 • 408-943-2600 Revised October 28, 2004

3.1 Applications Support

The CYWUSB6935 is supported by both the CY3632 WirelessUSB Development Kit and the CY3635 WirelessUSB N:1 Development Kit. The CY3635 development kit provides all of the materials and documents needed to cut the cord on multipoint to point and point-to-point low bandwidth, high node density applications including four small form-factor sensor boards and a hub board that connects to WirelessUSB LR RF module boards, a software application that graphically demonstrates the multipoint to point protocol, comprehensive WirelessUSB protocol code examples and all of the associated schematics, gerber files and bill of materials. The WirelessUSB N:1 Development Kit is also supported by the WirelessUSB Listener Tool.

4.0 Functional Overview

The CYWUSB6935 provides a complete SPI-to-antenna radio modem. The CYWUSB6935 is designed to implement wireless devices operating in the worldwide 2.4-GHz Industrial, Scientific, and Medical (ISM) frequency band (2.400GHz - 2.4835GHz). It is intended for systems compliant with worldwide regulations covered by ETSI EN 301 489-1 V1.4.1, ETSI EN 300 328-1 V1.3.1 (European Countries); FCC CFR 47 Part 15 (USA and Industry Canada) and ARIB STD-T66 (Japan).

The CYWUSB6935 contains a 2.4-GHz radio transceiver, a GFSK modem, and a dual DSSS reconfigurable baseband. The radio and baseband are both code- and frequency-agile. Forty-nine spreading codes selected for optimal performance (Gold codes) are supported across 78 1-MHz channels yielding a theoretical spectral capacity of 3822 channels. The CYWUSB6935 supports a range of up to 50 meters or more.

4.1 2.4-GHz Radio

The receiver and transmitter are a single-conversion, low-Intermediate Frequency (low-IF) architecture with fully integrated IF channel matched filters to achieve high performance in the presence of interference. An integrated Power Amplifier (PA) provides an output power control range of 30 dB in seven steps.

PA Setting	Typical Output Power (dBm)
7	0
6	-2.4
5	-5.6
4	-9.7
3	-16.4
2	-20.8
1	-24.8
0	-29.0

Both the receiver and transmitter integrated Voltage Controlled Oscillator (VCO) and synthesizer have the agility to cover the complete 2.4-GHz GFSK radio transmitter ISM band. The synthesizer provides the frequency-hopping local oscillator for the transmitter and receiver. The VCO loop filter is also integrated on-chip.

4.2 GFSK Modem

The transmitter uses a DSP-based vector modulator to convert the 1-MHz chips to an accurate GFSK carrier.

The receiver uses a fully integrated Frequency Modulator (FM) detector with automatic data slicer to demodulate the GFSK signal.

4.3 Dual DSSS Baseband

Data is converted to DSSS chips by a digital spreader. Despreading is performed by an oversampled correlator. The DSSS baseband cancels spurious noise and assembles properly correlated data bytes.

The DSSS baseband has three operating modes: 64 chips/bit Single Channel, 32 chips/bit Single Channel, and 32 chips/bit Single Channel Dual Data Rate (DDR).

4.3.1 64 chips/bit Single Channel

The baseband supports a single data stream operating at 15.625 kbits/sec. The advantage of selecting this mode is its ability to tolerate a noisy environment. This is because the 15.625 kbits/sec data stream utilizes the longest PN Code resulting in the highest probability for recovering packets over the air. This mode can also be selected for systems requiring data transmissions over longer ranges.

4.3.2 32 chips/bit Single Channel

The baseband supports a single data stream operating at 31.25 kbits/sec.

4.3.3 32 chips/bit Single Channel Dual Data Rate (DDR)

The baseband spreads bits in pairs and supports a single data stream operating at 62.5 kbits/sec.

4.4 Serializer/Deserializer (SERDES)

CYWUSB6935 provides a data Serializer/Deserializer (SERDES), which provides byte-level framing of transmit and receive data. Bytes for transmission are loaded into the SERDES and receive bytes are read from the SERDES via the SPI interface. The SERDES provides double buffering of transmit and receive data. While one byte is being transmitted by the radio the next byte can be written to the SERDES data register insuring there are no breaks in transmitted data.

After a receive byte has been received it is loaded into the SERDES data register and can be read at any time until the next byte is received, at which time the old contents of the SERDES data register will be overwritten.

4.5 Application Interfaces

CYWUSB6935 has a fully synchronous SPI slave interface for connectivity to the application MCU. Configuration and byteoriented data transfer can be performed over this interface. An interrupt is provided to trigger real time events.

An optional SERDES Bypass mode (DIO) is provided for applications that require a synchronous serial bit-oriented data path. This interface is for data only.

4.6 Clocking and Power Management

A 13-MHz crystal is directly connected to X13IN and X13 without the need for external capacitors. The CYWUSB6935 has a programmable trim capability for adjusting the on-chip load capacitance supplied to the crystal. The Radio Frequency (RF) circuitry has on-chip decoupling capacitors. The CYWUSB6935 is powered from a 2.7V to 3.6V DC supply. The CYWUSB6935 can be shutdown to a fully static state using the PD pin.

Below are the requirements for the crystal to be directly connected to X13IN and X13:

- Nominal Frequency: 13 MHz
- Operating Mode: Fundamental Mode
- Resonance Mode: Parallel Resonant
- Frequency Stability: ± 30 ppm
- Series Resistance: ≤ 100 ohms
- · Load Capacitance: 10 pF
- Drive Level: 10uW-100 uW

4.7 Receive Signal Strength Indicator (RSSI)

The RSSI register (Reg 0x22) returns the relative signal strength of the ON-channel signal power and can be used to:

- 1. Determine the connection quality
- 2. Determine the value of the noise floor
- 3. Check for a quiet channel before transmitting.

The internal RSSI voltage is sampled through a 5-bit analogto-digital converter (ADC). A state machine controls the conversion process. Under normal conditions, the RSSI state machine initiates a conversion when an ON-channel carrier is detected and remains above the noise floor for over 50uS. The conversion produces a 5-bit value in the RSSI register (Reg 0x22, bits 4:0) along with a valid bit, RSSI register (Reg 0x22, bit 5). The state machine then remains in HALT mode and does not reset for a new conversion until the receive mode is toggled off and on. Once a connection has been established, the RSSI register can be read to determine the relative connection quality of the channel. A RSSI register value lower than 10 indicates that the received signal strength is low, a value greater than 28 indicates a strong signal level.

To check for a quiet channel before transmitting, first set up receive mode properly and read the RSSI register (Reg 0x22). If the valid bit is zero, then force the Carrier Detect register (Reg 0x2F, bit 7=1) to initiate an ADC conversion. Then, wait greater than 50uS and read the RSSI register again. Next, clear the Carrier Detect Register (Reg 0x2F, bit 7=0) and turn the receiver OFF. Measuring the noise floor of a quiet channel is inherently a 'noisy' process so, for best results, this procedure should be repeated several times (~20) to compute an average noise floor level. A RSSI register value of 0-10 indicates a channel that is relatively quiet. A RSSI register value greater than 10 indicates the channel is probably being used. A RSSI register value greater than 28 indicates the presence of a strong signal.

5.0 Application Interfaces

5.1 SPI Interface

The CYWUSB6935 has a four-wire SPI communication interface between an application MCU and one or more slave devices. The SPI interface supports single-byte and multi-byte serial transfers. The four-wire SPI communications interface consists of Master Out-Slave In (MOSI), Master In-Slave Out (MISO), Serial Clock (SCK), and Slave Select (SS).

The SPI receives SCK from an application MCU on the SCK pin. Data from the application MCU is shifted in on the MOSI pin. Data to the application MCU is shifted out on the MISO pin. The active-low Slave Select (SS) pin must be asserted to initiate a SPI transfer.

The application MCU can initiate a SPI data transfer via a multi-byte transaction. The first byte is the Command/Address byte, and the following bytes are the data bytes as shown in *Figure 5-1* through *Figure 5-4*. The SS signal should not be deasserted between bytes. The SPI communications is as follows:

- Command Direction (bit 7) = "0" Enables SPI read transaction. A "1" enables SPI write transactions.
- Command Increment (bit 6) = "1" Enables SPI auto address increment. When set, the address field automatically increments at the end of each data byte in a burst access, otherwise the same address is accessed.
- · Six bits of address.
- · Eight bits of data.

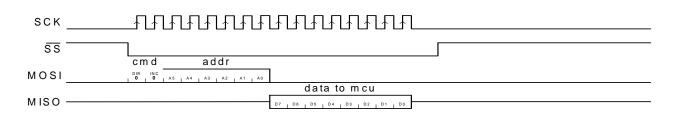
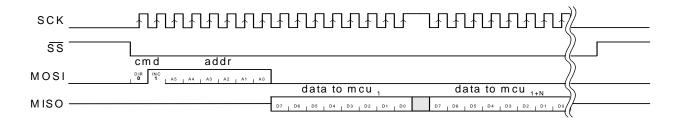
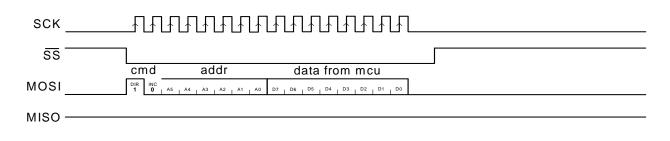
The SPI communications interface has a burst mechanism, where the command byte can be followed by as many data bytes as desired. A burst transaction is terminated by deasserting the slave select (SS = 1). For burst read transactions, the application MCU must abide by the timing shown in *Figure 12-2*.

The SPI communications interface single read and burst read sequences are shown in *Figure 5-2* and *Figure 5-3*, respectively.

The SPI communications interface single write and burst write sequences are shown in *Figure 5-4* and *Figure 5-5*, respectively.

			Byte 1	Byte 1+N
Bit #	7	6	[5:0]	[7:0]
Bit Name	DIR	INC	Address	Data

Figure 5-1. SPI Transaction Format

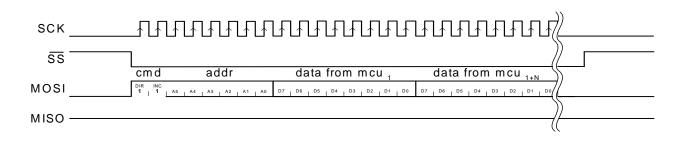
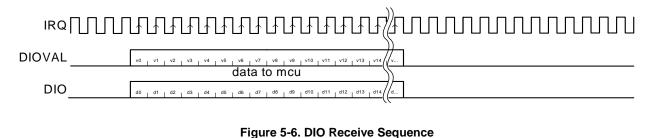
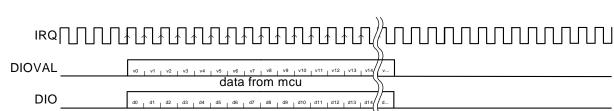

Figure 5-2. SPI Single Read Sequence

Figure 5-4. SPI Single Write Sequence


Document 38-16008 Rev. *A



5.2 DIO Interface

The DIO communications interface is an optional SERDES bypass data-only transfer interface. In receive mode, DIO and DIOVAL are valid after the falling edge of IRQ, which clocks

the data as shown in *Figure 5-6.* In transmit mode, DIO and DIOVAL are sampled on the falling edge of the IRQ, which clocks the data as shown in *Figure 5-7.* The application MCU samples the DIO and DIOVAL on the rising edge of IRQ.

5.3 Interrupts

The CYWUSB6935 features three sets of interrupts: transmit, received, and a wake interrupt. These interrupts all share a single pin (IRQ), but can be independently enabled/disabled. In transmit mode, all receive interrupts are automatically disabled, and in receive mode all transmit interrupts are automatically disabled. However, the contents of the enable registers are preserved when switching between transmit and receive modes.

Interrupts are enabled and the status read through 6 registers: Receive Interrupt Enable (Reg 0x07), Receive Interrupt Status (Reg 0x08), Transmit Interrupt Enable (Reg 0x0D), Transmit Interrupt Status (Reg 0x0E), Wake Enable (Reg 0x1C), Wake Status (Reg 0x1D).

If more than 1 interrupt is enabled at any time, it is necessary to read the relevant interrupt status register to determine which event caused the IRQ pin to assert. Even when a given interrupt source is disabled, the status of the condition that would otherwise cause an interrupt can be determined by reading the appropriate interrupt status register. It is therefore possible to use the devices without making use of the IRQ pin at all. Firmware can poll the interrupt status register(s) to wait for an event, rather than using the IRQ pin.

The polarity of all interrupts can be set by writing to the Configuration register (Reg 0x05), and it is possible to configure the IRQ pin to be open drain (if active low) or open source (if active high).

5.3.1 Wake Interrupt

When the \overline{PD} pin is low, the oscillator is stopped. After \overline{PD} is deasserted, the oscillator takes time to start, and until it has done so, it is not safe to use the SPI interface. The wake

interrupt indicates that the oscillator has started, and that the device is ready to receive SPI transfers.

The wake interrupt is enabled by setting bit 0 of the Wake Enable register (Reg 0x1C, bit 0=1). Whether or not a wake interrupt is pending is indicated by the state of bit 0 of the Wake Status register (Reg 0x1D, bit 0). Reading the Wake Status register (Reg 0x1D) clears the interrupt.

5.3.2 Transmit Interrupts

Four interrupts are provided to flag the occurrence of transmit events. The interrupts are enabled by writing to the Transmit Interrupt Enable register (Reg 0x0D), and their status may be determined by reading the Transmit Interrupt Status register (Reg 0x0E). If more than 1 interrupt is enabled, it is necessary to read the Transmit Interrupt Status register (Reg 0x0E) to determine which event caused the IRQ pin to assert.

The function and operation of these interrupts are described in detail in Section 7.0.

5.3.3 Receive Interrupts

Eight interrupts are provided to flag the occurrence of receive events, four each for SERDES A and B. In 64 chips/bit and 32 chips/bit DDR modes, only the SERDES A interrupts are available, and the SERDES B interrupts will never trigger, even if enabled. The interrupts are enabled by writing to the Receive Interrupt Enable register (Reg 0x07), and their status may be determined by reading the Receive Interrupt Status register (Reg 0x08). If more than one interrupt is enabled, it is necessary to read the Receive Interrupt Status register (Reg 0x08) to determine which event caused the IRQ pin to assert.

The function and operation of these interrupts are described in detail in Section 7.0.

6.0 Application Examples

Figure 6-1 shows a block diagram example of a typical battery powered device using the CYWUSB6935 chip.

Figure 6-2 shows an application example of a WirelessUSB LR alarm system where a single hub node is connected to an alarm panel. The hub node wirelessly receives information from multiple sensor nodes in order to control the alarm panel.

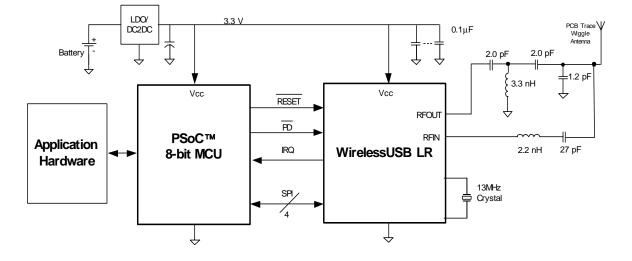


Figure 6-1. CYWUSB6935 Battery Powered Device

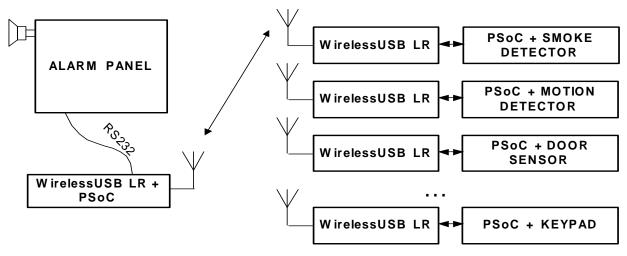


Figure 6-2. WirelessUSB LR Alarm System

7.0 Register Descriptions

Table 7-1 displays the list of registers inside the CYWUSB6935 that are addressable through the SPI interface. All registers are read and writable, except where noted.

Table 7-1. CYWUSB6935 Register Map^[1]

Register Name	Mnemonic	CYWUSB6935 Address	Page	Default	Access
Revision ID	REG_ID	0x00	9	0x07	RO
Reserved RESERVED		0x01	8	0x00	RW
Reserved	RESERVED	0x02	8	0x00	RW
Control	REG_CONTROL	0x03	9	0x00	RW
Data Rate	REG_DATA_RATE	0x04	10	0x00	RW
Configuration	REG_CONFIG	0x05	11	0x01	RW
SERDES Control	REG_SERDES_CTL	0x06	11	0x03	RW
Receive SERDES Interrupt Enable	REG_RX_INT_EN	0x07	12	0x00	RW
Receive SERDES Interrupt Status	REG_RX_INT_STAT	0x08	13	0x00	RO
Receive SERDES Data A	REG_RX_DATA_A	0x09	14	0x00	RO
Receive SERDES Valid A	REG_RX_VALID_A	0x0A	14	0x00	RO
Receive SERDES Data B	REG_RX_DATA_B	0x0B	14	0x00	RO
Receive SERDES Valid B	REG_RX_VALID_B	0x0C	14	0x00	RO
Transmit SERDES Interrupt Enable	REG_TX_INT_EN	0x0D	15	0x00	RW
Transmit SERDES Interrupt Status	REG_TX_INT_STAT	0x0E	15	0x00	RO
Transmit SERDES Data	REG_TX_DATA	0x0F	16	0x00	RW
Transmit SERDES Valid	REG_TX_VALID	0x10	16	0x00	RW
PN Code	REG_PN_CODE	0x18–0x11	16	0x1E8B6A3DE0E9B222	RW
Threshold Low	REG_THRESHOLD_L	0x19	17	0x08	RW
Threshold High	REG_THRESHOLD_H	0x1A	17	0x38	RW
Wake Enable	REG_WAKE_EN	0x1C	18	0x00	RW
Wake Status	REG_WAKE_STAT	0x1D	18	0x01	RO
Analog Control	REG_ANALOG_CTL	0x20	18	0x04	RW
Channel	REG_CHANNEL	0x21	19	0x00	RW
Receive Signal Strength Indicator	REG_RSSI	0x22	19	0x00	RO
Power Control	REG_PA	0x23	19	0x00	RW
Crystal Adjust	REG_CRYSTAL_ADJ	0x24	20	0x00	RW
VCO Calibration	REG_VCO_CAL	0x26	20	0x00	RW
Reg Power Control	REG_PWR_CTL	0x2E	21	0x00	RW
Carrier Detect	REG_CARRIER_DETECT	0x2F	21	0x00	RW
Clock Manual	REG_CLOCK_MANUAL	0x32	21	0x00	RW
Clock Enable	REG_CLOCK_ENABLE	0x33	21	0x00	RW
Synthesizer Lock Count	REG_SYN_LOCK_CNT	0x38	22	0x64	RW
Manufacturing ID	REG_MID	0x3C-0x3F	22	_	RO

Note:

1. All registers are accessed Little Endian.

Addr	Addr: 0x00 REG			G_ID		Defaul	t: 0x07
7	6	5	4	3	2	1	0
	Silico	on ID			Produ	uct ID	

Figure 7-1. Revision ID Register

Bit Name Description

7:4 Silicon ID These are the Silicon ID revision bits. 0000 = Rev A, 0001 = Rev B, etc. These bits are read-only.

3:0 Product ID These are the Product ID revision bits. Fixed at value 0111. These bits are read-only.

Addr	: 0x01		RESE	RVED		Default: 0x00		
7	6	5	5 4 3 2				0	
			Rese	erved				

Figure 7-2. Reserved

Bit Name Description

7:0 Reserved These bits are reserved and should be written with zeroes.

Addr	: 0x02		RESERVED			Default: 0x00		
7	6	5	5 4 3 2				0	
	•		Rese	erved				

Figure 7-3. Reserved

Bit Name Description

7:0 Reserved These bits are reserved and should be written with zeroes.

	Addr: (Dx03		REG_C	ONTROL		Defaul	t: 0x00
	7	6	5	4	3	2	1	0
	RX Enable	TX Enable	PN Code Select	Auto Syn Count Select	Auto Internal PA Disable	Internal PA Enable	Reserved	Reserved
				Figure 7-	4. Control			
Bit	Name	Description	1					
7	RX Enable	1 = Receiv	e Enable bit is use ve Enabled ve Disabled	d to place the IC i	n receive mode.			
6	TX Enable	1 = Transı	it Enable bit is use mit Enabled mit Disabled	ed to place the IC	in transmit mode.			
5	PN Code Sel	1 = 32 Mo 0 = 32 Lea	est Significant Bits ast Significant Bits	of PN code are us of PN code are u				е.
4	Auto Syn Cou Select	The two opti of 2us, or by 1 = Synthe	ons are a program the auto detectio esizer settle time i	mable settle time n of the synthesiz s based on a cour	nt in Syn Lock Cou	e in Syn Lock Čoui int register (Reg 0	nt register (Reg 0x	synthesizer. 38), in units
		,			ternal synthesizer l ect bit is set to 1 as	0	a consistent settle	time for the
3	Auto Internal I Disable	two options please see t 1 = Regist 0 = Auto c When this bi	are automatic con he description of the ter controlled Inter controlled Internal it is set to 1, the e	trol by the baseba the REG_ANALO nal PA Enable PA Enable nabled state of the	rmine the method of and or by firmware G_CTL register (Re e Internal PA is dire et to 0, leaving the	through register v eg 0x20). ectly controlled by	vrites. For externa bit Internal PA En	İ PA usage,
2	Internal PA Enable	1 = Interna 0 = Interna	al Power Amplifier al Power Amplifier	Enabled Disabled	disable the Internal			s bit is don't
1	Reserved	This bit is re	served and shoul	d be written with a	one.			
0	Reserved	This bit is re	served and shoul	d be written with a	zero.			

	Addr: 0)x04		REG_DA	TA_RATE		Defau	lt: 0x00			
	7	6	5	4	3	2	1	0			
	Reserved Code Width Data Rate Sample Rate										
				Figure 7-5	. Data Rate						
Bit	Name	Description									
7:3	Reserved	These bits are	reserved and sho	ould be written with	zeroes.						
2 ^[2]	Code Width	1 = 32 chips/	h bit is used to se ′bit PN codes ′bit PN codes	elect between 32 c	hips/bit and 64 ch	ips/bit PN codes.					
		ference. By cho data rate is set robustness to it	oosing a 32 chips). A 64 chips/bit F nterference. By s addressed. Thes	bit PN-code, the c N code offers imp electing to use a 3	lata throughput ca roved range over 2 chips/bit PN coc	ata throughput, rar an be doubled or ev its 32 chips/bit cou de a number of oth it 5), Data Rate (R	ven quadrupled (v interpart as well a er register bits ar	when double as more e impacted			
1 ^[2]	Data Rate	62.5kbits/sec. 1 = Double D		per PN code (No c		of operation which ons)	delivers a raw da	ata rate of			
		This bit is applie 0x04, bit 2=1). PN code is inte register. This 6 capability. Whe	cable only when u When using Doul rpreted as 2 bits o 4 chips/bit PN co n using Normal D	using 32 chips/bit P ble Data Rate, the of data. When usin de is then split into Data Rate, the raw	raw data through g this mode a sing two and used by data throughput is	n be selected by se out is 62.5 kbits/se le 64 chips/bit PN the baseband to o s 32kbits/sec. Addi chips/bit PN codes.	c because every code is placed in ffer the Double D tionally, Normal D	32 chips/bit the PN code ata Rate			
0 ^[2]	Sample Rate	1 = 12x Over 0 = 6x Overs Using 12x overs Rate this bit is	sampling ampling sampling improve	s the correlators re nly time when 12x	ceive sensitivity. V	32 chips/bit PN co When using 64 chip be selected is wh	s/bit PN codes or	Double Data			

Note:

- 2. The following Reg 0x04, bits 2:0 values are not valid:
 001–Not Valid
 010–Not Valid
 011–Not Valid
 111–Not Valid

Addr	Addr: 0x05			REG_CONFIG			Default: 0x01		
7	6	5	4	1	0				
		Rese	erved			IRQ Pir	n Select		

Figure 7-6. Configuration

Bit	Name	Description

7:2 Reserved

These bits are reserved and should be written with zeroes.

1:0 IRQ Pin Select The Interrupt Request Pin Select bits are used to determine the drive method of the IRQ pin.

11 = Open Source (IRQ asserted = 1, IRQ deasserted = Hi-Z)

10 = Open Drain (IRQ asserted = 0, IRQ deasserted = Hi-Z)

01 = CMOS (IRQ asserted = 1, IRQ deasserted = 0)

00 = CMOS Inverted (IRQ asserted = 0, IRQ deasserted = 1)

Addr	ddr: 0x06 REG_SER			RDES_CTL		Defaul	t: 0x03
7	6	5	4	3	2	1	0
	Rese	erved		SERDES Enable		EOF Length	

Figure 7-7. SERDES Control

BitNameDescription7:4ReservedThese bits are reserved and should be written with zeroes.3SERDES EnableThe SERDES Enable bit is used to switch between bit-serial mode and SERDES mode.
1 = SERDES enabled
0 = SERDES disabled, bit-serial mode enabledWhen the SERDES is enabled data can be written to and read from the IC one byte at a time, through the use of
the DIO/DIOVAL pins, refer to section 3.2. It is recommended that SERDES mode be used to avoid the need to
manage the timing required by the bit-serial mode.2:0EOF LengthThe End of Frame Length bits are used to set the number of sequential bit times for an inter-frame gap without
EOF event can then be identified by the number of bit times that expire without correlating any new data. The
EOF event causes data to be moved to the proper SERDES Data Register and can also be used to generate

	Addr: 0x07 REG_RX_INT_EN Default: 0x00									
	7	6	5	4	3	2	1	0		
Unc	derflow B	Overflow B	EOF B	Full B	Underflow A	Overflow A	EOF A	Full A		
			Figure 7	7-8. Receive SE	RDES Interrup	t Enable				
Bit	Name	Description								
	Underflow B	•	w B bit is used to e	enable the interrupt	associated with a	n underflow conditi	ion with the Receiv	/e SERDES		
		Data B regist	er (Reg 0x0B)	·				0011020		
				abled for Receive abled for Receive						
		An underflow empty.	condition occurs	when attempting to	o read the Receive	SERDES Data B	register (Reg 0x0I	B) when it is		
;	Overflow B	The Overflow		nable the interrupt	associated with a	n overflow condition	on with the Receiv	e SERDES		
			er (Reg 0x0B) w B interrunt ena	bled for Receive S	FRDES Data B					
		0 = Overflo	w B interrupt disa	bled for Receive S	SERDES Data B					
		An overflow o 0x0B) before	condition occurs w the prior data is r	hen new received ead out.	data is written inte	o the Receive SEF	RDES Data B regi	ster (Reg		
5	EOF B				•	with the Channel B	Receiver EOF co	ondition.		
				for Channel B Re I for Channel B Re						
		The EOF IRC	asserts during a	n End of Frame co	ondition. End of France exc	ame conditions oc ceeds the number	cur after at least c	ne bit has		
		the EOF leng		dition will occur at t		after a valid recept				
Ļ	Full B	•	-		iated with the Rece	eive SERDES Data	B register (Reg 0	x0B) having		
		data placed ii		or Receive SERD	ES Data B		5 X 5	, 0		
		0 = Full B i	nterrupt disabled	for Receive SERD	ES Data B					
						el B Receiver into t eived or when an E				
		•	te byté has been							
5	Underflow A		w A bit is used to e er (Reg 0x09)	enable the interrupt	associated with a	n underflow condit	ion with the Receiv	/e SERDES		
		1 = Underf 0 = Underf	low A interrupt en	abled for Receive abled for Receive	SERDES Data A					
		An underflow				e SERDES Data A	register (Reg 0x0	9) when it is		
2	Overflow A	empty. The Overflow	A bit is used to e	nable the interrupt	associated with a	n overflow condition	on with the Receiv	e SERDES		
		Data A regist	er (0x09)	·						
		0 = Overflo	w A interrupt disa	bled for Receive S bled for Receive S	SERDES Data A					
			ondition occurs w or data is read ou		ata is written into th	ne Receive SERDE	ES Data A register	(Reg 0x09)		
	EOF A	The End of F	rame A bit is usec	I to enable the inte	rrupt associated w	vith an End of Fran	ne condition with t	he Channel		
				for Channel A Re						
			•	l for Channel A Re		ame conditions oc	cur after at least c	ne hit has		
		been detecte	d, and then the nu	imber of invalid bit	s in a frame excee	ds the number in t	he EOF length fiel	d. If 0 is the		
		the receive st			si mvaliu pil allef à	a valid reception. T		i by reading		
)	Full A	The Full A bit data written i		e the interrupt asso	ciated with the Re	eceive SERDES D	ata A register (0x0	09) having		
		1 = Full A i	nterrupt enabled f	or Receive SERD						
			•	for Receive SERD 1 data is transferre		el A Receiver into t	the Receive SER	DES Data A		
register (Reg 0x09). This could occur when a complete byte is received or when an EOF event occurs whether or not a complete byte has been received.										

	Addr: (0x08		REG_RX_	INT_STAT		Defaul	t: 0x00
	7	6	5	4	3	2	1	0
	Valid B F	Flow Violation B	EOF B	Full B	Valid A	Flow Violation A	EOF A	Full A
			Figure 7	-9. Receive SE	RDES Interrupt	Status ^[3]		
Bit	Name	Description	n					
7	Valid B	1 = All bit 0 = Not a When data	ts are valid for Reall Il bits are valid for is written into the	ceive SERDES Da Receive SERDES	ata B S Data B S Data B register (Data B register (Re Reg 0x0B) this bit i interrupt.	,	
6	Flow Violatic	SERDES D 1 = Overfl 0 = No ov Overflow co before the p	tata B register (Re ow/underflow inte erflow/underflow in onditions occur wh prior data has bee eg 0x0B) when the	g 0x0B). rrupt pending for F nterrupt pending for nen the radio loads n read. Underflow	Receive SERDES or Receive SERD s new data into the conditions occur		S Data B register	(Reg 0x0B) DES Data B
5	EOF B	1 = EOF 0 = No E An EOF co specified in	interrupt pending OF interrupt pend ndition occurs for the SERDES Con	for Channel B ing for Channel B the Channel B Re	ceiver when recei 0x06) elapse withc	has occurred on th ve has begun and ut any valid bits be	then the number	of bit times
1	Full B	1 = Rece 0 = No R A Full B cor register (Re	ive SERDES Data eceive SERDES I ndition occurs whe	a B full interrupt pe Data B full interrup en data is transferr Ild occur when a c	ending ot pending red from the Chan	B register (Reg 0x nel B Receiver into ceived or when an	the Receive SER	DES Data B
3	Valid A	1 = All bit 0 = Not a When data	ts are valid for Reall bits are valid for Reall bits are valid for is written into the	ceive SERDES Da Receive SERDES	ata A S Data A S Data A register (S Data A Register Reg 0x09) this bit i interrupt.		
2	Flow Violatic	on A The Flow V SERDES D 1 = Overfi 0 = No ov Overflow co before the p	iolation A bit is use lata A register (Re ow/underflow inte erflow/underflow in onditions occur wh prior data has bee eg 0x09) when the	ed to signal wheth g 0x09). rrupt pending for I nterrupt pending f nen the radio loads n read. Underflow	er an overflow or Receive SERDES or Receive SERD s new data into the conditions occur	underflow conditior	S Data A register the Receive SER	(Reg 0x09) DES Data A
1	EOF A	1 = EOF 0 = No E An EOF co specified in	interrupt pending OF interrupt pend ndition occurs for the SERDES Cor	for Channel A ing for Channel A the Channel A Re	ceiver when recei) elapse without a	has occurred on th ve has begun and ny valid bits being	then the number	of bit times
D	Full A	1 = Rece 0 = No R A Full A cor Register (R	ive SERDES Data eceive SERDES I ndition occurs whe	A full interrupt pe Data A full interrup en data is transferr uld occur when a c	ending ot pending red from the Chan	A register (Reg 0x nel A Receiver into ceived or when an	the Receive SER	DES Data A

Note:

 All status bits are set and readable in the registers regardless of IRQ enable status. This allows a polling scheme to be implemented without enabling IRQs. The status bits are affected by TX Enable and RX Enable (Reg 0x03, bits 7:6). For example, the receive status will read 0 if the IC is not in receive mode. These registers are read-only.

Addr	0x09		REG_RX	Default: 0x00			
7	6	5	4	3	2	1	0
			Da	ata			

Figure 7-10. Receive SERDES Data A

Bit Name Description

7:0 Data Received Data for Channel A. The over-the-air received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 4, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.

Addr:	0x0A		REG_RX_		Default: 0x00				
7	6	5	4	3	2	1	0		
			Va	ılid					

Figure 7-11. Receive SERDES Valid A

Bit Name Description

7:0 Valid These bits indicate which of the bits in the Receive SERDES Data A register (Reg 0x09) are valid. A "1" indicates that the corresponding data bit is valid for Channel A.

If the Valid Data bit is set in the Receive Interrupt Status register (Reg 0x08) all eight bits in the Receive SERDES Data A register (Reg 0x09) are valid. Therefore, it is not necessary to read the Receive SERDES Valid A register (Reg 0x0A). This register is read-only.

Addr:	0x0B		REG_RX		Default: 0x00				
7	6	5	4	3	2	1	0		
			Da	ata					

Figure 7-12. Receive SERDES Data B

Bit Name Description

7:0 Data Received Data for Channel B. The over-the-air received order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 5, followed by bit 6, followed by bit 7. This register is read-only.

Addr:	0x0C		REG_RX_		Default: 0x00				
7	6	5	4	3	2	1	0		
			Va	llid					

Figure 7-13. Receive SERDES Valid B

Bit Name Description

7:0 Valid These bits indicate which of the bits in the Receive SERDES Data B register (Reg 0x0B) are valid. A "1" indicates that the corresponding data bit is valid for Channel B.

If the Valid Data bit is set in the Receive Interrupt Status register (0x08) all eight bits in the Receive SERDES Data B register (Reg 0x0B) are valid. Therefore, it is not necessary to read the Receive SERDES Valid B register (Reg 0x0C). This register is read-only.

Ac	ldr: 0x0D			REG_IX	_INT_EN		Defaul	t: 0x00
_	7	6	5	4	3	2	1	0
		Rese	rved		Underflow	Overflow	Done	Empty
			Figure 7-	14. Transmit S	ERDES Interrup	ot Enable		
Bit	Name	Description						
7:4	Reserved	These bits are re	eserved and shou	ld be written with	zeroes.			
3	Underflow	SERDES Data r 1 = Underflow 0 = Underflow	egister (Reg 0x0F interrupt enabled interrupt disabled ndition occurs who	-) 1 d	sociated with an u ansmit while the T			
2	Overflow	register (0x0F). 1 = Overflow i 0 = Overflow i An overflow con	nterrupt enabled nterrupt disabled dition occurs whe	n attempting to w	ociated with an over rite new data to the he transmit shift re	e Transmit SERDI		
1	Done	1 = Done inte 0 = Done inte The Done condi	rrupt enabled rrupt disabled	the Transmit SER	nals the end of the			s data and
0	Empty	1 = Empty interview 0 = Empty interview 1 =	errupt enabled errupt disabled	·	gnals when the Tr	ansmit SERDES r er (Reg 0x0F) is lo		, ,
			bad the next byte					
	Addr				INT_STAT		Defaul	
	Addr:	and it's safe to le			0	2		
		and it's safe to le	bad the next byte	REG_TX_	INT_STAT	· · · · ·	Defaul	t: 0x00
		and it's safe to le : 0x0E 6	5 rved	REG_TX 4	INT_STAT	2 Overflow	Defaul	t: 0x00 0
	7 Name	and it's safe to le : 0x0E 6 Rese Description	5 rved Figure 7-1	REG_TX_ 4 15. Transmit SE	INT_STAT 3 Underflow	2 Overflow	Defaul	t: 0x00 0
7:4	7 Name Reserved	and it's safe to le : 0x0E 6 Rese Description These bits are res	5 rved Figure 7-1 erved. This regist	REG_TX_ 4 15. Transmit SE er is read-only.	INT_STAT 3 Underflow ERDES Interrup	2 Overflow t Status ^[4]	Defaul 1 Done	t: 0x00 0 Empty
7:4	7 Name	and it's safe to le : 0x0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow lit	5 rved Figure 7-1 erved. This regist is used to signal to courred. hterrupt pending w Interrupt pending w Interrupt pending t during an underfit t during an underfit t during at to same t during at the same to same to same t during at the same to same to same to same to same t during at the same to same t	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow ng low condition to th nple transmit data	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da	2 Overflow t Status ^[4] ated with the Tran	Defaul 1 Done smit SERDES Dat eg 0x0F). An unde ansmit SERDES D	t: 0x00 0 Empty ta register
7:4	7 Name Reserved Underflow	and it's safe to le Ox0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow bit 0 = No Underflow This IRQ will asser when the transmit (Reg 0x0F). This Transmit Interrupt	5 rved Figure 7-1 erved. This regist is used to signal courred. therrupt pending w Interrupt pending w Interrupt pending t during an underf ter is ready to san will only assert aft Status register (R	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow ng low condition to th nple transmit data er the transmitter Reg 0x0E).	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at	2 Overflow t Status ^[4] ated with the Tran S Data register (R ata ready in the Tran least one bit. This	Defaul 1 Done smit SERDES Dat eg 0x0F). An unde ansmit SERDES E	t: 0x00 0 Empty ta register offlow occurs bata register reading the
7:4	7 Name Reserved	and it's safe to le Ox0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow li 0 = No Underflo This IRQ will assee when the transmit (Reg 0x0F). This Transmit Interrupt The Overflow bit is has occurred.	5 rved Figure 7-1 erved. This regist is used to signal courred. nterrupt pending w Interrupt pending w Interrupt pending w Interrupt pending w Interrupt seady to san will only assert aft. Status register (R s used to signal wh	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow ng low condition to th nple transmit data er the transmitter Reg 0x0E).	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at	2 Overflow t Status ^[4] ated with the Tran S Data register (R ata ready in the Tran least one bit. This	Defaul 1 Done smit SERDES Dat eg 0x0F). An unde ansmit SERDES E	t: 0x00 0 Empty ta register offlow occurs bata register reading the
7:4 3	7 Name Reserved Underflow	and it's safe to le coxoE 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow lit 0 = No Underflo This IRQ will asset when the transmit (Reg 0x0F). This or Transmit Interrupt The Overflow bit is has occurred. 1 = Overflow Int	5 rved Figure 7-1 erved. This regist is used to signal courred. hterrupt pending w Interrupt pending w Interrupt pending w Interrupt pending will only assert aft Status register (R s used to signal wh cerrupt pending	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow ng low condition to th nple transmit data er the transmitter keg 0x0E). hen an overflow co	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at	2 Overflow t Status ^[4] ated with the Tran S Data register (R ata ready in the Tran least one bit. This	Defaul 1 Done smit SERDES Dat eg 0x0F). An unde ansmit SERDES E	t: 0x00 0 Empty ta register offlow occurs bata register reading the
7:4 3	7 Name Reserved Underflow	and it's safe to le Ox0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow bit 0 = No Underflow This IRQ will asser when the transmit (Reg 0x0F). This y Transmit Interrupt The Overflow bit is has occurred. 1 = Overflow Int 0 = No Overflow Int 0 = No Overflow Int substant of the transmit (Reg 0x0F). This y Transmit Interrupt The Overflow Int 0 = No Overflow Int 0 = No Overflow Int 0 = No Overflow Int 0 = No Overflow Int 1 = Overflow Int 1 = Overflow Int 0 = No Overflow Int 1 = Overflo	5 rved Figure 7-1 erved. This regist is used to signal to courred. therrupt pending w Interrupt pending w Interrupt pending ti during an underf ter is ready to san will only assert aft Status register (R used to signal wh errupt pending / Interrupt pending / Interrupt pending / Interrupt pending / Interrupt pending / Interrupt pending	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow mg low condition to th nple transmit data er the transmit data er the transmit data er the transmit data er the transmit data er out offlow co g ow condition to the Transmit SERDE	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at andition associated e Transmit SERDE	2 Overflow t Status ^[4] ated with the Tran S Data register (R ta ready in the Trans least one bit. This with the Transmit with the Transmit	Defaul 1 Done smit SERDES Dat eg 0x0F). An unde ansmit SERDES Dat bit is cleared by n SERDES Data reg Reg 0x0F). An ove	t: 0x00 0 Empty ta register offlow occurs Data register reading the gister (0x0F)
7:4 3 2	7 Name Reserved Underflow	and it's safe to le Ox0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow bit 0 = No Underflow This IRQ will asset when the transmit (Reg 0x0F). This y Transmit Interrupt The Overflow bit is has occurred. 1 = Overflow Int 0 = No Overflow This IRQ will asset when the new data This bit is cleared The Done bit is us 1 = Done Interruf 0 = No Done Int This IRQ will asset assert after the transmit	5 rved Figure 7-1 erved. This regist is used to signal vi- courred. hterrupt pending w Interrupt pending will only assert aft Status register (R s used to signal wh- errupt pending / Interrupt pending / Interrupt pending rt during an overfl is loaded into the by reading the Tr- sed to signal the e upt pending rerrupt pending rt when the data i insmitter has trais	REG_TX_ 4 15. Transmit SE er is read-only. when an underflow low condition to the ple transmit data er the transmitter teg 0x0E). hen an overflow co g ow condition to the Transmit SERDE ansmit Interrupt S ind of a data trans	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at ondition associated e Transmit SERDE S Data register (Reg mission. g a byte of data and	2 Overflow t Status ^[4] ated with the Tran ES Data register (R least one bit. This least one bit. This with the Transmit so Data register (F eg 0x0F) before the g 0x0F) before the g 0x0E).	Defaul 1 Done smit SERDES Data eg 0x0F). An unde ansmit SERDES D bit is cleared by n SERDES Data reg Reg 0x0F). An ove e previous data ha e data to be sent. T	t: 0x00 0 Empty ta register offlow occurs bata register reading the gister (0x0F) rflow occurs s been sent.
Bit 7:4 3 2	7 Name Reserved Underflow	and it's safe to le Ox0E 6 Description These bits are res The Underflow bit (Reg 0x0F) has or 1 = Underflow lit 0 = No Underflo This IRQ will assee when the transmit (Reg 0x0F). This Transmit Interrupt The Overflow bit is has occurred. 1 = Overflow bit is has occurred. 1 = Overflow bit is has occurred. 1 = Overflow bit is thas occurred. 1 = Overflow bit is has occurred. 1 = Overflow bit is bit is cleared The Done bit is us 1 = Done Interru 0 = No Done Interru 0 = No Done Interru 0 = No Done Interru 1 = Done Interru 0 = No Done Interru 0 = No Done Interru 0 = No Done Interru 0 = No Done Interru 1 = Done Interru 0 = No Done Interru	5 rved Figure 7-1 erved. This regist is used to signal to courred. to a signal to courred. therrupt pending w Interrupt pending w Interrupt pending / Interrupt pending / Interrupt pending / Interrupt pending / Interrupt pending t during an overfil a loaded into the by reading the Tra- ted to signal the er- upt pending tr when the data in insmitter has transe) sed to signal where (Figure 7-1) (Figure 7-1) (REG_TX_ 4 15. Transmit SE er is read-only. when an underflow ng low condition to th nple transmit data er the transmitter Reg 0x0E). hen an overflow co g ow condition to the Transmit SERDE ansmit Interrupt S ind of a data trans s finished sending smitted as least of	INT_STAT 3 Underflow ERDES Interrup w condition associ e Transmit SERDE , but there is no da has transmitted at ondition associated e Transmit SERDE S Data register (Reg mission. g a byte of data an- ne bit. This bit is c	2 Overflow t Status ^[4] ated with the Tran ES Data register (R ata ready in the Tra least one bit. This least one bit. This with the Transmit ES Data register (R eg 0x0F) before the g 0x0F) before the g 0x0E).	Defaul 1 Done smit SERDES Data eg 0x0F). An under ansmit SERDES Data bit is cleared by it SERDES Data reg Reg 0x0F). An over e previous data ha data to be sent. T the Transmit Inter	t: 0x00 0 Empty ta register offlow occurs bata register reading the gister (0x0F) rflow occurs s been sent.

4. All status bits are set and readable in the registers regardless of IRQ enable status. This allows a polling scheme to be implemented without enabling IRQs. The status bits are affected by the TX Enable and RX Enable (Reg 0x03, bits 7:6). For example, the transmit status will read 0 if the IC is not in transmit mode. These registers are read-only.

Addr	: 0x0F		REG_T	Default: 0x00			
7	6	5	4	3	2	1	0
			Da	ata			

Figure 7-16. Transmit SERDES Data

Bit Name Description

Transmit Data. The over-the-air transmitted order is bit 0 followed by bit 1, followed by bit 2, followed by bit 3, followed by bit 7:0 Data 4, followed by bit 5, followed by bit 6, followed by bit 7.

Addr	: 0x10		REG_T	(_VALID		Default: 0x00					
7	6	5	4	3	2	1	0				
			Va	alid							

Figure 7-17. Transmit SERDES Valid

Bit Name Description

7:0

Valid^[5] The Valid bits are used to determine which of the bits in the Transmit SERDES Data register (reg 0x0F) are valid.

1 = Valid transmit bit

0 = Invalid transmit bit

	Addr: 0x18-11									REG_PN_CODE							Default: 0x1E8B6A3DE0E9B222					2									
63	62	61	60	59	58	57	56	55	54 53 52 51 50 49 48 47 46 45 44 43 42 41					40	39	38	37	36	35	34	33	32									
		Ad	Idres	s Ox	18					Ac	dres	s 0x	17					Ac	ddre	ss 0x	16					Ac	dres	s Ox	15	•	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Ad	ldres	s 0x	14					Ac	dres	s 0x	13					Ac	ddre	ss 0x	12					Ac	dres	s Ox	11		
													Fig	ure	7-18	8. P	N Co	ode													

Bit Name Description

The value inside the 8 byte PN code register is used as the spreading code for DSSS communication. All 8 bytes can be used together for 64 chips/bit PN code communication, or the registers can be split into two sets of 32 chips/bit PN codes and these can be used alone or with each other to accomplish faster data rates. Not any 64 chips/bit value can be used as a PN code as there are certain characteristics that are needed to minimize the possibility of multiple PN codes interfering with each other or the possibility of invalid correlation. The over-the-air order is bit 0 followed by bit 1... followed by bit 62, followed by bit 63. 63:0 PN Codes

Note:

Note: The Valid bit in the Transmit SERDES Valid register (Reg 0x10) is used to mark whether the radio will send data or preamble during that bit time of the data byte. Data is sent LSB first. The SERDES will continue to send data until there are no more VALID bits in the shifter. For example, writing 0x0F to the Transmit SERDES Valid register (Reg 0x10) will send half a byte. 5.

Addr:	: 0x19		REG_THRI		Default: 0x08				
7	6	5	4	3	2	1	0		
Reserved				Threshold Low					

Figure 7-19. Threshold Low

Bit Name Description 7 Reserved

6:0 Threshold Low This bit is reserved and should be written with zero.

The Threshold Low value is used to determine the number of missed chips allowed when attempting to correlate a single data bit of value '0'. A perfect reception of a data bit of '0' with a 64 chips/bit PN code would result in zero correlation matches, meaning the exact inverse of the PN code has been received. By setting the Threshold Low correlation matches, meaning the exact inverse of the PN code has been received. By setting the Threshold Low value to 0x08 for example, up to eight chips can be erroneous while still identifying the value of the received data bit. This value along with the Threshold High value determine the correlator count values for logic '1' and logic '0'. The threshold values used determine the sensitivity of the receiver to interference and the dependability of the received data. By allowing a minimal number of erroneous chips the dependability of the received data increases while the robustness to interference decreases. On the other hand increasing the maximum number of missed chips means reduced data integrity but increased robustness to interference and increased range.

Addr:	0x1A		REG_THR		Default: 0x38				
7	6	5	4	3	2	1	0		
Reserved				Threshold High					

Figure 7-20. Threshold High

Bit Name Description

7 Reserved

6:0

This bit is reserved and should be written with zero.

The Threshold High value is used to determine the number of matched chips allowed when attempting to correlate a single data bit of value '1'. A perfect reception of a data bit of '1' with a 64 chips/bit or a 32 chips/bit PN code would result in 64 chips/bit or 32 chips/bit correlation matches, respectively, meaning every bit was received perfectly. By setting the Threshold High value to 0x38 (64-8) for example, up to eight chips can be erroneous while still identifying the value of the received data bit. This value along with the Threshold Low value determine the correlator count values for logic '1' and logic '0'. The threshold values used determine the sensitivity of the received data. By allowing a minimal number of erroneous chips the dependability of the received data increases while the robustness to interference decreases. On the other hand increasing the maximum number of missed chips means reduced data intercrity but increased Threshold High other hand increasing the maximum number of missed chips means reduced data integrity but increased robustness to interference and increased range.

Addr:	Addr: 0x1C REG_WAKE_EN Defaul							
7 6 5 4 3 2 1							0	
Reserved								

Figure 7-21. Wake Enable

Bit Name

0

Description

7:1 Reserved These bits are reserved and should be written with zeroes.

Wakeup Enable Wakeup interrupt enable.

0 = disabled

1 = enabledA wakeup event is triggered when the PD pin is deasserted and once the IC is ready to receive SPI communications.

Addr	: 0x1D	Addr: 0x1D REG_WAKE_STAT Defaul							
7 6 5 4 3 2 1							0		
	Reserved								

Figure 7-22. Wake Status

Bit Name Description

7:1 Reserved These bits are reserved. This register is read-only.

0 Wakeup Status Wakeup status.

0 = Wake interrupt not pending 1 = Wake interrupt pending

This IRQ will assert when a wakeup condition occurs. This bit is cleared by reading the Wake Status register (Reg 0x1D). This register is read-only.

Addr	: 0x20		REG_ANA	LOG_CTL		Defaul	t: 0x00
7	6	5	4	3	2	1	0
Reserved	Reg Write Control	MID Read Enable	Reserved	Reserved	PA Output Enable	PA Invert	Reset

Figure 7-23. Analog Control

Bit	Name	Description
7	Reserved	This bit is reserved and should be written with zero.
6	Reg Write Control	Enables write access to Reg 0x2E and Reg 0x2F. 1 = Enables write access to Reg 0x2E and Reg 0x2F 0 = Reg 0x2E and Reg 0x2F are read-only
5	MID Read Enable	The MID Read Enable bit must be set to read the contents of the Manufacturing ID register (Reg 0x3C-0x3F). Enabling the Manufacturing ID register (Reg 0x3C-0x3F) consumes power. This bit should only be set when reading the contents of the Manufacturing ID register (Reg 0x3C-0x3F). 1 = Enables read of MID registers 0 = Disables read of MID registers
4:3	Reserved	These bits are reserved and should be written with zeroes.
2	PA Output Enable	The Power Amplifier Output Enable bit is used to enable the PACTL pin for control of an external power amplifier. 1 = PA Control Output Enabled on PACTL pin 0 = PA Control Output Disabled on PACTL pin
1	PA Invert	The Power Amplifier Invert bit is used to specify the polarity of the PACTL signal when the PaOe bit is set high. PA Output Enable and PA Invert cannot be simultaneously changed. 1 = PACTL active low 0 = PACTL active high
0	Reset	The Reset bit is used to generate a self-clearing device reset. 1 = Device Reset. All registers are restored to their default values. 0 = No Device Reset.

Addr:	0x21		REG_C	HANNEL		Defaul	t: 0x00	
7	6 5 4 3 2 1 0							
Reserved	Channel							

Figure 7-24. Channel

Bit Name Description

7 Reserved This bit is reserved and should be written with zero.

6:0 Channel The Channel register (Reg 0x21) is used to determine the Synthesizer frequency. A value of 2 corresponds to a communication frequency of 2.402 GHz, while a value of 79 corresponds to a frequency of 2.479GHz. The channels are separated from each other by 1 MHz intervals.

Limit application usage to channels 2-79 to adhere to FCC regulations. FCC regulations require that channels 0 and 1 and any channel greater than 79 be avoided. Use of other channels may be restricted by other regulatory agencies. The application MCU must ensure that this register is modified before transmitting data over the air for the first time.

Addr	0x22		REG	RSSI	Default: 0x00		
7	6	5	4	3	1	0	
Reserved		Valid	RSSI				

Figure 7-25. Receive Signal Strength Indicator (RSSI)^[6]

Note:

6. The RSSI will collect a single value each time the part is put into receive mode via Control register (Reg 0x03, bit 7=1). See Section 4.7 for more details.

Bit	Name	Description

	7:6	Reserved	These bits are reserved. This register is read-only.
--	-----	----------	--

5 Valid The Valid bit indicates whether the RSSI value in bits [4:0] are valid. This register is Read Only.
 1 = RSSI value is valid
 0 = RSSI value is invalid
 4:0 RSSI The Receive Strength Signal Indicator (RSSI) value indicates the strength of the received signal. This is a read only

Addr	Addr: 0x23 REG_PA					Defaul	t: 0x00
7	6	5	2	1	0		
		Reserved		PA Bias			

value with the higher values indicating stronger received signals meaning more reliable transmissions.

Figure 7-26. Power Control

Bit Name Description

7:3 Reserved These bits are reserved and should be written with zeroes.

2:0 PA Bias The Power Amplifier Bias (PA Bias) bits are used to set the transmit power of the IC through increasing (values up to 7) or decreasing (values down to 0) the gain of the on-chip Power Amplifier. The higher the register value the higher the transmit power. By changing the PA Bias value signal strength management functions can be accomplished. For general purpose communication a value of 7 is recommended. See *Table 4-1* for typical output power steps based on the PA Bias bit settings.

	Addr:	: 0x24		Defau	ılt: 0x00			
	7	6	5	4	3	2	1	0
F	Reserved	Clock Output Disable			Crystal	Adjust		
				Figure 7-27.	Crystal Adjust			
Bit	Name	Descri	otion					
7	Reserved			should be written	with zero.			
6	Clock Outpu	1 = N	ock Output Disab lo 13 MHz clock o 3 MHz clock driv	driven externally	13 MHz clock drive	n on the X13OUT	pin.	
		5+13 <i>n.</i> it interfe	By default the 13 ere with every 13t	MHz clock output	IT pin then receive pin is enabled. Thi ng with 2.405GHz c t in use.	s pin is useful for a	adjusting the 13 l	MHz clock, but
	0 Crystal Adjust The Crystal Adjust value is used to calibrate the on-chip parallel load capacitance supplied to the crystal. Each increment of the Crystal Adjust value typically adds 0.135 pF of parallel load capacitance. The total range is 8.9 pF, starting at 8.65 pF. These numbers do not include PCB parasitics, which can add an additional 1-2 pF.							

Addr	: 0x26		REG_V	CO_CAL	Default: 0x00		
7	6	5 4 3 2 1 0					
VCO Slope Enable				Rese	erved		

Figure 7-28. VCO Calibration

Bit Name Description The Voltage Controlled Oscillator (VCO) Slope Enable bits are used to specify the amount of variance automat-ically added to the VCO. 7:6 VCO Slope Enable (Write-Only) 11 = -5/+5 VCO adjust. The application MCU must configure this option during initialization 10 = -2/+3 VCO adjust

- 01 = Reserved00 = No VCO adjust
- These bits are undefined for read operations.
- 5:0 Reserved These bits are reserved and should be written with zeroes.

Addr	0x2E		REG_P	WR_CTL		Defaul	t: 0x00
7	6	5	4	3	2	1	0
Reg Power Control				Reserved			

Figure 7-29. Reg Power Control

Bit Name Description

7 Reg Power Control When set, this bit disables unused circuitry and saves radio power. The user must set Reg 0x20, bit 6=1 to enable writes to Reg 0x2E. The application MCU must set this bit during initialization.

6:0 Reserved These bits are reserved and should be written with zeroes.

Addr:	0x2F		REG_CARRI	ER_DETECT		Default: 0x00					
7	6	5	4	3	2	1	0				
Carrier Detect Override				Reserved							

Figure 7-30. Carrier Detect

Bit Name Description

7 Carrier Detect Override When set, this bit overrides carrier detect. The user must set Reg 0x20, bit 6=1 to enable writes to Reg 0x2F.
6:0 Reserved These bits are reserved and should be written with zeroes.

Addr	: 0x32		REG_CLOC		Default: 0x00				
7	6	5	4	3	2	1	0		
			Manual Clo	ck Overrides					

Figure 7-31. Clock Manual

Bit Name Description

7:0 Manual Clock Overrides This register must be written with 0x41 after reset for correct operation

Addr	: 0x33		REG_CLOC		Default: 0x00				
7	6	5	4	3	2	1	0		
			Manual Clo	ock Enables					

Figure 7-32. Clock Enable

Bit Name Description

7:0 Manual Clock Enables This register must be written with 0x41 after reset for correct operation

Addr	0x38		REG_SYN_		Default: 0x64					
7	6	5	4	3	2	1 0				
			Со	unt						

Figure 7-33. Synthesizer Lock Count

Bit Name Description

7:0 Count Determines the length of delay in 2µs increments for the synthesizer to lock when auto synthesizer is enabled via Control register (0x03, bit 1=0) and not using the PLL lock signal. The default register setting is typically sufficient.

Γ			Α	ddr:	0x3	3 C- 3	ßF									RE	G_N	١ID														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Ac	Idres	s Ox	3F					Ad	dres	s 0x	3E					Ad	dres	s 0x	3D					Ad	dres	s 0x	3C		

Figure 7-34. Manufacturing ID

Bit Name Description

31:0 Address[31:0]

100 These bits are the Manufacturing ID (MID) for each IC. The contents of these bits cannot be read unless the MID Read Enable bit (bit 5) is set in the Analog Control register (Reg 0x20). Enabling the Manufacturing ID register (Reg 0x3C-0x3F) consumes power. The MID Read Enable bit in the Analog Control register (Reg 0x20, bit 5) should only be set when reading the contents of the Manufacturing ID register (Reg 0x3C-0x3F). This register is read-only.

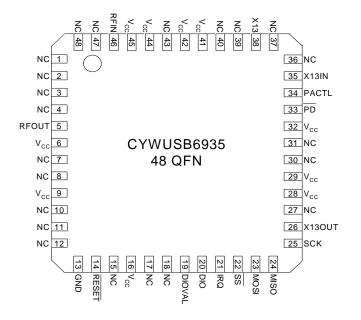

8.0 Pin Descriptions

Table 8-1. Pin Description Table

Pin QFN	Name	Туре	Default	Description
Analog RF				
46	RFIN	Input	Input	RF Input. Modulated RF signal received.
5	RFOUT	Output	N/A	RF Output. Modulated RF signal to be transmitted.
Crystal / P	ower Control			
38	X13	Input	N/A	Crystal Input. (refer to Section 4.6).
35	X13IN	Input	N/A	Crystal Input. (refer to Section 4.6).
26	X13OUT	Output/Hi-Z	Output	System Clock. Buffered 13-MHz system clock.
33	PD	Input	N/A	Power Down . Asserting this input (low), will put the IC in the Suspend Mode (X13OUT is 0 when PD is Low).
14	RESET	Input	N/A	Active LOW Reset. Device reset.
34	PACTL	I/O	Input	PACTL. External Power Amplifier control. Pull-down or make output.
SERDES E	Bypass Mode	Communications	/Interrupt	
20	DIO	I/O	Input	Data Input/Output. SERDES Bypass Mode Data Transmit/Receive.
19	DIOVAL	I/O	Input	Data I/O Valid. SERDES Bypass Mode Data Transmit/Receive Valid.
21	IRQ	Output /Hi-Z	Output	IRQ. Interrupt and SERDES Bypass Mode DIOCLK.
SPI Comm	unications			
23	MOSI	Input	N/A	Master-Output-Slave-Input Data. SPI data input pin.
24	MISO	Output/Hi-Z	Hi-Z	Master-Input-Slave-Output Data. SPI data output pin.
25	SCK	Input	N/A	SPI Input Clock. SPI clock.
22	SS	Input	N/A	Slave Select Enable. SPI enable.
Power and	Ground			
6, 9, 16, 28, 29, 32, 41, 42, 44, 45	VCC	VCC	н	V _{CC} = 2.7V to 3.6V.
13	GND	GND	L	Ground = 0V.
1, 2, 3, 4, 7, 8, 10, 11, 12, 15, 17, 18, 27, 30, 31, 36, 37, 39, 40, 43, 47, 48		N/A	N/A	Must be tied to Ground.
Exposed paddle	GND	GND	L	Must be tied to Ground.

CYWUSB6935 Top View*

* E-PAD BOTTOM SIDE

Figure 8-1. CYWUSB6935, 48 QFN - Top View

9.0 **Absolute Maximum Ratings**

Storage Temperature65°C to +150°C
Ambient Temperature with Power Applied –55°C to +125°C
Supply Voltage on V _{CC} relative to VSS –0.3V to +3.9V
DC Voltage to Logic Inputs ^[7] 0.3V to V _{CC} +0.3V
DC Voltage applied to Outputs in High-Z State–0.3V to V _{CC} +0.3V
Static Discharge Voltage (Digital) ^[8] >2000V
Static Discharge Voltage (RF) ^[8]
Latch-up Current

Operating Conditions 10.0

V _{CC} (Supply Voltage)	2.7V to 3.6V
T _A (Ambient Temperature Under Bias)	40°C to +85°C ^[9]
T _A (Ambient Temperature Under Bias)	0°C to +70°C ^[10]
Ground Voltage	0V
F _{OSC} (Oscillator or Crystal Frequency)	13 MHz

11.0 DC Characteristics (over the operating range)

Parameter	Description	Conditions	Min.	Typ. ^[12]	Max.	Unit
V _{CC}	Supply Voltage		2.7	3.0	3.6	V
V _{OH1}	Output High Voltage condition 1	At I _{OH} = -100.0 μA	V _{CC} -0.1	V _{CC}		V
V _{OH2}	Output High Voltage condition 2	At I _{OH} = -2.0 mA	2.4	3.0		V
V _{OL}	Output Low Voltage	At I _{OL} = 2.0 mA		0.0	0.4	V
V _{IH}	Input High Voltage		2.0		V _{CC} ^[11]	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
I _{IL}	Input Leakage Current	$0 < V_{IN} < V_{CC}$	-1	0.26	+1	μA
C _{IN}	Pin Input Capacitance (except X13, X13IN, RFIN)			3.5	10	pF
I _{Sleep}	Current consumption during power-down mode	PD = LOW		0.24	15	μA
IDLE I _{CC}	Current consumption without synthesizer	PD = HIGH		3		mA
STARTUP I _{CC}	ICC from PD high to oscillator stable.			1.8		mA
TX AVG I _{CC}	Average transmitter current consumption ^[13]			1.4		μA
RX I _{CC (PEAK)}	Current consumption during receive			57.7		mA
TX I _{CC (PEAK)}	Current consumption during transmit			69.1		mA
SYNTH SETTLE I _{CC}	Current consumption with Synthesizer on, No Transmit or Receive			28.7		mA

Notes:

Notes:
7. It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA. This can't be done during power down mode. AC timing not guaranteed.
8. Human Body Model (HBM).
9. Industrial temperature operating range.
10. Commercial temperature operating range.
11. It is permissible to connect voltages above Vcc to inputs through a series resistor limiting input current to 1 mA.
12. Typ. values measured with Vcc = 3.0V @ 25°C
13. Average Icc when transmitting a 10-byte packet every 15 minutes using the WirelessUSB N:1 protocol.

AC Characteristics ^[14] 12.0

Table 12-1. SPI Interface^[16]

Parameter	Description	Min.	Тур.	Max.	Unit
t _{SCK_CYC}	SPI Clock Period	476			ns
t _{SCK_HI} (BURST READ) ^[15]	SPI Clock High Time	238			ns
t _{SCK_HI}	SPI Clock High Time	158			ns
t _{SCK_LO}	SPI Clock Low Time	158			ns
t _{DAT_SU}	SPI Input Data Set-up Time	10			ns
t _{DAT_HLD}	SPI Input Data Hold Time	97 ^[16]			ns
t _{DAT_VAL}	SPI Output Data Valid Time	77 ^[16]		174 ^[16]	ns
t _{SS_SU}	SPI Slave Select Set-up Time before first positive edge of SCK ^[17]	250			ns
t _{SS_HLD}	SPI Slave Select Hold Time after last negative edge of SCK	80			ns

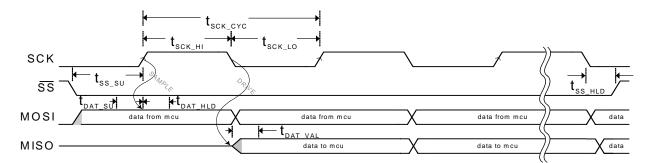
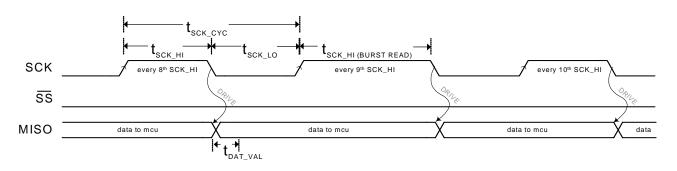



Figure 12-1. SPI Timing Diagram

Figure 12-2. SPI Burst Read Every 9th SCK HI Stretch Timing Diagram

Notes:

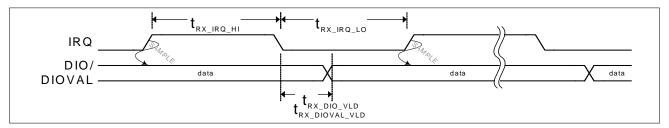

- AC values are not guaranteed if voltages on any pin exceed Vcc.
 This stretch only applies to every 9th SCK HI pulse for SPI Burst Reads only.
 For F_{OSC} = 13 MHz, 3.3v @ 25°C.
 SCK must start low, otherwise the success of SPI transactions are not guaranteed.

Table 12-2. DIO Interface

Parameter	Description	Min.	Тур.	Max.	Unit
Transmit					
t _{TX_DIOVAL_SU}	DIOVAL Set-up Time	2.1			μs
t _{TX_DIO_SU}	DIO Set-up Time	2.1			μs
t _{TX_DIOVAL_HLD}	DIOVAL Hold Time	0			μs
t _{TX_DIO_HLD}	DIO Hold Time	0			μs
t _{TX_IRQ_HI}	Minimum IRQ High Time – 32 chips/bit DDR		8		μs
	Minimum IRQ High Time – 32 chips/bit		16		μs
	Minimum IRQ High Time – 64 chips/bit		32		μs
t _{TX_IRQ_LO}	Minimum IRQ Low Time – 32 chips/bit DDR		8		μs
	Minimum IRQ Low Time – 32 chips/bit		16		μs
	Minimum IRQ Low Time – 64 chips/bit		32		μs
Receive					<u> </u>
t _{RX_DIOVAL_VLD}	DIOVAL Valid Time – 32 chips/bit DDR	-0.01		6.1	μs
	DIOVAL Valid Time – 32 chips/bit	-0.01		8.2	μs
	DIOVAL Valid Time – 64 chips/bit	-0.01		16.1	μs
t _{RX_DIO_VLD}	DIO Valid Time – 32 chips/bit DDR	-0.01		6.1	μs
	DIO Valid Time – 32 chips/bit	-0.01		8.2	μs
	DIO Valid Time – 64 chips/bit	-0.01		16.1	μs
t _{RX_IRQ_HI}	Minimum IRQ High Time – 32 chips/bit DDR		1		μs
	Minimum IRQ High Time – 32 chips/bit		1		μs
	Minimum IRQ High Time – 64 chips/bit		1		μs
t _{RX_IRQ_LO}	Minimum IRQ Low Time – 32 chips/bit DDR		8		μs
	Minimum IRQ Low Time – 32 chips/bit		16		μs
	Minimum IRQ Low Time – 64 chips/bit		32		μs

Figure 12-3. DIO Receive Timing Diagram

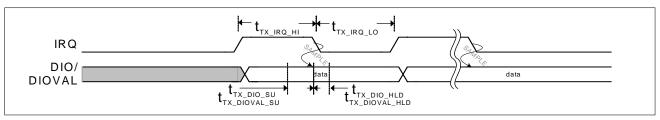
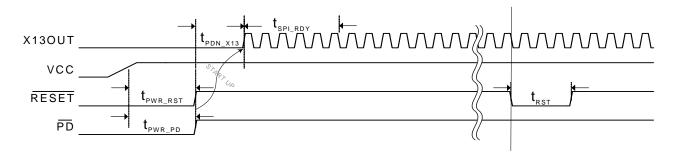


Figure 12-4. DIO Transmit Timing Diagram

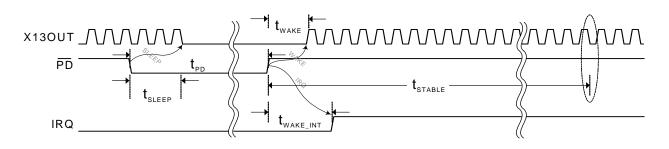
12.1 **Radio Parameters**

Table 12-3. Radio Parameters

Parameter Description	Conditions	Min.	Тур.	Max.	Unit
RF Frequency Range	[19]	2.400		2.483	GHz
Radio Receiver (T = 25 $^{\circ}$ C, V _{CC} = 3.3V, fosc = 13.000 MHz ± 2 ppm, 2	(13OUT off, 64 chips/bit, Threshold L	ow = 8, Th	reshold Hi	gh = 56, BE	R <u><</u> 10 ^{−3})
Sensitivity		-86	-95		dBm
Maximum Received Signal		-20	-7		dBm
RSSI value for PWR _{in} > -40 dBm			28 - 31		
RSSI value for PWR _{in} < -95 dBm			0 -10		
Interference Performance					
Co-channel Interference rejection Carrier-to-Interference (C/	I) C = -60 dBm		6		dB
Adjacent (1 MHz) channel selectivity C/I 1 MHz	C = -60 dBm		-5		dB
Adjacent (2 MHz) channel selectivity C/I 2 MHz	C = -60 dBm		-33		dB
Adjacent (\geq 3 MHz) channel selectivity C/I \geq 3 MHz	C = -67 dBm		-45		dB
Image ^[21] Frequency Interference, C/I Image	C =67 dBm		-35		dB
Adjacent (1 MHz) interference to in-band image frequency, C image ±1 MHz	/I C =67 dBm		-41		dB
Out-of-Band Blocking Interference Signal Frequency			1		
30 MHz – 2399 MHz except (FO/N & FO/N±1 MHz) ^[18]	C = -67 dBm		-22		dBm
2498 MHz – 12.75 GHz, except (FO*N & FO*N±1 MHz) ^[18]	C = -67 dBm		-21		dBm
Intermodulation	C = -64 dBm $\Delta f = 5,10 \text{ MHz}$		-32		dBm
Spurious Emission					
30 MHz – 1 GHz				-57	dBm
1 GHz – 12.75 GHz except (4.8GHz - 5.0GHz)				-54	dBm
4.8 GHz – 5.0 GHz				-40 ^{20]}	dBm
Radio Transmitter (T = 25° C, V _{CC} = 3.3V, fosc = 13.000 MHz ± 2 pp	m)		1 1		
Maximum RF Transmit Power	PA = 7	-5	-0.4		dBm
RF Power Control Range			28.6		dB
RF Power Range Control Step Size	seven steps, monotonic		4.1		dB
Frequency Deviation	PN Code Pattern 10101010		270		kHz
Frequency Deviation	PN Code Pattern 11110000		320		kHz
Zero Crossing Error			±75		ns
Occupied Bandwidth	100-kHz resolution bandwidth, –6 dBc	500	860		kHz
Initial Frequency Offset			±50		kHz
In-band Spurious					
Second Channel Power (±2 MHz)			-45	-30	dBm
≥ Third Channel Power (≥3 MHz)			-52	-40	dBm
Non-Harmonically Related Spurs					
30 MHz – 12.75 GHz				-54	dBm
Harmonic Spurs					
Second Harmonic				-28	dBm
Third Harmonic				-25	dBm
Fourth and Greater Harmonics		1		-42	dBm


Notes:

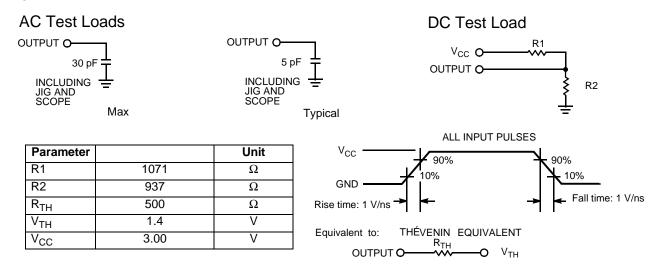
FO = Tuned Frequency, N = Integer.
 Subject to regulation.
 Antenna matching network and antenna will attenuate the output signal at these frequencies to meet regulatory requirements.
 Image frequency is +4 MHz from desired channel (2 MHz low IF, high side injection).



12.2 **Power Management Timing**

Parameter	Description	Conditions	Min.	Тур	Max.	Unit
t _{PDN_X13}	Time from PD deassert to X13OUT			2000		μs
t _{SPI_RDY}	Time from oscillator stable to start of SPI transactions		1			μs
t _{PWR_RST}	Power On to RESET deasserted	V _{cc} @ 2.7V	1300			μs
t _{RST}	Minimum RESET asserted pulse width		1			μs
t _{PWR_PD}	Power On to PD deasserted ^[22]		1300			μs
t _{WAKE}	PD deassert to clocks running ^[23]			2000		μs
t _{PD}	Minimum PD asserted pulse width		10			μs
t _{SLEEP}	PD assert to low power mode			50		ns
t _{WAKE_INT}	PD deassert to IRQ ^[24] assert (wake interrupt) ^[25]			2000		μs
t _{STABLE}	PD deassert to clock stable	to within ±10 ppm		2100		μs

Figure 12-5. Power On Reset/Reset Timing


Figure 12-6. Sleep / Wake Timing

Notes:

- 22. The $\overline{\text{PD}}$ pin must be asserted at power up to ensure proper crystal startup.
- 23. 24. When X13OUT is enabled.
- When A ISOUT Is enabled. Both the polarity and the drive method of the IRQ pin are programmable. See page 11 for more details. *Figure 12-6* illustrates default values for the Configuration register (Reg 0x05, bits 1:0). A wakeup event is triggered when the PD pin is deasserted. *Figure 12-6* illustrates a wakeup event configured to trigger an IRQ pin event via the Wake Enable register (Reg 0x1C, bit 0=1). 25.

12.3 AC Test Loads and Waveforms for Digital Pins

Figure 12-7. AC Test Loads and Waveforms for Digital Pins

13.0 Ordering Information

Part Number	Radio	Package Name	Package Type	Operating Range
CYWUSB6935-48LFXI	Transceiver	48 QFN	48 Quad Flat Package No Leads Lead-Free	Industrial
CYWUSB6935-48LFXC	Transceiver	48 QFN	48 Quad Flat Package No Leads Lead-Free	Commercial

14.0 Package Description

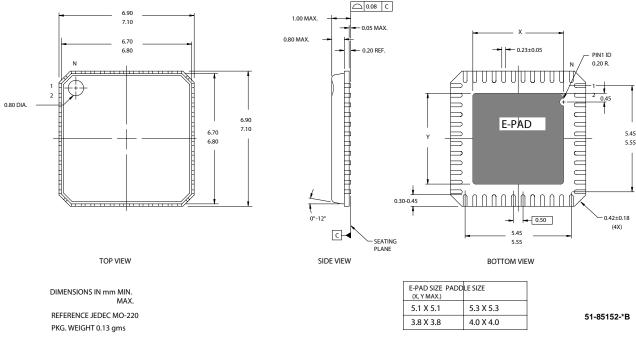


Figure 14-1. 48-pin Lead-Free QFN 7 × 7 mm LY48

The recommended dimension of the PCB pad size for the E-PAD underneath the QFN is 209 mils \times 209 mils (width x length).

This document is subject to change, and may be found to contain errors of omission or changes in parameters. For feedback or technical support regarding Cypress WirelessUSB products please contact Cypress at www.cypress.com. WirelessUSB, PSoC, and enCoRe are trademarks of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2004. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its

Document History Page

	Document Title: CYWUSB6935 WirelessUSB™ LR 2.4-GHz DSSS Radio SoC Document Number: 38-16008					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	207428	See ECN	TGE	New data sheet		
*A	275349	See ECN	ZTK	Updated REG_DATA_RATE (0x04), 111 - Not Valid Changed AVCC annotation to VCC Removed SOIC package option Corrected Figures 3-1, 6-1, and 6-2 Updated ordering information section Added Table 4-1 Internal PA Output Power Step Table Corrected Figure 14-1 caption Updated Radio Parameters Added commercial temperature operating range in section 10 Updated average transmitter current consumption number		