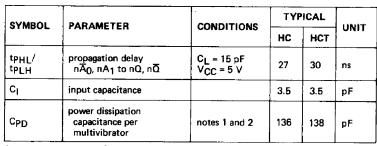
DUAL RETRIGGERABLE PRECISION MONOSTABLE MULTIVIBRATOR

FEATURES

- Separate reset inputs ٠ Triggering from leading or
- trailing edge
- **Output capability: standard** ICC category: MSI ۰
- Power-on reset on-chip

GENERAL DESCRIPTION


The 74HC/HCT4538 are high-speed Si-gate CMOS devices and are pin compatible with "4538" of the "4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4538 are dual retriggerable-resettable monostable multivibrators. Each multivibrator has an active LOW trigger/retrigger input ($n\overline{A}_0$), an active HIGH trigger/retrigger input (nA1), an overriding active LOW direct reset input $(n\overline{R}_D)$, an output (nQ) and its complement $(n\overline{Q})$, and two pins (nC_{TC}) and nRCTC) for connecting the external timing components Ct and Rt. Typical pulse width variation over temperature range is ± 0.2%.

The "4538" may be triggered by either the positive or the negative edges of the input pulse. The duration and accuracy of the output pulse are determined by the external timing components Ct and Rt. The output pulse width (T) is equal to $0.7 \times \text{R}_t \times \text{C}_t.$ The linear design techniques guarantee precise control of the output pulse width,

A LOW level at $n\overline{R}_D$ terminates the output pulse immediately.

Schmitt-trigger action in the trigger inputs makes the circuit highly tolerant to slower rise and fall times.

GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns

Notes

1. CpD is used to determine the dynamic power dissipation (PD in μ W):

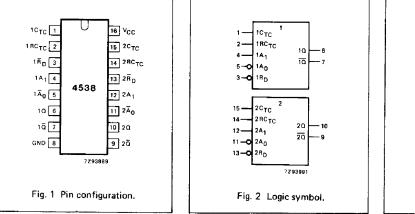
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o) +$

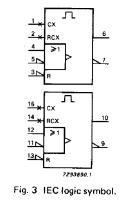
+ 0.48 x C_{EXT} x V_{CC}² x f_o + D x 0.8 x V_{CC} where:

f_i = input frequency in MHz

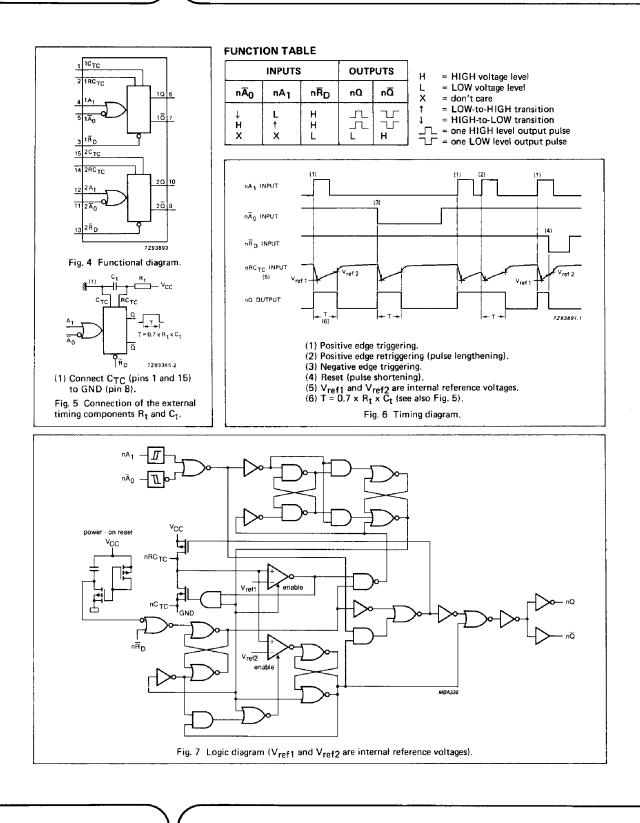
CL = output load capacitance in pF $f_{O} = \text{output frequency in MHz} \qquad V_{CC} = \text{supply voltage in V} \\ \Sigma (C_{L} \times V_{CC}^{2} \times f_{O}) = \text{sum of outputs} \qquad D = \text{duty factor in \%}$ CEXT = timing capacitance in pF

2. For HC the condition is V₁ = GND to V_{CC} For HCT the condition is V₁ = GND to V_{CC} - 1.5 V


PACKAGE OUTLINES


16-lead DIL; plastic (SOT38Z).

16-lead mini-pack; plastic (SO16; SOT109A).


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	1CTC, 2CTC	external capacitor connections
2, 14	1RC _{TC} ,2RC _{TC}	external resistor/capacitor connections
3, 13	1R _D , 2R _D	direct reset inputs (active LOW)
4, 12	1A ₁ , 2A ₁	trigger inputs (LOW-to-HIGH, edge-triggered)
5, 11	1Ā ₀ , 2Ā ₀	trigger inputs (HIGH-to-LOW, edge-triggered)
6, 10	10, 20	pulse outputs
7, 9	10, 20	complementary pulse outputs
8	GND	ground (0 V)
16	Vcc	positive supply voltage

September 1993 1081 74HC/HCT4538 MSI

1082 September 1993

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $\mathsf{GND}=\mathsf{0}\;\mathsf{V};\,\mathsf{t_f}=\mathsf{t_f}=\mathsf{6}\;\mathsf{ns};\,\mathsf{C_L}=\mathsf{50}\;\mathsf{pF}$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	PARAMETER		74HC									
	FARAMETER	+25			-40 to +85		-40 to +125		UNIT	Vcc	OTHER	
		min.	typ.	max.	min.	max.	min.	max.				
^t PLH	propagation delay nA0, nA1 to nQ		85 31 25	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig. 8	
^t PHL	propagation delay $n\overline{A}_0$, $n\overline{A}_1$ to $n\overline{\Omega}$		83 30 24	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig. 8	
^t PHL _,	propagation delay nRD to nQ		80 29 23	265 53 45		330 66 56		400 80 68	ns	2.0 4.5 6.0	Fig. 8	
^t PLH	propagation delay $n\overline{R}_D$ to $n\overline{\Omega}$		83 30 24	265 53 45		340 68 58		400 80 68	ns	2.0 4.5 6.0	Fig. 8	
^t THL/ ^t TLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 8	
tw	nĀŋ pulse width LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8	
tw	nA1 pulse width HIGH	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8	
tw	nR _D pulse width LOW	80 16 14	19 7 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig. 8	
tw	nQ, nQ pulse width HIGH or LOW	0.63	0.70	0.77	0.602	0.798	0.595	0.805	ms	5.0	Fig. 8; R _t = 10 kΩ; C _t = 0.1 μF	
trem	removal time RD to nA0, nA1	35 7 6	6 2 2		45 9 8		55 11 9		กร	2.0 4.5 6.0	Fig. 8	
t _{rt}	retrigger time nÃO, nA1	- -	455+X 80+X 55+X		 				ns	2.0 4.5 6.0	Fig. 8 X = C _{EXT} /(4.5 × V _{CC})	
REXT	external timing resistor	10 2		1000 1000					kΩ	2.0 5.0		
C _{EXT}	external timing capacitor				no limi	ts		·	рF	5.0		

NON-STANDARD DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

SYMBOL	PARAMETER			-	T _{amb} (°C)	UNIT	TEST CONDITIONS				
					74H0	3		Vcc	vi	OTHER		
		+25			-40 to +85		-40 to +125			V	v	
		min.	typ.	max.	min.	max.	min.	max.				
±1	input leakage current nRC _{EXT}			0.5		5.0		10.0	μA	6.0	2.0 or GND	V _{CC} or GND; note 1

Note

1. This measurement can only be carried out after a trigger pulse is applied.

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard ICC category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
nĀ ₀ , nA ₁	0.50
nĒ _D	0.65

1084 September 1993

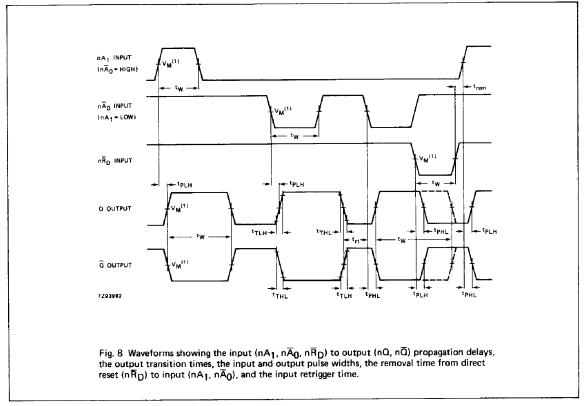
AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_{f} = t_{f} = 6 \text{ ns}$; $C_{L} = 50 \text{ pF}$

					T _{amb} (°C)				TEST CONDITIONS		
SYMBOL	PARAMETER	AMETER 74HCT			0							
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	OTHER	
		min.	typ.	max.	min.	max.	min.	max.	1			
^t PLH	propagation delay nA ₀ , nA ₁ to nQ		35	60		75		90	ns	4.5	Fig. 8	
^t PHL	propagation delay nA0, nA1 to nQ		35	60		75		90	ns	4.5	Fig. 8	
^t PHL	propagation delay nRD to nQ		35	60		75		90	ns	4.5	Fig. 8	
^t PLH	propagation delay nBp to nQ		35	60		75		90	ns	4.5	Fig. 8	
t _{THL} / t _{TLH}	output transition time		7	15		19		21	ns	4.5	Fig. 8	
tw	nA ₀ pulse width LOW	20	11		25		30		ns	4.5	Fig. 8	
tw	nA ₁ pulse width HIGH	16	5		20		24		ns	4.5	Fig. 8	
tw	nR _D pulse width LOW	20	11		25		30		пs	4.5	Fig. 8	
tw	nQ, nQ pulse width HIGH or LOW	0.63	0.70	0.77	0.602	0.798	0.595	0.805	ms	5.0	Fig. 8; $R_t = 10 \text{ k}\Omega$; $C_t = 0.1 \mu\text{F}$	
t _{rem}	removal time RD to nA0, nA1	7	2		9		11		ns	4.5	Fig. 8	
^t rt	retrigger time nA0, nA1	-	80+X		-		-		ns	4.5	Fig. 8 X = C _{EXT} /(4.5 x V _{CC})	
REXT	external timing resistor	2		1000					kΩ	5.0	000	
CEXT	external timing capacitor		no limits									

NON-STANDARD DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)


SYMBOL	PARAMETER			•	T _{amb} ((°C)		TEST CONDITIONS				
					74HC	т				071150		
		+25			-40 to +85		-40 to +125		UNIT	VCC V	V _I V	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
±Ι	input leakage current nRCEXT			0.5		5.0		10.0	μΑ	5.5	2.0 or GND	V _{CC} or GND; note 1

Note

1. This measurement can only be carried out after a trigger pulse is applied.

AC WAVEFORMS

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

1086 September 1993

0

ā

7222404.1

4538

RESET = V_{CC}

(a)

APPLICATION INFORMATION

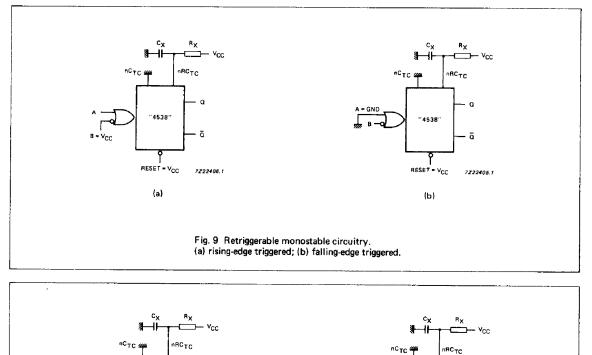
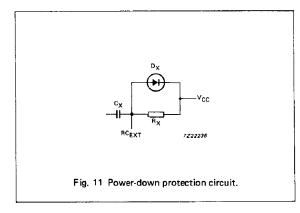


Fig. 10 Non-retriggerable monostable circuitry. (a) rising-edge triggered; (b) falling-edge triggered. a

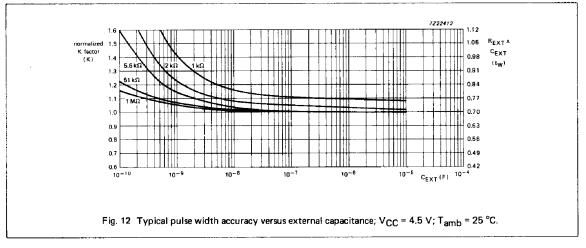
ā

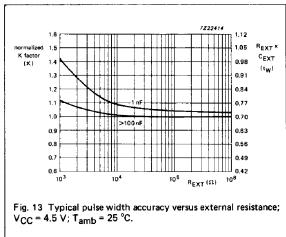

7222403.1

"4538"

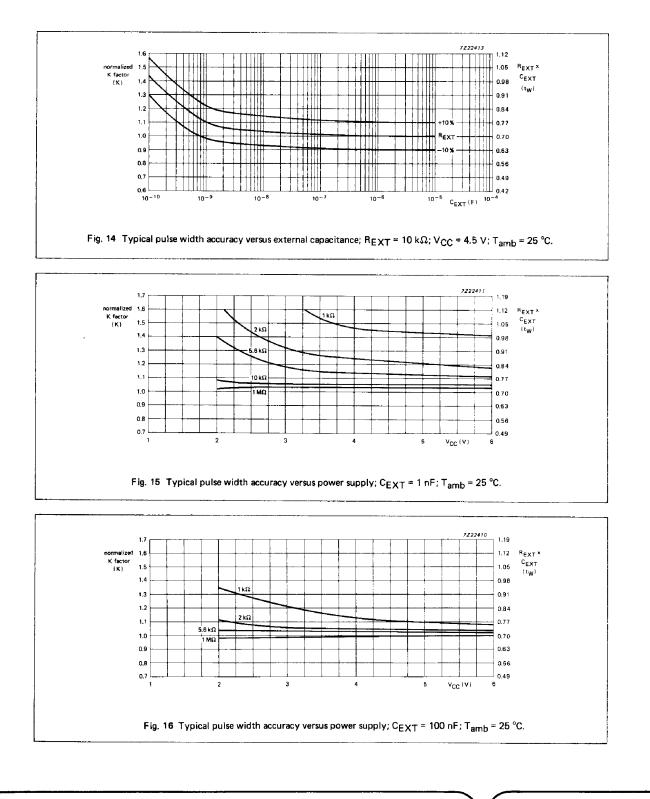
RESET - VCC

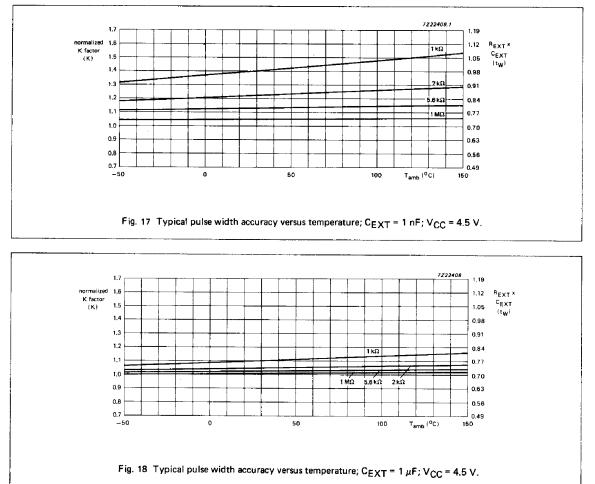
(b)


в



Power-down considerations


A large capacitor (C_X) may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of V_{CC} to zero occurs, the monostable may substain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (D_X) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Fig. 11.



1088 September 1993

APPLICATION INFORMATION (Continued)

1090 September 1993