8-INPUT NAND GATE

FEATURES

Output capability: standard

• I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT30 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT30 provide the 8-input NAND function.

	DA DAMETES	CONDITIONS	TYP	TYPICAL		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay A, B, C, D, E, F, G, H to Y	C _L = 15 pF V _{CC} = 5 V	12	12	ns	
C ₁	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	15	15	pF	

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

Notes

1. CPD is used to determine the dynamic power dissipation (PD in μ W):

 $PD = CPD \times VCC^2 \times f_1 + \Sigma (CL \times VCC^2 \times f_0)$ where:

fi = input frequency in MHz CL

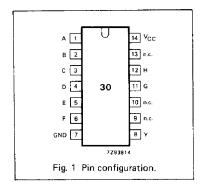
CL = output load capacitance in pF VCC = supply voltage in V

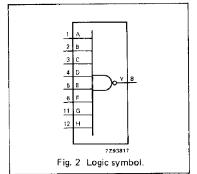
f_O = output frequency in MHz VCC = supply voltage in '

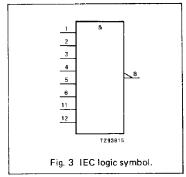
 Σ (C_L x V_{CC}² x f_O) = sum of outputs

2. For HC the condition is V₁ = GND to V_{CC}

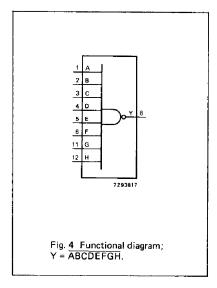
For HCT the condition is V₁ = GND to V_{CC} – 1.5 V

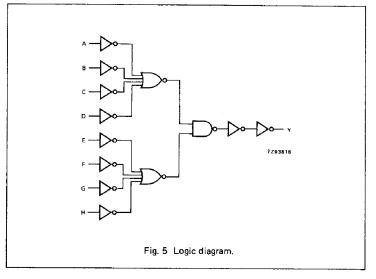

PACKAGE OUTLINES


14-lead DIL; plastic (SOT27).


14-lead mini-pack; plastic (SO14; SOT108A).

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION	
1	Α	data input	
2	В	data input	
3	С	data input	
4	D	data input	
5	E	data input	
6	F	data input	
7	GND	ground (0 V)	
8	Y	data output	
9, 10, 13	n.c.	not connected	
11	G	data input	
12	Н	data input	
14	Vcc	positive supply voltage	



December 1990

FUNCTION TABLE

		OUTPUT						
Α	В	c	D	E	F	G	н	Y
L	х	х	х	х	х	х	x	н
Х	L	X	X	х	Х	X	X	н
XX	X	L	X	X	Х	Х	X	H '
Х	X	Х	L	X	Х	X	X	н
x	x	х	х	L	х	x	x	н
X X X	X	X	X	X	L	х	x	Н
X	X	Х	Х	х	x	L	X	Н
Х	х	Х	×	Х	Х	х	L	н
н	н	н	н	Н	н	Н	Н	L

H = HIGH voltage level L = LOW voltage level X = don't care

DC CHARACTERISTICS FOR 74 HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

ICC category: SSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6$ ns; $C_L = 50$ pF

SYMBOL		T _{amb} (°C)									TEST CONDITIONS	
	D. D. H. ETC											
	PARAMETER		+25		-40	to +85	-40 t	o +125	UNIT V _{CC}	VCC	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} /	propagation delay A, B, C, D, E, F, G, H to Y		41 15 12	130 26 22		165 33 28		195 39 33	ns	2.0 4.5 6.0	Fig. 6	
t _{THL} / tTLH	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig. 6	

DC CHARACTERISTICS FOR 74HCT

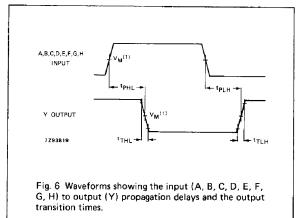
For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: standard

ICC category: SSI

Note to HCT types

The value of additional quiescent supply current ($\triangle I_{CC}$) for a unit load of 1 is given in the family specifications. To determine $\triangle I_{CC}$ per input, multiply this value by the unit load coefficient shown in the table below.


INPUT	UNIT LOAD COEFFICIENT
A, B, C, D, E, F, G, H	0.60

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

		T _{amb} (°C)								TEST CONDITIONS		
				74HCT	1 1	Vcc	WAVEFORMS					
SYMBOL	PARAMETER	+25		-40 to +85		-40 to +125			VCC			
		min.	typ.	max.	min.	max.	min.	max.]			
tPHL/ tPLH	propagation delay A, B, C, D, E, F, G, H to Y		16	28		35		42	ns	4.5	Fig. 6	
tTHL/ tTLH	output transition time		7	15		19		22	ns	4.5	Fig. 6	

AC WAVEFORMS

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

168

January 1986