HEX NON-INVERTING BUFFERS

The HEF4050B provides six non-inverting buffers with high current output capability suitable for driving TTL or high capacitive loads. Since input voltages in excess of the buffers' supply voltage are permitted, the buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. Their guaranteed fan-out into common bipolar logic elements is shown in the table below.

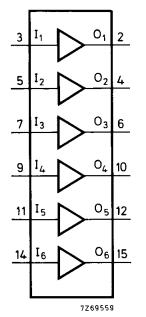
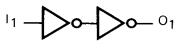



Fig. 1 Functional diagram.

7274500.1

APPLICATION INFORMATION

IDD LIMITS category BUFFERS

Some examples of applications for the HEF4050B are:

- LOCMOS to DTL/TTL converter
- HIGH sink current for driving 2 TTL loads
- HIGH-to-LOW level logic conversion

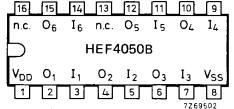


Fig. 2 Pinning diagram.

HEF4050BP : 16-lead DIL; plastic (SOT-38Z). HEF4050BD: 16-lead DIL; ceramic (cerdip) (SOT-74). HEF4050BT : 16-lead mini-pack; plastic (SO-16; SOT-109A).

Guaranteed fan-out in common logic families

driven element	guaranteed fan-out				
standard TTL	2				
74LS	9				
74L	16				

Input protection

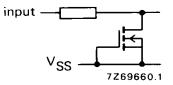


Fig.4 Input protection circuit that allows input voltages in excess of V_{DD} .

FAMILY DATA

see Family Specifications

Products approved to CECC 90 104-038.

March 1988

This Material Copyrighted By Its Respective Manufacturer

buffers

D.C. CHARACTERISTICS V_{SS} = 0 V; V_1 = V_{SS} or V_{DD}

HEF	V _{DD} V	V _O V	symbol	-40		+2	T _{amb} (° 25		;) +85	
				min.	max.	min.	max.	min.	max.	
Output (sink)	4,75	0,4		3,5	_	2,9	_	2,3	_	mA
current LOW	10	0,5	IOL	12,0	_	10,0	_	8,0	_	mΑ
	15	1,5		24,0		20,0	-	16,0	—	mΑ
Output (source)	5	4,6		0,52	_	0,44	_	0,36		mΑ
current HIGH	10	9,5	-іон	1,3	_	1,1	_	0,9	-	mΑ
	15	13,5		3,6		3,0		2,4	—	mΑ
Output (source)										
current HIGH	5	2,5	⁻¹ он	1,7	_	1,4	_	1,1	_	mΑ

HEC	V _{DD} V	VO V	symbol	—55 min. max.	T _{amb} (°C) +25 min. max.	+125 min. max.
Output (sink) current LOW	4,75 10 15	0,4 0,5 1,5	IOL	3,6 12,5 25,0	2,9 — 10,0 — 20,0 —	1,9 – mA 6,7 – mA 13,0 – mA
Output (source) current HIGH	5 10 15	4,6 9,5 13,5	^{—I} ОН	0,52 1,3 3,6	0,44 — 1,1 — 3,0 —	0,36 – mA 0,9 – mA 2,4 – mA

A.C. CHARACTERISTICS V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	typ.	max.		typical extrapolation formula
Propagation delays	5		35	70	ns	26 ns + (0,18 ns/pF)C
I _n O _n	10	^t PHL	20	35	ns	16 ns + (0,08 ns/pF)C
HIGH to LOW	15		15	30	ns	12 ns + (0,05 ns/pF)C
	5		55	110	ns	28 ns + (0,55 ns/pF)C
LOW to HIGH	10	^t PLH	25	55	ns	14 ns + (0,23 ns/pF)C
	15		20	40	ns	12 ns + (0,16 ns/pF)C
Output transition	5		25	50	ns	7 ns + (0,35 ns/pF)Cı
times	10	^t THL	10	20	ns	$3 ns + (0,14 ns/pF)C_1$
HIGH to LOW	15		7	14	ns	2 ns + (0,09 ns/pF)C
	5		60	120	ns	10 ns + (1,0 ns/pF)C
LOW to HIGH	10	^t TLH	30	60	ns	9 ns + (0,42 ns/pF)C
	15		20	40	ns	6 ns + (0,28 ns/pF)C
						where

	V _{DD} V	typical formula for P (μ W)	where f _i = input freq. (MHz)
Dynamic power	5	3 800 f _i + Σ (f _o C _L) x V _{DD} ²	f _o = output freq. (MHz) C ₁ = load capacitance (pF
dissipation per	10	11 600 f _i + Σ (f ₀ C _L) x V _{DD²}	$\Sigma(f_0C_1) = sum of outputs$
package (P)	15	65 900 f ₁ + Σ (f ₀ C _L) × V _{DD²}	V_{DD} = supply voltage (V)

350

March 1988

This Material Copyrighted By Its Respective Manufacturer