OCTAL BUFFER/LINE DRIVER; 3-STATE; INVERTING

FEATURES

Output capability: bus driver

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT240 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT240 are octal inverting buffer/line drivers with 3-state outputs. The 3-state outputs are controlled by the output enable inputs 10E and 20E. A HIGH on nOE causes the outputs to assume a high impedance OFF-state. The "240" is identical to the "244" but has inverting outputs.

FUNCTION TABLE

INP	UTS	OUTPUT
nŌĒ	nA _n	nY _n
L L H	L H X	H L Z

H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

		001101710110	TYF	UNIT	
\$YMBOL	PARAMETER	CONDITIONS	HC	нст	ONII
tPHL/ ^T PLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n	C _L = 15 pF V _{CC} = 5 V	9	9	ns
Cl	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per buffer	notes 1 and 2	30	30	pF

GND = 0 V;
$$T_{amb} = 25 \, ^{\circ}C$$
; $t_r = t_f = 6 \, \text{ns}$

Notes

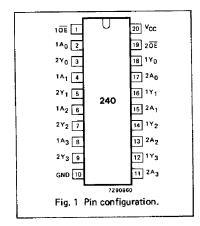
1. CPD is used to determine the dynamic power dissipation (PD in $\mu W)$:

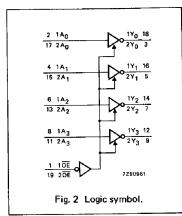
PD = CPD x VCC^2 x f_i + Σ (CL x VCC^2 x f_o) where:

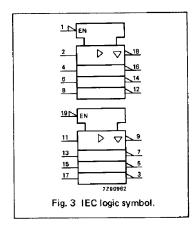
f; = input frequency in MHz = output frequency in MHz C_L = output load capacitance in pF V_{CC} = supply voltage in V

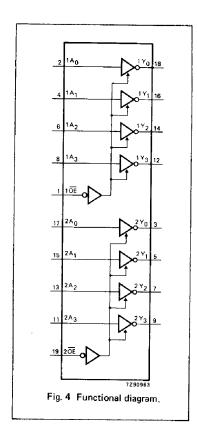
 Σ (C_L x V_{CC}² x f₀) = sum of outputs

2. For HC the condition is V₁ = GND to V_CC
For HCT the condition is V₁ = GND to V_CC - 1.5 V


PACKAGE OUTLINES


20-lead DIL; plastic (SOT146).


20-lead mini-pack; plastic (SO20; SOT163A).


PIN DESCRIPTION

PIN NO. SYMBOL		NAME AND FUNCTION					
1	10E	output enable input (active LOW)					
2, 4, 6, 8	1A ₀ to 1A ₃	data inputs					
3, 5, 7, 9	2Y ₀ to 2Y ₃	bus outputs					
10	GND	ground (0 V)					
17, 15, 13, 11	2A ₀ to 2A ₃	data inputs					
18, 16, 14, 12	1Y ₀ to 1Y ₃	bus outputs					
19	2ŌĒ	output enable input (active LOW)					
20	Vcc	positive supply voltage					

486

January 1986

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL PARAMETER		T _{amb} (°C)								TEST CONDITIONS	
	PARAMETER	74HC									
	· · · · · · · · · · · · · · · · · · ·	+25		-40 to +85		-40 to +125		UNIT	VCC	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		-	
^t PHL/ ^t PLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n		30 11 9	100 20 17		125 25 21		150 30 26	ns	2.0 4.5 6.0	Fig. 5
^t PZH/ ^t PZL	3-state output enable time 10E to 1Yn; 20E to 2Yn		39 14 11	150 30 26	_	190 38 33	_	225 45 38	ns	2.0 4.5 6.0	Fig. 6
tPHZ/ tPLZ	3-s <u>tate</u> output disable time 10E to 1Yn; 20E to 2Yn		41 15 12	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig. 6
tTHL/ tTLH	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig. 5

74HC/HCT240 MSI

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: bus driver

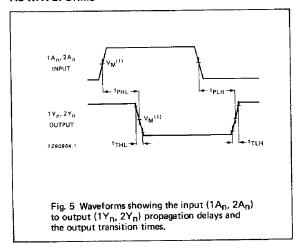
I_{CC} category: MSI

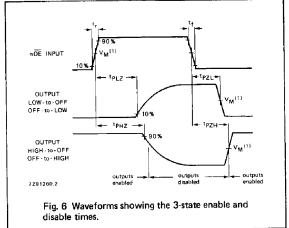
Note to HCT types

The value of additional quiescent supply current (Δl_{CC}) for a unit load of 1 is given in the family specifications. To determine Δl_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

input	unit load coefficient
1A _n	1.50
2A _n	1.50
10E	0.70
20E	0.70

AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$


SYMBOL PARAMETER		T _{amb} (°C)							TEST CONDITIONS		
	DADAMETED										
	FARAMEIER	+25			-40 to +85		-40 to +125		UNIT	v _{cc}	WAVEFORMS
		min.	typ,	max.	min.	max.	min.	max.			
tPHL/ tPLH	propagation delay 1A _n to 1Y _n ; 2A _n to 2Y _n		11	20		25		30	ns	4.5	Fig. 5
tPZH/ tPZL	3-state output enable time 1 OE to 1Yn; 2 OE to 2Yn		13	30		38		45	ns	4.5	Fig. 6
tPHZ/ tPLZ	3-state output disable time 10E to 1Yn; 20E to 2Yn		13	25		31		38	ns	4.5	Fig. 6
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig. 5

488

January 1986

AC WAVEFORMS

Note to AC waveforms

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

489