

SCA3000-E02 3-AXIS ULTRA LOW POWER ACCELEROMETER WITH DIGITAL I²C INTERFACE

Features

- 2.35 V 3.6 V supply voltage,
 1.7 V 3.6 V digital I/O voltage
- ±3 g measurement range
- I²C digital interface: V2.1 compliant, 10-bit addressing, supports standard mode
- Selectable frequency response
- Ultra low current consumption (2.5 V, 200 μA typ)
- 64 samples/axis buffer memory for output acceleration data and advanced features enable significant power and resource savings at system level
- Interrupt signal triggered by motion and free fall
- Size 7x7x1.8 mm
- Proven capacitive 3D-MEMS technology
- · High shock durability
- RoHS compliant / lead free soldering

Applications

SCA3000-E02 is targeted to battery operated wrist and hand-held devices. Typical applications are but not limited

- Motion activated functions in mobile terminals and antitheft systems
- Gaming input devices
- Inclination sensing in digital inclinometers
- Tilt compensation in electronic compass
- Hard disk protection
- · Pedometers and activity monitors

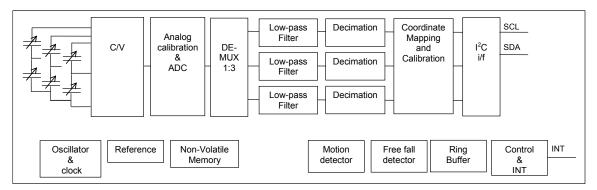


Figure 1 SCA3000-E02 Block Diagram

Performance Characteristics 1)

Parameter	Condition		Typical supply range 2.35 – 2.7 V			nded supp e 2.7 – 3.6	Units	
		Min	Typ ²⁾	Max	Min	Typ ²⁾	Max	
Analog and digital Vdd		2.35	2.5	2.7	-	3.3	-	V
Digital I/O Vdd	Vdd ≥ Digital I/O Vdd	1.7	1.8 / 2.5	2.7	-	3.3	-	V
Operating temperature **	3)	-40	-	85	-40	-	85	°C
Current consumption *	Reset 3)	-	<7	12	-	<9	-	μΑ
	Active	-	200	240	-	250	-	μΑ
	Motion Detection mode		170	210	-	210	-	μА
Acceleration range * 4)	Nominal	-3	-	3	-	± 3	-	g
Offset calibration error * 5)	Z-axis +1g position	-40	-	40	-	± 100	-	mg
Offset temperature error ** 6)	-40 +85 °C	-3	±0.8	3	-	±0.8	-	mg/°C
Sensitivity * 7)		-	1000		-	1000	-	Count/g
Sensitivity calibration error *		-1.5	-	+1.5	-	± 1	-	%
Sensitivity temperature error	-40 +85 °C	-	±0.01		-	±0.01	-	%/°C
Non-Linearity ** 9)		-3	±1	3	-	1	-	% FS
Cross-Axis sensitivity ** 10)		-	3	-	-	3	-	%
Bandwidth ** 11)	Measurement mode	32	40	48	-	40	-	Hz
	Narrow band measurement mode	9	11	13	-	11	-	Hz
Noise ** 12)	Measurement mode	-	9	18	-	9	-	mg RMS
	Narrow band measurement mode	-	5	10	-	5	-	mg RMS
Output data rate **	Measurement mode Narrow band measurement mode	100 50	125 63	150 75	-	130 63	-	Hz
Turn on time ** 13)	Measurement mode	-	30	70	-	30	-	ms
	Narrow band measurement mode	-	200	400	-	200	-	
I ² C clock rate **	mododi omoni modo	-	-	100	_	-	100	kHz

- 100% tested in production
- Qualified during product validation
- 1) The product is factory calibrated at 2.5 V in room temperature.
- 2) Typical values are not guaranteed.
- 3) Includes the current through the internal 400 k Ω pull-up resistor connected to digital I/O Vdd.
- 4) Range defined as $\sqrt{x^2+y^2+z^2} \le 3g$. The measuring range is tested on sensing element level. FS = 3g.
- 5) Soldering process can cause offset shift which is typically less than 75 mg. Please see TN54 SCA3000 Assembly Instructions for further details.
- 6) Offset temperature error = {Count(0g)-Offset} / Sensitivity [g]. Sensitivity = Calibrated sensitivity. Offset= Calibrated offset.
- 7)
- $Sensitivity = \{Count(+1g) Count(-1g)\}/2 \ [Count/g]. \\ Sensitivity temperature error = \{[Count(+1g)-Count(-1g)]/2 Sensitivity\} / Sensitivity x 100\% \ [\%].$ 8) Sensitivity = Calibrated sensitivity.
- 9) From straight line through sensitivity calibration (+1g, -1g) points.
- 10) The cross-axis sensitivity determines how much acceleration, perpendicular to the measuring axis, couples to the output. The total cross-axis sensitivity is the geometric sum of the sensitivities of the two axes which are perpendicular to the measuring axis. The angular alignment error between X, Y and Z axis is included into the cross axis sensitivity.
- 11) Frequency responses according to Figure 3 and Figure 4.
- Average noise/axis over the measurement bandwidth defined as $\sqrt{\frac{1}{3}(n_x^2+n_y^2+n_z^2)}$, where nx, ny and nz are 12)
- the measured signal's standard deviation due to noise in x, y and z directions. 13) Settling error less than 1% of FS.

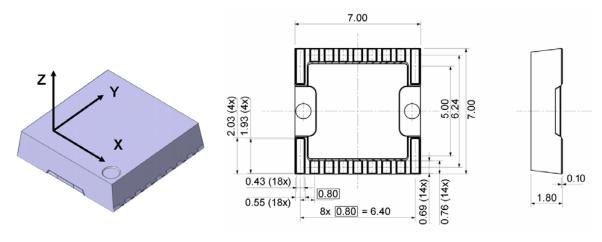
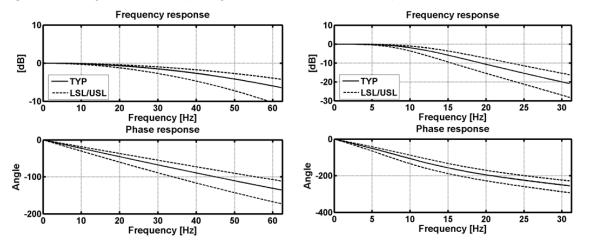



Figure 2 Sensing directions and package dimensions in mm with ±50 µm tolerance.

Figure 3 Frequency response of SCA3000-E02 in measurement mode

Figure 4 Frequency response of SCA3000-E02 in bypass measurement mode

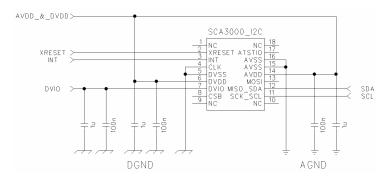


Figure 5 Application schematic

Pin#	Name	Function
1	NC	Not connected
2	XRESET	External reset, active low
3	INT	Interrupt output
4	CLK	Digital ground
5	DVSS	Digital ground
6	DVDD	Digital supply
7	DVIO	Digital I/O supply
8	CSB	Not connected
9	NC	Not connected
10	NC	Not connected
11	SCK_SCL	I ² C clock (SCL)
12	MISO_SDA	I ² C data (SDA)
13	MOSI	Not connected
14	AVDD	Analog supply
15	AVSS	Analog ground
16	AVSS	Analog ground
17	ATSTIO	Not connected
18	NC	Not connected

Table 1 Pin descriptions

Document Change Control

Rev.	Date	Change Description
Α	21-Apr-06	1 st official release
A.01	13-Jun-06	Dimensions updated
A.02	31-Oct-07	Figure 2 updated
В	28-Aug-08	Performance characteristics updated
B.01	08-Sep-09	Note 5 on performance characteristics added