MC1455, MC1455B, NCV1455B

Timers

The MC1455 monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode, time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free-running frequency and the duty cycle are both accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output structure can source or sink up to 200 mA or drive TTL circuits.

Features

- Direct Replacement for NE555 Timers
- Timing from Microseconds through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Current Output Can Source or Sink 200 mA
- Output Can Drive TTL
- Temperature Stability of 0.005% per ${ }^{\circ} \mathrm{C}$
- Normally ON or Normally OFF Output
- Pb-Free Packages are Available
 changing R and C (see Figure 16).

Figure 1. 22 Second Solid State Time Delay Relay Circuit

Figure 2. Representative Block Diagram

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
SOIC-8
D SUFFIX
CASE 751

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Test circuit for measuring DC parameters (to set output and measure parameters):
a) When $V_{S} \geq 2 / 3 V_{C C}, V_{O}$ is low.
b) When $V_{S} \leq 1 / 3 V_{C c}, V_{O}$ is high.
c) When V_{O} is low, Pin 7 sinks current. To test for Reset, set V_{O} high, apply Reset voltage, and test for current flowing into Pin 7. When Reset is not in use, it should be tied to V_{Cc}.

Figure 3. General Test Circuit

MAXIMUM RATINGS $\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
Discharge Current (Pin 7)	I_{7}	200	mA
Power Dissipation (Package Limitation) P1 Suffix, Plastic Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ D Suffix, Plastic Package Derate above $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$\begin{aligned} & P_{D} \\ & P_{D} \end{aligned}$	$\begin{aligned} & 625 \\ & 5.0 \\ & 625 \\ & 160 \\ & \hline \end{aligned}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{C}}$ mW ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range (Ambient) MC1455B MC1455 NCV1455B	$\mathrm{T}_{\text {A }}$	$\begin{gathered} -40 \text { to }+85 \\ 0 \text { to }+70 \\ -40 \text { to }+125 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Maximum Operating Die Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}\right.$ to +15 V , unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
Operating Supply Voltage Range	V_{CC}	4.5	-	16	V
$\begin{aligned} & \text { Supply Current } \\ & \qquad \begin{array}{l} \mathrm{VCC} \end{array}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty \text {, Low State (Note 1) } \end{aligned}$	I_{CC}	-	$\begin{aligned} & 3.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 15 \end{aligned}$	mA
Timing Error ($\mathrm{R}=1.0 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$) (Note 2) Initial Accuracy C $=0.1 \mu \mathrm{~F}$ Drift with Temperature Drift with Supply Voltage		$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.0 \\ & 50 \\ & 0.1 \end{aligned}$	-	PPM $/{ }^{\circ} \mathrm{C}$ \%/V
Threshold Voltage/Supply Voltage	$\mathrm{V}_{\text {th }} / \mathrm{V}_{\mathrm{CC}}$	-	2/3	-	
$\begin{aligned} & \text { Trigger Voltage } \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	V_{T}	-	$\begin{gathered} 5.0 \\ 1.67 \end{gathered}$	-	V
Trigger Current	I_{T}	-	0.5	-	$\mu \mathrm{A}$
Reset Voltage	V_{R}	0.4	0.7	1.0	V
Reset Current	I_{R}	-	0.1	-	mA
Threshold Current (Note 3)	$\mathrm{Ith}^{\text {then }}$	-	0.1	0.25	$\mu \mathrm{A}$
Discharge Leakage Current (Pin 7)	$\mathrm{I}_{\text {dischg }}$	-	-	100	nA
Control Voltage Level $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	V_{CL}	$\begin{aligned} & 9.0 \\ & 2.6 \end{aligned}$	$\begin{gathered} 10 \\ 3.33 \end{gathered}$	$\begin{aligned} & 11 \\ & 4.0 \end{aligned}$	V
$\begin{aligned} & \text { Output Voltage Low } \\ & I_{\text {Sink }}=10 \mathrm{~mA}(\mathrm{VCC}=15 \mathrm{~V}) \\ & I_{\text {Sink }}=50 \mathrm{~mA}(\mathrm{VCC}=15 \mathrm{~V}) \\ & I_{\text {Sink }}=100 \mathrm{~mA}(\mathrm{VCC}=15 \mathrm{~V}) \\ & I_{\text {Sink }}=200 \mathrm{~mA}(\mathrm{~V} \mathrm{CC}=15 \mathrm{~V}) \\ & I_{\text {Sink }}=8.0 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \\ & I_{\text {Sink }}=5.0 \mathrm{~mA}\left(\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right) \end{aligned}$	V_{OL}	-	$\begin{gathered} 0.1 \\ 0.4 \\ 2.0 \\ 2.5 \\ - \\ 0.25 \end{gathered}$	$\begin{gathered} 0.25 \\ 0.75 \\ 2.5 \\ - \\ - \\ 0.35 \end{gathered}$	V
$\begin{aligned} & \text { Output Voltage High } \\ & V_{\mathrm{CC}}=15 \mathrm{~V}(\text { ISource }=200 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}(\text { I } \text { Iource }=100 \mathrm{~mA}) \\ & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\left(\text { l }_{\text {Source }}=100 \mathrm{~mA}\right) \end{aligned}$	V_{OH}	$\begin{gathered} - \\ 12.75 \\ 2.75 \end{gathered}$	$\begin{gathered} 12.5 \\ 13.3 \\ 3.3 \end{gathered}$	-	V
Rise Time Differential Output	t_{r}	-	100	-	ns
Fall Time Differential Output	t_{f}	-	100	-	ns

1. 'Supply current when output is high is typically 1.0 mA less.
2. Tested at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$ Monostable mode.
3. This will determine the maximum value of $R_{A}+R_{B}$ for 15 V operation. The maximum total $R=20 \mathrm{M} \Omega$.
4. $T_{\text {low }}=0^{\circ} \mathrm{C}$ for MC1455, $\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$ for MC1455B, NCV1455B
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC1455, $\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$ for MC1455B, $\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$ for NCV1455B
5. NCV prefix is for Automotive and other applications requiring site and change control.

MC1455, MC1455B, NCV1455B

Figure 4. Trigger Pulse Width

Figure 6. High Output Voltage

Figure 8. Low Output Voltage @ $\mathrm{V}_{\mathrm{Cc}}=10 \mathrm{Vdc}$

Figure 5. Supply Current

Figure 7. Low Output Voltage @ $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{Vdc}$

Figure 9. Low Output Voltage
@ $\mathrm{V}_{\mathrm{Cc}}=15 \mathrm{Vdc}$

Figure 10. Delay Time versus Supply Voltage

Figure 11. Delay Time versus Temperature

Figure 12. Propagation Delay versus Trigger Voltage

MC1455, MC1455B, NCV1455B

Figure 13. Representative Circuit Schematic

GENERAL OPERATION

The MC1455 is a monolithic timing circuit which uses an external resistor - capacitor network as its timing element. It can be used in both the monostable (one-shot) and astable modes with frequency and duty cycle controlled by the capacitor and resistor values. While the timing is dependent upon the external passive components, the monolithic circuit provides the starting circuit, voltage comparison and other functions needed for a complete timing circuit. Internal to the integrated circuit are two comparators, one for the input signal and the other for capacitor voltage; also a flip-flop and digital output are included. The comparator reference voltages are always a fixed ratio of the supply voltage thus providing output timing independent of supply voltage.

Monostable Mode

In the monostable mode, a capacitor and a single resistor are used for the timing network. Both the threshold terminal and the discharge transistor terminal are connected together in this mode (refer to circuit in Figure 14). When the input voltage to the trigger comparator falls below $1 / 3 \mathrm{~V}_{\mathrm{CC}}$, the comparator output triggers the flip-flop so that its output sets low. This turns the capacitor discharge transistor "off" and drives the digital output to the high state. This condition allows the capacitor to charge at an exponential rate which is set by the RC time constant. When the capacitor voltage reaches $2 / 3 \mathrm{~V}_{\mathrm{CC}}$, the threshold comparator resets the flip-flop. This action discharges the timing capacitor and returns the digital output to the low state. Once the flip-flop
has been triggered by an input signal, it cannot be retriggered until the present timing period has been completed. The time that the output is high is given by the equation $t=1.1 \mathrm{R}_{\mathrm{A}} \mathrm{C}$. Various combinations of R and C and their associated times are shown in Figure 16. The trigger pulse width must be less than the timing period.

A reset pin is provided to discharge the capacitor, thus interrupting the timing cycle. As long as the reset pin is low, the capacitor discharge transistor is turned "on" and prevents the capacitor from charging. While the reset voltage is applied the digital output will remain the same. The reset pin should be tied to the supply voltage when not in use.

Figure 14. Monostable Circuit

$\mathrm{t}=50 \mu \mathrm{~s} / \mathrm{cm}$
$\left(\mathrm{R}_{\mathrm{A}}=10 \mathrm{k} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$
Figure 15. Monostable Waveforms

Figure 17. Astable Circuit

Astable Mode

In the astable mode the timer is connected so that it will retrigger itself and cause the capacitor voltage to oscillate between $1 / 3 V_{C C}$ and $2 / 3 V_{C C}$. See Figure 17.

The external capacitor changes to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$ through R_{A} and R_{B} and discharges to $1 / 3 \mathrm{~V}_{\mathrm{CC}}$ through R_{B}. By varying the ratio of these resistors the duty cycle can be varied. The charge and discharge times are independent of the supply voltage.
The charge time (output high) is given by:

$$
t_{1}=0.695\left(R_{A}+R_{B}\right) C
$$

The discharge time (output low) is given by:

$$
t_{2}=0.695\left(R_{B}\right) C
$$

Thus the total period is given by:

$$
T=t_{1}+t_{2}=0.695\left(R_{A}+2 R_{B}\right) C
$$

The frequency of oscillation is then:

$$
f=\frac{1}{1}=\frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
$$

and may be easily found as shown in Figure 19.
The duty cycle is given by: $\quad D C=\frac{R_{B}}{R_{A}+2 R_{B}}$

Figure 16. Time Delay

$\mathrm{t}=20 \mu \mathrm{~s} / \mathrm{cm}$
$\left(R_{A}=5.1 \mathrm{k} \Omega, C=0.01 \mu F, R_{L}=1.0 \mathrm{k} \Omega ; R_{B}=3.9 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$
Figure 18. Astable Waveforms

To obtain the maximum duty cycle R_{A} must be as small as possible; but it must also be large enough to limit the discharge current (Pin 7 current) within the maximum rating of the discharge transistor (200 mA).

The minimum value of R_{A} is given by:

$$
\mathrm{R}_{\mathrm{A}} \geq \frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Vdc})}{17(\mathrm{~A})} \geq \frac{\mathrm{V}_{\mathrm{CC}}(\mathrm{Vdc})}{0.2}
$$

Figure 19. Free Running Frequency

MC1455, MC1455B, NCV1455B

APPLICATIONS INFORMATION

Linear Voltage Ramp

In the monostable mode, the resistor can be replaced by a constant current source to provide a linear ramp voltage. The capacitor still charges from $0 \mathrm{~V}_{\mathrm{CC}}$ to $2 / 3 \mathrm{~V}_{\mathrm{CC}}$. The linear ramp time is given by:

$$
\mathrm{t}=\frac{2}{3} \frac{\mathrm{~V}_{\mathrm{CC}}}{1}, \quad \text { where } \mathrm{I}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{B}}-\mathrm{V}_{\mathrm{BE}}}{R_{\mathrm{E}}}
$$

If V_{B} is much larger than $V_{B E}$, then t can be made independent of V_{CC}.

Figure 20. Linear Voltage Sweep Circuit

$\mathrm{t}=100 \mu \mathrm{~s} / \mathrm{cm}$
$\left(\mathrm{R}_{\mathrm{E}}=10 \mathrm{k} \Omega, \mathrm{R} 2=100 \mathrm{k} \Omega, \mathrm{R} 1=39 \mathrm{k} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$
Figure 22. Linear Voltage Ramp Waveforms

Missing Pulse Detector

The timer can be used to produce an output when an input pulse fails to occur within the delay of the timer. To accomplish this, set the time delay to be slightly longer than the time between successive input pulses. The timing cycle is then continuously reset by the input pulse train until a change in frequency or a missing pulse allows completion of the timing cycle, causing a change in the output level.

Figure 21. Missing Pulse Detector

$\mathrm{t}=500 \mu \mathrm{~s} / \mathrm{cm}$
$\left(\mathrm{R}_{\mathrm{A}}=2.0 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}=0.01 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right)$
Figure 23. Missing Pulse Detector Waveforms

MC1455, MC1455B, NCV1455B

Pulse Width Modulation

If the timer is triggered with a continuous pulse train in the monostable mode of operation, the charge time of the capacitor can be varied by changing the control voltage at Pin 5. In this manner, the output pulse width can be modulated by applying a modulating signal that controls the threshold voltage.

Figure 24. Pulse Width Modulator

Figure 25. Pulse Width Modulation Waveforms

Test Sequences

Several timers can be connected to drive each other for sequential timing. An example is shown in Figure 26 where the sequence is started by triggering the first timer which runs for 10 ms . The output then switches low momentarily and starts the second timer which runs for 50 ms and so forth.

Figure 26. Sequential Timer

MC1455, MC1455B, NCV1455B

ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
MC1455P1	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	PDIP-8	50 Units / Rail
MC1455P1G		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC1455D		SOIC-8	98 Units / Rail
MC1455DG		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC1455DR2		SOIC-8	2500 Units / Tape \& Reel
MC1455DR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC1455BD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC-8	98 Units / Rail
MC1455BDG		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC1455BDR2		SOIC-8	2500 Units / Tape \& Reel
MC1455BDR2G		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC1455BP1		PDIP-8	50 Units / Rail
MC1455BP1G		$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
NCV1455BDR2*	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SOIC-8	2500 Units / Tape \& Reel
NCV1455BDR2G*		$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV prefix is for automotive and other applications requiring site and control changes.

MC1455, MC1455B, NCV1455B

PACKAGE DIMENSIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
2. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION
5. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
\mathbf{H}	0.10	0.25	0.004	0.010		
\mathbf{J}	0.19	0.25	0.007	0.010		
\mathbf{K}	0.40	1.27	0.016	0.050		
\mathbf{M}	0	8°	0	\circ		
\mathbf{N}	0.25	0.50	0.010	0.020		
\mathbf{S}	5.80	6.20	0.228	0.244		

SOLDERING FOOTPRINT*

SCALE 6:1 $\left(\frac{\mathrm{mm}}{\text { inches }}\right)$
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC1455, MC1455B, NCV1455B

PACKAGE DIMENSIONS

PDIP-8
P1 SUFFIX
CASE 626-05
ISSUE L

NOTES:

1. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	9.40	10.16	0.370	0.400
B	6.10	6.60	0.240	0.260
C	3.94	4.45	0.155	0.175
D	0.38	0.51	0.015	0.020
F	1.02	1.78	0.040	0.007
G	2.54 BSC	0.100 BSC		
H	0.76	1.27	0.030	0.050
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC	0.300		
M	--2	10°	0.30	BSC
N	0.76	1.01	0.030	10°

[^0]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: ON Semiconductor and (Oil) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

