CMOS QUAD OPERATIONAL AMPLIFIER

General Description

The LMC660 CMOS Quad operational amplifier is ideal for operation from a single supply. It operates from +5 V to +15 V and features rail-to-rail output swing in addition to an input common-mode range that includes ground. Performance limitations that have plagued CMOS amplifiers in the past are not a problem with this design. Input Vos, drift, and broadband noise as well as voltage gain into realistic loads (2 k Ohms and 600 Ohms) are all equal to or better than widely accepted bipolar equivalents.

This chip is built with National's advanced Double-Poly-Silicon-Gate CMOS process.
See the LMC662 datasheet for a dual CMOS operational amplifier with these same features.

Industry Part Number

LMC 660AM

Prime Die
LMC 660A

NS Part Numbers
LMC660AMJ/883*

Controlling Document

5962-9209301MCA*

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

Subgrp	Description	Temp	(${ }^{\circ}$ C)
1	Static tests at	+25	
2	Static tests at	+125	
3	Static tests at	-55	
4	Dynamic tests at	+25	
5	Dynamic tests at	+125	
6	Dynamic tests at	-55	
7	Functional tests at	+25	
8A	Functional tests at	+125	
8B	Functional tests at	-55	
9	Switching tests at	+25	
10	Switching tests at	+125	
11	Switching tests at	-55	

Features

- Rail-to-rail output swing.
- Specified for 2 k Ohms and 600 Ohms loads.
- High voltage gain.
- Iow input offset

Low input offset voltage.

- Low offset voltage drift. 1.3uV/ C
- Ultra low input bias current. 2fA
- Input common-mode range includes V-.
- Operating range from +5 V to +15 V supply.
- Iss = 375uA/amplifier; independent of V+.
- Low distortion. 0.01% at 10 kHz
- Slew rate.

Applications

- High-impedance buffer or preamplifier.
- Precision current-to-voltage converter.
- Long-term integrator.
- Sample-and-Hold circuit.
- Peak detector.
- Medical instrumentation.
- Industrial controls.
- Automotive sensors.

(Absolute Maximum Ratings)
 (Note 1)

Recommended Operating Conditions
 (Note 1)

Supply Voltage Range

$$
4.75 \mathrm{~V} \text { to } 15.5 \mathrm{~V}
$$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{DC}: \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=1.5 \mathrm{~V}, \mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M} \mathrm{Ohm}, \mathrm{Rs}=0$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PINNAME	MIN	MAX	UNIT	SUBGROUPS
Vio	Input Offset Voltage				-3.0	3.0	mV	1
					-3.5	3.5	mV	2, 3
Iib	Input Bias Current				-20	20	pA	1
					-100	100	pA	2, 3
Iio	Input Offset Current				-20	20	pA	1
					-100	100	pA	2, 3
CMRR	Common Mode Rejection Ratio	$\mathrm{Vcm}=0 \mathrm{~V}$ and $12 \mathrm{~V}, \mathrm{~V}+=15 \mathrm{~V}$			70		dB	1
					68		dB	2, 3
PSRR+	Pos. Power Supply Rejection Ratio	$\mathrm{V}+=5 \mathrm{~V}$ and $15 \mathrm{~V}, \mathrm{Vo}=2.5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$			70		dB	1
					68		dB	2, 3
PSRR-	Neg. Power Supply Rejection Ratio	$\mathrm{V}-=-10 \mathrm{~V}$ and $0 \mathrm{~V}, \mathrm{Vo}=2.5 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}$			84		dB	1
					82		dB	2, 3
Vcm	Input Common Mode Voltage Range	$\mathrm{V}+=5 \mathrm{~V}$ and 15 V For $\mathrm{CMRR}>=50 \mathrm{~dB}$			$\begin{aligned} & \mathrm{V}+ \\ & -2.3 \end{aligned}$	-0.1	V	1
					$\begin{aligned} & \mathrm{V}+ \\ & -2.6 \end{aligned}$	0	V	2, 3
Icc	Power Supply Current	All Four Amplifiers Vo $=1.5 \mathrm{~V}$			0.5	2.2	mA	1
					0.5	2.9	mA	2, 3
		$\mathrm{V}+=15 \mathrm{~V}$, All $4 \mathrm{amps} \mathrm{Vo}=1.5 \mathrm{~V}$			0.5	5.0	mA	1
					0.5	8.0	mA	2, 3
Io	Output Current	Sourcing, Vo = 0V			16		mA	1
					12		mA	2, 3
		Sinking, Vo $=5 \mathrm{~V}$			16		mA	1
					12		mA	2, 3
		Sourcing, Vo = 0V, V+ = 15V			19		mA	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$
		Sinking, Vo = 13V, V+ = 15V			19		mA	$\begin{aligned} & 1,2, \\ & 3 \end{aligned}$

Electrical Characteristics

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) $\mathrm{DC}: \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=1.5 \mathrm{~V}, \mathrm{Vo}=\mathrm{V}+/ 2, \mathrm{Rl}>1 \mathrm{M} \mathrm{Ohm}, \mathrm{Rs}=0$

SYMBOL	PARAMETER	CONDITIONS	NOTES	PINNAME	MIN	MAX	UNIT	SUBGROUPS
Avs	Large Signal Voltage Gain	Sourcing Vo $=7.5 \mathrm{~V}$ to $11.5 \mathrm{~V}, \mathrm{~V}+=15 \mathrm{~V}$, Rl connected to $7.5 \mathrm{~V}, \mathrm{Rl}=2 \mathrm{~K}$ Ohms	1		400		V / mV	4
			1		300		V / mV	5, 6
		Sourcing Vo $=7.5 \mathrm{~V}$ to $11.5 \mathrm{~V}, \mathrm{~V}+=15 \mathrm{~V}$, Rl Connected to $7.5 \mathrm{~V}, \mathrm{Rl}=600$ Ohms	1		200		V / mv	4
			1		150		V / mv	5, 6
		Sinking Vo=2.5V to $7.5 \mathrm{~V}, \mathrm{~V}+=15 \mathrm{~V}, \mathrm{Rl}$ Connected to $7.5 \mathrm{~V}, \mathrm{Rl}=2 \mathrm{~K}$ Ohms	1		180		V / mV	4
			1		70		V / mV	5, 6
		Sinking Vo=2.5V to $7.5 \mathrm{~V}, \mathrm{~V}+=15 \mathrm{~V}, \mathrm{Rl}$ Connected to 7.5V, Rl $=600$ Ohms	1		100		V / mV	4
			1		20		V / mV	5, 6
Vop	Output Swing	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{Rl}=2 \mathrm{~K}$ Ohm to $\mathrm{V}+/ 2$			4.82	0.15	V	4
					4.77	0.19	V	5, 6
		$\mathrm{V}+=5 \mathrm{~V}, \mathrm{Rl}=600$ Ohm to $\mathrm{V}+/ 2$			4.41	0.50	V	4
					4.24	0.63	V	5, 6
		$\mathrm{V}+=15 \mathrm{~V}, \mathrm{Rl}=2 \mathrm{~K}$ Ohm to $\mathrm{V}+/ 2$			14.50	0.35	V	4
					14.40	0.43	V	5, 6
		$\mathrm{V}+=15 \mathrm{~V}, \mathrm{Rl}=600$ Ohm to $\mathrm{V}+/ 2$			13.35	1.16	V	4
					13.02	1.42	V	5, 6

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: $\mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{Vcm}=1.5 \mathrm{~V}, \mathrm{Vo}=\mathrm{V}+/ 2$, $\mathrm{Rl}>1 \mathrm{M} \mathrm{Ohm}, \mathrm{Rs}=0$

$+\mathrm{Sr}$	Slew Rate	$\mathrm{V}+=+15 \mathrm{~V}$	2	0.8	V/uS	7
			2	0.5	V/uS	8A, 8B
-Sr	Slew Rate	$\mathrm{V}+=+15 \mathrm{~V}$	3	0.8	v/uS	7
			3	0.5	V/uS	8A, 8B
Gbw	Gain Bandwidth Product	$\mathrm{f}=50 \mathrm{KHz}$		0.5	MHz	$\begin{aligned} & 7,8 \mathrm{~A}, \\ & 8 \mathrm{~B} \end{aligned}$

Note 1: $\quad \mathrm{Vcm}=7.5 \mathrm{~V}$ and Rl connected to 7.5 V .
Note 2: Connected as Voltage follower with 0-10V step input. Measurement taken from 4V to 8V.
Note 3: Connected as Voltage follower with $10-0 \mathrm{~V}$ step input. Measurement taken from 6 V to 2 V .

Graphics and Diagrams

| GRAPHICS\# | | DESCRIPTION |
| :--- | :--- | :--- | :--- |
| 06087 HRB 4 | CERDIP (J), 14 LEAD (B/I CKT) | |
| J14ARH | CERDIP (J), 14 LEAD (P/P DWG) | |
| P000165A | CERDIP (J), 14 LEAD (PINOUT) | |

See attached graphics following this page.

LMC660AMJ/883
 14 - LEAD DIP
 CONNECTION DIAGRAM
 TOP VIEW
 P000165A

Revision History

Rev	ECN \#	Rel Date	Originator	Changes
0A0	M0000607	$10 / 23 / 97$	Barbara Lopez	Initial Release to MDS: MNLMC660AM-X Rev. 0A0.
0B0	M0002496	$05 / 19 / 98$	Barbara Lopez	Update MDS: MNLMC660AM-X Rev. 0A0 to MNLMC660AM-X Rev. 0B0. Corrected typo on AVS parameter in condition field. Was: RL=600K Ohms, changed to: RL=600 Ohms. Deleted the K for both Sinking and Sourcing conditions.
0C1	M0002851	$05 / 19 / 98$	Barbara Lopez	Update MDS: MNLMC660AM-X Rev. 0B0 to MNLMC660AM-X Rev. 0C1. Updated MDS for Lifetime Buy. Updated B/I Circuit. No thermal data available.

