ISL97656IRTZEVALZ Evaluation Board Application Manual

Application Note

May 10, 2010

AN1473.1

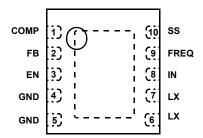
Description

The ISL97656IRTZEVALZ is an evaluation kit for evaluating the ISL97656, a step-up voltage regulator that operates with high frequency and high efficiency. This evaluation kit is designed to deliver up to 2A output current for portable equipment and TFT-LCD display.

The ISL97656IRTZEVALZ evaluation kit provides a dip switch that allows users to select either 620kHz or 1.2MHz frequency.

Key Features

- A Complete Evaluation Platform for the ISL97656 Evaluation
- Input Voltage: 2.3V to 5.5V
- Proven Evaluation Board Layout
- · Pb-Free (RoHS Compliant)


What is Needed

The following instruments will be needed to perform testing:

- · Power Supplies
- · DC Electronic Load
- Multimeters
- Oscilloscope
- · Cables and Wires

Pinout

ISL97656 (10L MTDFN) TOP VIEW

Ordering Information

PART NUMBER	DESCRIPTION	
ISL97656IRTZEVALZ	Evaluation Board for ISL97656	

Quick Setup Guide

- Connect power supply between headers of V_{IN} and V_{IN_GND}. The positive output of the power supply should be connected to V_{IN} header. Set power supply voltage between 2.3V and 5V, and current limit at 4A.
- Connect E-load between headers of V_{OUT} and OUT_GND. The positive input of the E-load should be connected to V_{OUT} header. Set E-load current. The load current should not exceed the maximum output current in Table 1.
- 3. Close pins 1 and 4 of S1 to tie FREQ pin to V_{IN} to set 1.25MHz switching frequency. Open pins 1 and 4 to pull FREQ to ground with R₄ to set 620kHz.
- 4. Close pins 2 and 3 of S1 to tie EN pin to V_{IN} to enable the part. Open pins 2 and 3 to pull EN to ground with R_3 to disable the part.
- Make sure all the connections on the evaluation board are correct, then turn on power supply and E-load. The part starts to operate.

Maximum Output Current

The MOSFET current limit is normally 4A and guaranteed 3.8A. This restricts the maximum output current that the ISL97656 can drive. Table 1 shows typical maximum I_{OUT} values for 1.2MHz switching frequency and 10 μ H inductor.

TABLE 1. TYPICAL MAXIMUM IOUT VALUES

V _{IN} (V)	V _{OUT} (V)	IOMAX (mA)
2.5	5	1790
2.5	9	990
2.5	12	750
3.3	5	2370
3.3	9	1300
3.3	12	970
5	9	1970
5	12	1470

Board Design Schematic

NOTE: The thermal pad should connect to signal ground. Both grounds should connect at pins 4 and 5.

FIGURE 1. SCHEMATIC

TABLE 2. ISL97656IRTZEVALZ BILL OF MATERIALS (BOM)

ITEM	QTY	REFERENCE	PART DESCRIPTION	PCB FOOTPRINT	PART NUMBER	VENDOR
1	1	C4	27nF	603		TDK
2	1	C6	4700pF	603		TDK
3	1	C2	0.1μF/16V	603	C1068X7R1H104K	TDK
4	1	R1	88.7k	603		WALSIN
5	3	R2, R4, R5	10k	603	WR06W1002JTL	WALSIN
6	1	R3	1k	603		
8	1	C3	22μF	1206	GRM31CR61C226KE15L	MURATA
9	1	C1	22μF	1206	GRM31CR61C226KE15L	MURATA
10	1	L1	10μH	SLF12575	SLF12575T-100M5R4-PF	TDK
11	1	U1	IC	TDFN-10	ISL97656	INTERSIL
12	OPEN	C7	CAP			
13	1	VOUT (12V)	CON1	Powerpost		
14	1	VIN (2.3V to 5.5V)	CON1	Powerpost		
15	1	GNDIN	CON1	Powerpost		
16	1	D1	FYD054SA	DPAK	FYD0504SATM	Fairchild
17	1	ISL97656	ISL97656	TDFN-10		INTERSIL
18	1	S1	SW DIP-2	DIP4		CKN3001-ND

PCB Layout

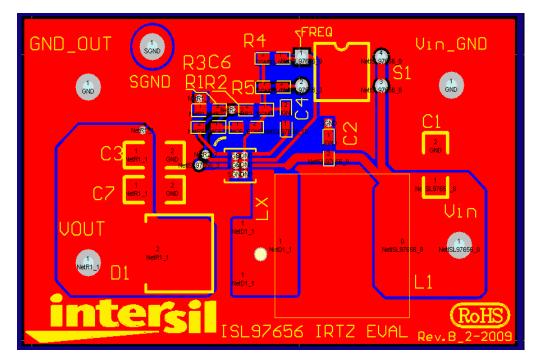


FIGURE 1. EVALUATION BOARD ASSEMBLY LAYER

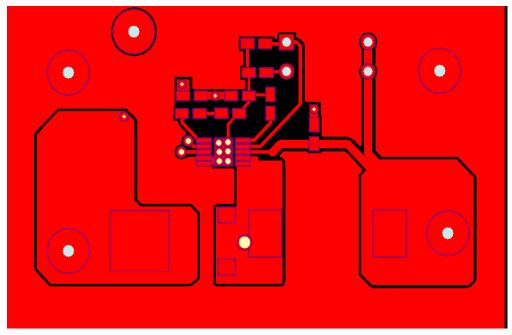


FIGURE 2. TOP LAYER

PCB Layout (Continued)

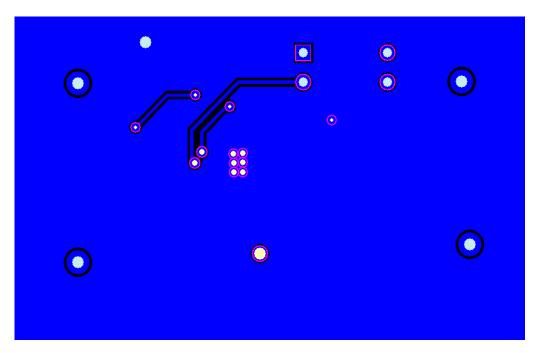


FIGURE 3. BOTTOM LAYER

Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding.

For information regarding Intersil Corporation and its products, see www.intersil.com