November 2nd, 2010

International Rectifier

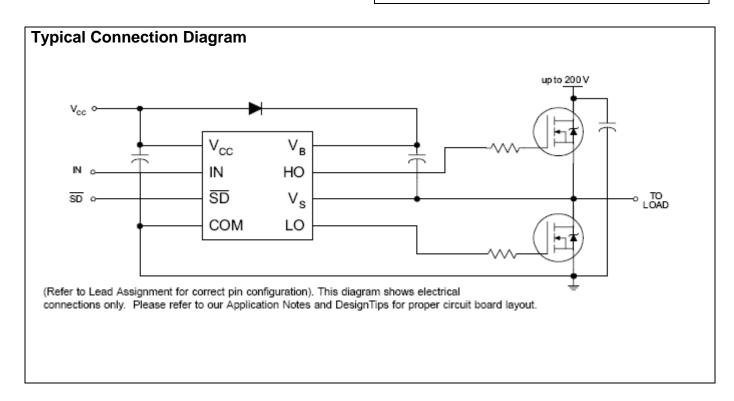
Automotive Grade AUIRS2004S

HALF-BRIDGE DRIVER IC

Features

- Floating channel designed for bootstrap operation
- Fully operational to +200 V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- · Internally set deadtime
- · High-side output in phase with input
- Shutdown input turns off both channels
- Matched propagation delay for both channels
- RoHS Compliant
- Automotive qualified*

Typical Applications


- Motor/Pump Drives
- DC-DC Converters

Product Summary

V _{OFFSET}	≤ 200V
V _{OUT}	10 – 20V
I _{o+} & I _{o-} (typical)	130mA & 270mA
t _{ON} & t _{OFF} (typical)	680 ns/150 ns
Deadtime (typical)	520 ns

Package Options

AUIRS2004S

Table of Contents	Page
Description	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	6
Functional Block Diagram	7
Input/Output Pin Equivalent Circuit Diagram	7
Lead Definitions	8
Lead Assignments	8
Application Information and Additional Details	9
Parameter Temperature Trends	10 - 12
Package Details	12
Tape and Reel Detail	13
Part Marking Information	14
Ordering Information	14
Important Notice	15

AUIRS2004S

International **IOR** Rectifier

Description

The AUIRS2004S is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive N-channel power MOSFET or IGBT in the high side configuration which operates from 10V to 200 volts.

Qualification Information[†]

Qualification Level		Automotive (per AEC-Q100 ^{††})		
		Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.		
Moisture Sensitivity Level		MSL3 ^{†††} 260°C (per IPC/JEDEC J-STD-020)		
	Machine Model	Class M2 (+/-200V) (per AEC-Q100-003)		
ESD	Human Body Model	Class H1C (+/-2000V) (per AEC-Q100-002)		
Charged Device Model		Class C4 (+/-1000V) (per AEC-Q100-011)		
IC Latch-Up Test		Class II, Level B †††† (per AEC-Q100-004)		
RoHS Compliant		Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.
- †††† LIN and HIN stressed to +/-20mA

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which permanent damage to the device may occur. These are stress ratings only, functional operation of the device at these or any other condition beyond those indicated in the "Recommended Operating Condition" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{B}	High Side Floating Supply Voltage	-0.3	225	
Vs	High Side Floating Offset Voltage	V _B - 20	V _B + 0.3	
V_{HO}	High Side Floating Output Voltage	V _S - 0.3	V _B + 0.3	
V _{CC}	Low Side and Logic Fixed Supply Voltage	-0.3	25	
V_{LO}	Low Side Output Voltage	-0.3	V _{CC} + 0.3	V
V _{IN}	Logic Input Voltage (IN, SD)	V _{SS} -0.3	V _{cc} + 0.3	
dV _S /dt	Allowable Offset Supply Voltage Transient		50	V/ns
P _D	Package Power Dissipation @ TA ≤ +25 °C	_	0.625	W
Rth _{JA}	Thermal Resistance, Junction to Ambient	_	200	°C/W
T_J	Junction Temperature		150	
Ts	Storage Temperature	-55	150	°C
T_L	Lead Temperature (soldering, 10 seconds)		300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltage referenced to COM. The V_S offset rating is tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
V_B	High Side Floating Supply Voltage	V _S +10	V _S +20	
Vs	Static High side floating offset voltage	Note1	200	
V_{HO}	High Side Floating Output Voltage	Vs	V_B	.,
V_{CC}	Low Side and Logic Fixed Supply Voltage	10	20	V
V_{LO}	Low Side Output Voltage	0	V_{CC}	
V_{IN}	Logic Input Voltage (IN & SD)	0	V _{CC}	
T_A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 V to +200 V. Logic state held for V_S of -5 V to $-V_{BS}$.

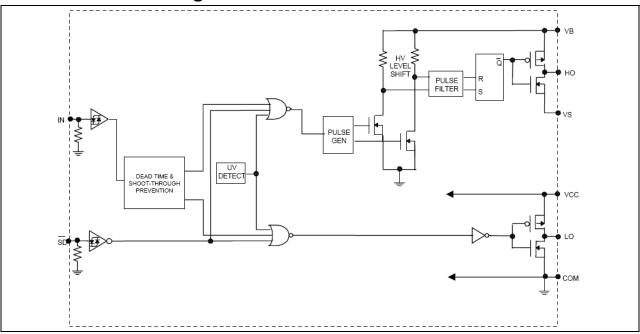
Dynamic Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C with bias conditions of V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF.

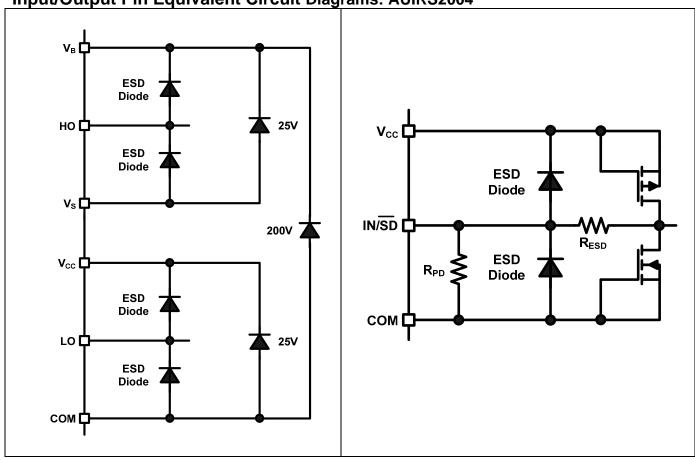
Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay		680	880		V _S = 0 V
t _{off}	Turn-off propagation delay		150	220		V _S = 200 V
tr	Turn-on rise time	_	160	220		
t _f	Turn-off fall time	_	70	170		
DT ₂₅	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400	520	650	ns	Tj=25^C
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	400		800		
MT ₂₅	Delay matching HS & LS turn-on/off	_	_	80		Tj=25^C
MT	Delay matching HS & LS turn-on/off		_	150		

Static Electrical Characteristics

Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C with bias conditions of V_{BIAS} (V_{CC}, V_{BS}) = 15 V. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

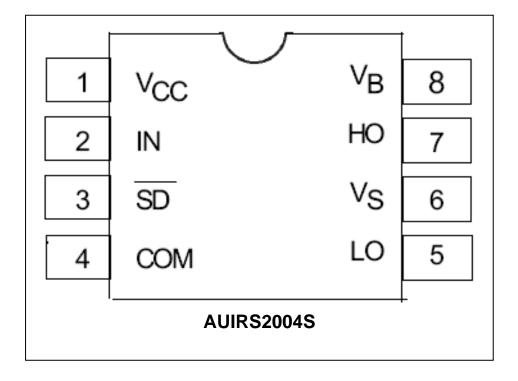

Symbol	Definition		Тур	Max	Units	Test Conditions
V_{IH}	Logic "1" (HO) & Logic "0" (LO) input Voltage	2.5	_			
V _{IL}	Logic "0" (HO) & Logic "1" (LO) input Voltage		_	0.8		V _{CC} = 10 V to 20 V
$V_{SD,TH+}$	SD Input Positive Going Threshold	2.5				V _{CC} = 10 V to 20 V
V _{SD,TH-}	SD Input Negative Going Threshold			0.8	V	
V _{OH}	High Level Output Voltage, V _{BIAS} - V _O	_	0.05	0.2		1 = 2 m A
V _{OL}	Low Level Output Voltage, Vo	_	0.02	0.1		I _O = 2 mA
I _{LK}	Offset Supply Leakage Current	_		50		V _B = V _S = 200 V
I _{QBS}	Quiescent V _{BS} Supply Current	_	30	55		V _{IN} = 0 V or 5 V
I _{QCC}	Quiescent V _{CC} Supply Current	_	150	270		
I _{IN+}	Logic "1" Input Bias Current		3	10	μA	V _{IN} = 5 V
I _{IN-}	Logic "0" Input Bias Current			5		V _{IN} = 0 V
I _{SD+}	Bias Current at SD pin, shut down disabled		3	10		SD pin = 5 V
I_{SD-}	Bias Current at SD pin, shut down enabled			5		SD pin = 0 V
V _{CCUV+}	V _{CC} Supply Undervoltage Positive going Threshold	8	8.9	9.8	V	
V _{CCUV-}	V _{CC} Supply Undervoltage Negative Going Threshold	7.4	8.2	9	V	
I _{O+}	Output High Short Circuit Pulsed Current	130	290		mA	$V_O = 0 V$, PW $\leq 10 us$
I _{O-}	Output Low Short Circuit Pulsed Current	270	600		IIIA	V _O = 15 V, PW ≤ 10 us

International


Rectifier

AUIRS2004S

Functional Block Diagram

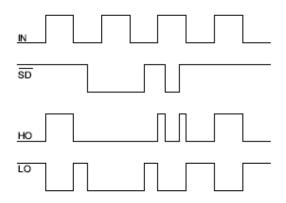
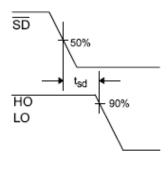
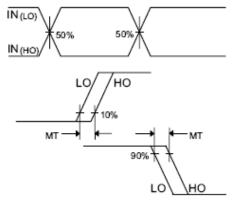

Input/Output Pin Equivalent Circuit Diagrams: AUIRS2004

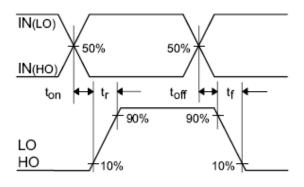
Lead Definitions

Symbol	Description
IN	Logic input for high side and low side gate driver outputs (HO and LO), in phase with HO
SD	Logic input for shutdown
V_B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V_{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Application Information and Additional Details


Figure 1: Input/Output Timing Diagram

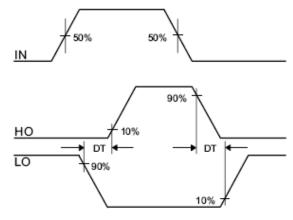

Figure3: Shutdown Waveform Definitions

Figure 5: Delay Matching Waveform Definitions

Figure 2: Switching Time Waveform Definitions

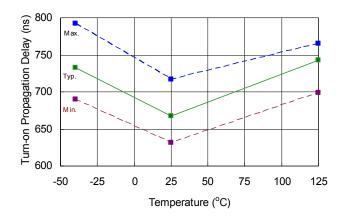


Figure 4: Deadtime Waveform Definitions

Parameter Temperature Trends

Figures illustrated in this chapter provide information on the experimental performance of the AUIRS2004S HVIC. The line plotted in each figure is generated from actual lab data. A large number of individual samples were tested at three temperatures (-40 °C, 25 °C, and 125 °C) in order to generate the experimental curve. The line consists of three data points (one data point at each of the tested temperatures) that have been connected together to illustrate the understood trend. The individual data points on the Typ. curve were determined by calculating the averaged experimental value of the parameter (for a given temperature).

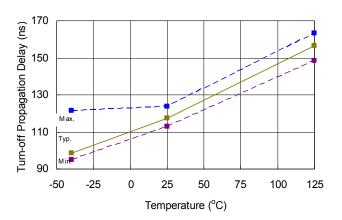
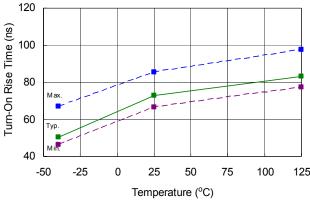
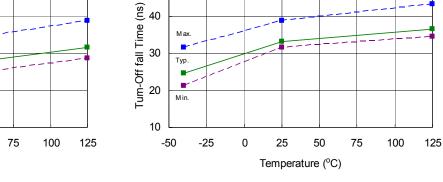
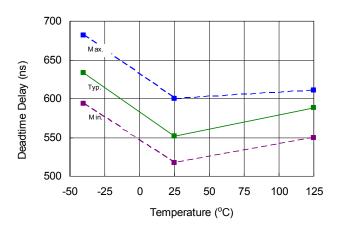




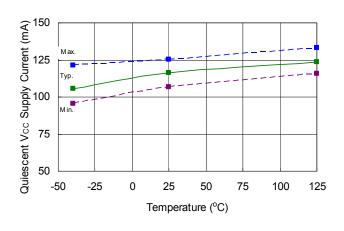
Figure 6: Ton vs. temperature

Figure 7: T_{OFF} vs. temperature



50

Figure 8: T_R vs. temperature


Figure 9: T_F vs. temperature

What was a second of the secon

Figure 10: Deadtime vs. temperature

Figure 11: Offset Leakage Current vs. temperature

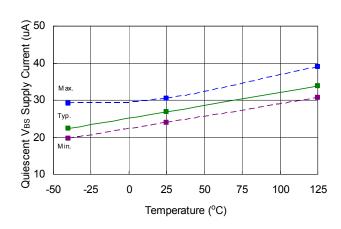
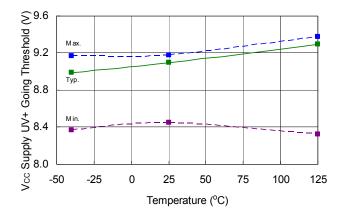



Figure 12: V_{CC} Supply Current vs. Temperature

Figure 13: V_{BS} Supply Current vs. temperature

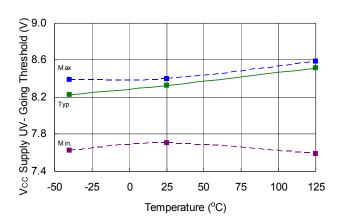
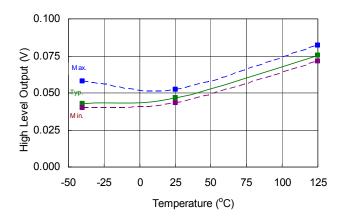
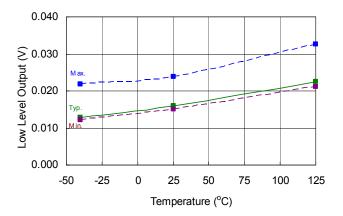
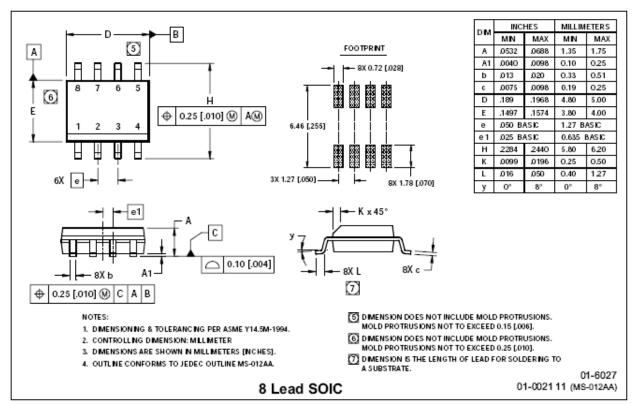



Figure 14: V_{CCUV+} vs. temperature

Figure 15: V_{CCUV}. vs. temperature

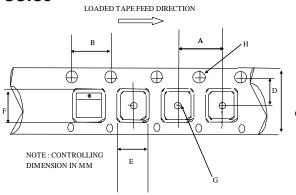
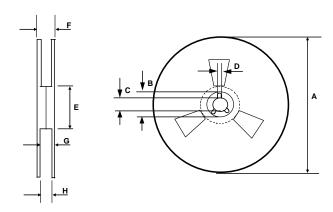

Figure 16: V_{OH} ($I_O = 2mA$) vs. temperature

Figure 17: V_{OL} ($I_O = 2mA$) vs. temperature

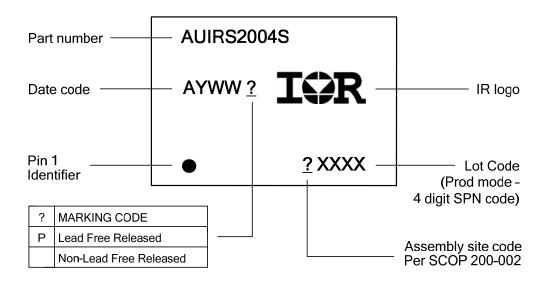
Case Outlines



Tape and Reel Details: SOIC8

CARRIER TAPE DIMENSION FOR 44PLCC

	Metric		Imp	erial
Code	Min	Max	Min	Max
Α	23.90	24.10	0.94	0.948
В	3.90	4.10	0.153	0.161
С	31.70	32.30	1.248	1.271
D	14.10	14.30	0.555	0.562
E	17.90	18.10	0.704	0.712
F	17.90	18.10	0.704	0.712
G	2.00	n/a	0.078	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 44PLCC

	Me	tric	lmp	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	38.4	n/a	1.511
G	34.7	35.8	1.366	1.409
Н	32.6	33.1	1.283	1.303

^{*} Qualification standards can be found on IR's web site www.irf.com

Part Marking Information

Ordering Information

Daga Dant Manulage	Danks as True	Standard Pack		Commission Bout Name on
Base Part Number	Package Type	Form	Quantity	Complete Part Number
AUIRS2004S	SOIC8	Tube/Bulk	95	AUIRS2004S
A011\320043	33.33	Tape and Reel	2500	AUIRS2004STR

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com

© 2010 International Rectifier

Revision History

Date	Comment
Jul. 30, 2010	Converted from industrial datasheet
Aug. 30, 2010	Update qualification ESD/LU class
Aug. 31, 2010	Changed Deadtime typical to 700nS on 1 st page, TON max to 880, MT max to 150, 60, DT min to 400, typ to 600. Added tri-temp graph, I/O equivalent circuit. Modified block diagram, SD pull up now.
Sep. 19, 2010	Typ Deadtime back to 520ns; DTmax=650ns at 25^C; DTmax=800ns; MT max to 150ns, (60ns at 25^C). ISD+ and ISD- parameters added to specify SD input impedance.
Sep. 28, 2010	Updated MT ₂₅ to 80; updated block diagram and SD pin I/O circuit
Sep. 30, 2010	ISD+ and ISD- parameters exchanged because SD is pull down.
Oct. 14, 2010	Typ application section filled up
Oct. 19, 2010	Update reflow temp to 260C
Nov. 2, 2010	Changed 1 st page header. Minor update characteristics table format and corrected SD pin lead definition