

PI4ULS3V08

1.2V to 3.6V Universal Bidirectional Level Shifter with Automatic Direction Control

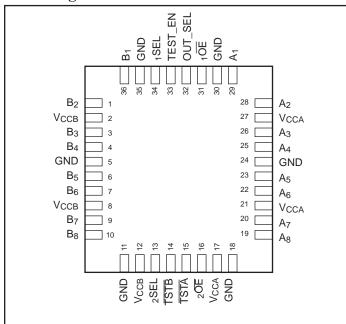
Features

- PI4ULS3V08 is designed for low voltage operation: 1.2V to 3.6V
- Universal bidirectional level shifting with automatic direction control
- Fast bus speeds up to 180 Mbps
- Drive Capability 12mA
- · Independent translation of each bit
- Each supply rail is configurable over supply range
- ESD Protection exceeds JESD22
 2000V Human Body Model (A114-B)
 200V Machine Model (A115-A)
- Latch-up performance exceeds 100mA per JESD 78
- Industrial operation at -40°C to +85°C
- Packaging (Pb-free & Green): 36-contact TQFN (ZF36)

Description

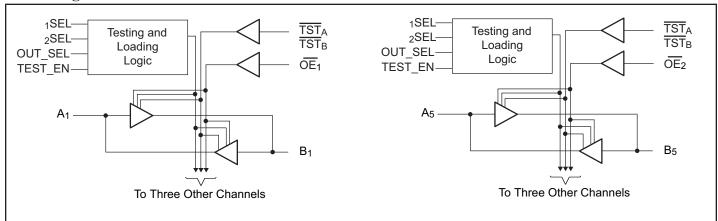
PI4ULS3V08, is a 8-bit (octal) non-inverting bus transceiver with two separate supply rails: A port (V_{CCA}) and B port (V_{CCB}) are set to operate at 1.2V to 3.6V. This arrangement permits universal bidirectional translation of differential signal levels over the voltage ranges.

The PI4ULS3V08 is designed for asynchronous communication between data buses. Data is transmitted from the A bus to the B bus, or vice versa, without direction control. All A_X , and B_X are tri-stated when data is coming from both directions at the same time. The output-enable (\overline{OE}) input is used to disable outputs so buses are isolated.


The control pins, $_{x}SEL,\;\;OEx,\;TEST_EN$ and OUT_SEL are supplied by $V_{CCB}.$

To ensure the high impedance state during power-up or powerdown, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor: the minimum value of the resistor is determined by the current-sinking capability of the driver.

Applications


- Voltage Translation
- Bus Relay

Pin Configuration

Block Diagram

Maximum Ratings

(Absolute maximum ratings over operating free-air temperature range, unless otherwise noted)

Supply voltage range: V _{CCA} 0.5V to 4.	6V Input clamp current, I_{IK} (V _I <0)
$V_{\rm CCB}$	\circ mp in time time time time, \circ $OK (\circ O$
Input voltage range, $V_I^{(1)}$ Control Inputs0.5V to 4.	Continuous output current, 10
Voltage Range applied to any I/O pins in the high-impedan or Power-Off state, V_{IO} ⁽¹⁾ :	Continuous current through V _{CCA} , V _{CCB} or GND ±100mA
, 10	Package thermal impedance, $0_{JA}^{(3)}$:
A Port	
Voltage Range applied to any I/O pins in the High or Low state $V_{IO}^{(1, 2)}$:A Port0.5V to V_{CCA} +0. B Port0.5V to V_{CCB} +0.	Storage temperature range, $T_{\rm STG}$ –65°C to 150°C $5V$
1	

Note:

Pin Description

1. The input negative voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 3.6V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

4. Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Pin Name	Description
\overline{OE}_X	3-State Output Enable Inputs (Active LOW)
XSEL	Outputs Loading Selection
XAX	Side A Inputs/Outputs
XBX	Side B Inputs/Outputs
TEST_EN	Enable Test Mode
OUT_SEL	Test Mode Selection
GND	Ground
V _{CCA} , V _{CCB}	Power
TSTX	Internal test pin. For normal use please tie to GND

Truth Table⁽¹⁾

	Inputs		Outputs Loading ⁽²⁾	Operation
xOE	2SEL	1SEL	Outputs Loading	Operation
L	L	L	$C_L \leq 50 p F$	
L	L	Н	$C_L \leq 30 p F$	Bus B data to
L	Н	L	$C_L {\leq} 20 p F$	Bus A, or Bus A data to Bus B
L	Н	Н	$C_L \leq 10 p F$	
Н	Х	Х		Z (Isolation)

Notes:

- 1. H = HIGH Signal Level
 - L = LOW Signal Level

X = Don't Care or Irrelevant

- Z = High Impedance
- 2. Refer to Figure 1 for Output Loading Chart

Test Mode / Output Impedance Select

TEST_EN	Out_SEL	Condition
L	L	Normal Operation Low output impedance 300Ω
L	Н	Normal Operation High output impedance $2.2K\Omega$
Н	L	Test_MODE A \rightarrow B
Н	Н	Test_MODE B \rightarrow A

Recommended Operating Conditions^(1, 2, 3)

Parameter	D	escription	V _{CCI}	Min.	Max.	Unit	
V _{CCA} , V _{CCB}	Supply Voltage			1.2	3.6		
			1.2V to 1.95V	0.65 x V _{CCI}		1	
V _{IH}	High-Level Input Voltage	I/O pins	2.3V to 2.7V	1.7		1	
	voltage		2.7V to 3.6V	2		1	
			1.2V to 1.95V		0.35 x V _{CCI}	1	
V _{IL}	Low-Level Input Voltage	I/O pins	2.3V to 2.7V		0.7	1	
	voltage		2.7V to 3.6V		0.8]	
			1.2V to 1.95V	0.65 x V _{CCB}		v	
V _{IHB}	High-Level Input Voltage	Control Inputs (OE and SEL)	2.3V to 2.7V	1.7]	
voltag	voltage	(OE and SEE)	2.7V to 3.6V	2		1	
V _{ILB}			1.2V to 1.95V		0.35 x V _{CCB}	1	
	Low-Level Input Voltage	Control Inputs (OE and SEL)	2.3V to 2.7V		0.7		
	voltage	(OE and SEE)	2.7V to 3.6V		0.8	1	
VI	Input Voltage	I/O pins and Control Inputs		0	3.6	1	
Vo	Output Voltage	I/O pins and Control Inputs		0	3.6]	
			$V_{CCO} = 1.2V$		-3		
			$V_{CCO} = 1.4 V$		-5]	
I _{OH}	High-Level Output Current	I/O pins	$V_{\rm CCO} = 1.65 V$		-8		
	Current		$V_{\rm CCO} = 2.3 V$		-9		
			$V_{CCO} = 3.0V$		-12]	
			$V_{CCO} = 1.2V$		3	m/	
			$V_{CCO} = 1.4 V$		5		
I _{OL}	Low-Level Output Current	I/O pins	$V_{CCO} = 1.65 V$		8		
	Carront		$V_{\rm CCO} = 2.3 V$		9	1	
			$V_{\rm CCO} = 3.0 V$		12		
$\Delta t / \Delta V$	Input Transition rise	or fall rate			10	V/r	
T _A	Operating Free-Air T	emperature		-40	85	°C	

Notes:

1. V_{CCI} is the V_{CC} associated with the data input port.

2. V_{CO} is the V_{CC} associated with the date output port.

3. To ensure proper device operation, all unused device inputs must be held at V_{CCI} or GND.

08-0139

Parameter	Description	Test Conditions	V _{CCA} /V _{CCB}	Min.	Typ. ⁽¹⁾	Max.	Units
		$I_{OH} = -100 \mu A$	1.2V to 3.6V	V _{CCO} - 0.1V			
		$I_{OH} = -4mA$	1.2V		0.8		
N/	II ale I and Ontant Valtage	IOH4IIIA	1.4V	1			
V _{OH} High-Level Output	High-Level Output Voltage	$I_{OH} = -7mA$	1.65V	1.2			
		$I_{OH} = -9mA$	2.3V	1.8			
		$I_{OH} = -12mA$	3.0V	2.4			v
		$I_{OL} = 100 \mu A$	1.2V to 3.6V			0.2	Ň
	Low-Level Output Voltage	$I_{OL} = 4mA$	1.2V		0.1		
Vor		IOT = 4IIIA	1.4V			0.4	
V _{OL}		$I_{OL} = 7mA$	1.65V			0.4	
		$I_{OL} = 9mA$	2.3V			0.4	
		$I_{OL} = 12mA$	3.0V			0.4	
I _{CC}	Quiescent Supply Current	$V_{I} = V_{CCI}$ or GND, $I_{O} = 0$	1.2V to 3.6V			10	
II	Control Inputs (\overline{OE} and SEL)	$V_I = V_{CCB}$ or GND	1.2V to 3.6V			±5	μA
$I_{OZ}^{(2)}$	3-State Output Current	$V_{O} = V_{CCO}$ or GND	1.2V to 3.6V			±10	
C _{IN}	Control Input Capacitance	$V_I = V_{CCB}$ or GND			3		nF
C _{IO}	I/O Capacitance	$V_{O} = V_{CCA/B}$ or GND			5		pF

Electrical Characteristics for (Over recommended free-air temperature range, unless otherwise noted.)⁽³⁾

Notes:

- 1. All typical values are at $T_A = 25^{\circ}C$.
- 2. For I/O ports, the parrameter $I_{\rm OZ}$ includes the input leakage current.
- 3. Parameters are specified under test mode conditions.

Timing Characteristics for V_{CCA} = $1.5V \pm 0.1V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	. From (Input)	To	V _{CCB} = 1.2V		= 1.5V .1V		= 1.8V 15V	V _{CCB} ±0.			= 3.3V .3V	Units
		put) (Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t	А	В	8	1.0	7.0	1.0	6.5	1.0	6.0	1.0	5.0	
t _{PD}	В	А	6	1.0	7.0	1.0	6.5	1.0	6.0	1.0	5.5	10.0
$t_{SK(a)}^{(1)}$					0.3		0.3		0.3		0.3	ns
$t_{SK(b)}^{(1)}$					0.25		0.25		0.25		0.25	
f _{max}	А	В	25	30		40		50		60		MHz
10pF load	В	А	30	30		35		40		40		

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

Timing Characteristics for V_{CCA} = $1.8V \pm 0.15V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	From To		V _{CCB} = 1.2V		= 1.5V .1V	$V_{CCB} = 1.8V$ $\pm 0.15V$		$\begin{array}{ c c } V_{CCB} = 2.5V \\ \pm 0.2V \end{array}$		$V_{CCB} = 3.3V$ $\pm 0.3V$		Units
	(Input)) (Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t	А	В	8	1.0	6.0	0.5	5.5	0.5	5.0	0.5	4.5	
t _{PD}	В	А	6	1.0	6.0	0.5	5.5	0.5	5.0	0.5	4.5	
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f _{MAX}	В	А	25	35		45		55		65		MIL
10pF load	А	В	30	40		45		50		55		MHz

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

Timing Characteristics for $V_{CCA} = 2.5V \pm 0.2V$

(Over recommended free-air temperature range, unless otherwise noted.)

Parameter	meter From To		From To $v_{CCB} = 1.2v$ $\pm 0.1V$			$\begin{array}{c} V_{CCB} = 1.8V\\ \pm 0.15V \end{array}$		$\begin{array}{c} V_{CCB} = 2.5V\\ \pm 0.2V \end{array}$		$V_{CCB} = 3.3V$ $\pm 0.3V$		Units
	(Input)	(Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t	А	В	8	1.0	5.5	0.5	5.0	0.5	4.5	0.5	4.0	
t _{PD}	В	А	6	1.0	5.5	0.5	5.0	0.5	4.5	0.5	4.0	
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f _{max}	В	А	30	40		50		75		80		MHz
10pF load	А	В	40	50		55		75		80		MHZ

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For $t_{SK(a)}$, Output 1 and Output 2 are any two outputs. For $t_{SK(b)}$, Output 1 and Output 2 are in the same bank. These parameters are warranted but not production tested.

Timing Characteristics for $V_{CCA} = 3.3V \pm 0.3V$

(Over recommended free-air temperature range, unless otherwise noted.)

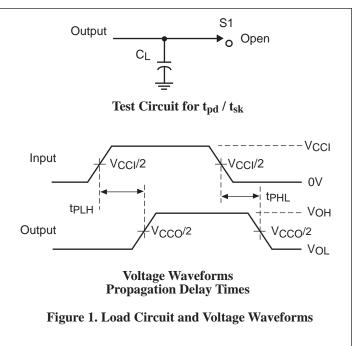
Parameter			V _{CCB} = 1.2V	$V_{CCB} = 1.2V \begin{vmatrix} V_{CCB} = 1.5V \\ \pm 0.1V \end{vmatrix}$		$\begin{array}{c} \mathbf{V}_{CCB} = \mathbf{1.8V} \\ \pm \mathbf{0.15V} \end{array}$		$V_{CCB} = 2.5V$ $\pm 0.2V$		$V_{CCB} = 3.3V$ $\pm 0.3V$		Units
	(Input)	(Output)	Тур	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t	А	В	7	1.0	5.0	0.5	4.5	0.5	4.0	0.5	3.5	
t _{PD}	В	А	6	1.0	5.0	0.05	4.5	0.5	4.0	0.5	3.5	
$t_{SK(a)}^{(1)}$					0.25		0.25		0.25		0.25	ns
$t_{SK(b)}^{(1)}$					0.2		0.2		0.2		0.2	
f _{max}	В	А	30	40		55		80		90		MHz
10pF load	А	В	40	60		65		80		90		

Note:

1. This is the skew between any two outputs of the same package, and switching in the same direction. For t_{SK(a)}, Output 1 and Output 2 are any two outputs. For t_{SK(b)}, Output 1 and Output 2 are in the same bank. These parameters are warranted but not poroduction tested.

Operating Characteristics (V_{CCA} and $V_{CCB} = 2.5V$, $T_A = 25^{\circ}C$)

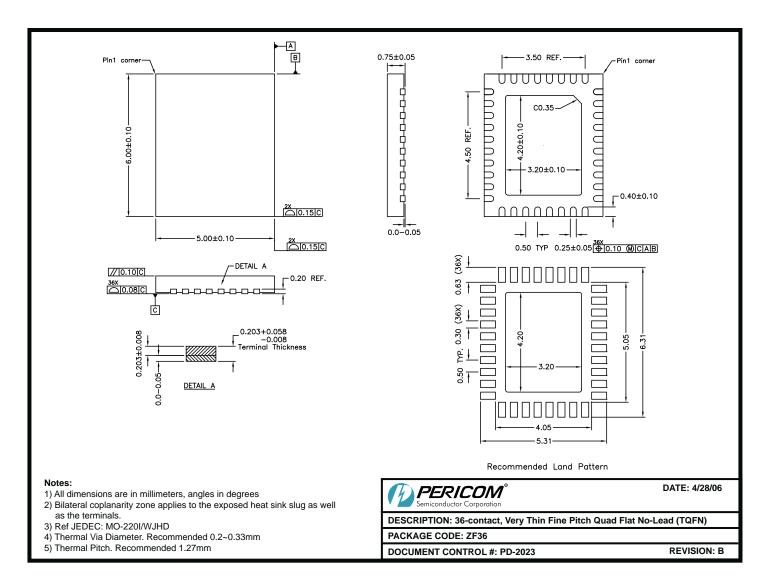
Paramete	er		Test Conditions	Тур.	Units	
	Bower Dissinction Conscitance A to D	Outputs Enabled		15		
Cpd ⁽¹⁾	(V _{CCA})	Outputs Disabled	$C_L = 0$	2	ъE	
(V _{CCA})		Outputs Enabled	f = 10 MHz	30	pF	
	Power Dissipation Capacitance B to A	Outputs Disabled		10		
		Outputs Enabled		30	pF	
Cpd ⁽¹⁾	Power Dissipation Capacitance A to B	Outputs Disabled	$C_L = 0$	10		
(V _{CCB})	Deres Dissinction Conscitence D to A	Outputs Enabled	f = 10 MHz	15		
	Power Dissipation Capacitance B to A	Outputs Disabled		2		


Notes:

1. This parameter is specified under test mode conditions.

Parameter Measurement Information

V _{CCA} /V _{CCB}	CL
$1.2V \sim 1.6V$	10pF
$1.8V \pm 0.15V$	20pF
2.5V ±0.2V	30pF
3.3V ±0.3V	50pF



Notes:

- CL includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $PRR \le 10Mz$, $Z_0 = 50\Omega$, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
- The outputs are measured one at a time with one transition per measurement.
- t_{PLZ} and t_{PHZ} are the same as t_{DIS} .
- t_{PZL} and t_{PZH} are the same as t_{EN} .
- t_{PLH} and t_{PHL} are the same as t_{PD}.
- V_{CCI} defines the input port (V_{CCA} or V_{CCB}).
- V_{CCO} defines the output port (V_{CCA} or V_{CCB}).

PI4ULS3V08 1.2V to 3.6V Universal Bidirectional Level Shifter with Automatic Directions Control

Ordering Information

Ordering Code	Packaging Code	Package Description
PI4ULS3V08ZFE	ZF	Pb-free & Green, 36-contact, 197-mil wide plastic TQFN

Notes:

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

2. E = Pb-free and Green

3. Adding an X Suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com