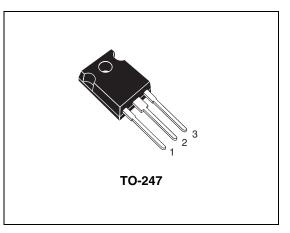


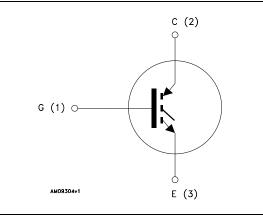
# STGW50HF60S

## 60 A, 600 V, very low drop IGBT

### Features


- Very low on-state voltage drop
- Low switching off
- High current capability

### **Applications**


- PV inverter
- UPS

### Description

STGW50HF60S is a very low drop IGBT based on new advanced planar technology, showing extremely low on-state voltage and limited turn-off losses. The overall performance makes this IGBT ideal in low frequency switches of mixed frequency topologies for  $PF \le 1$ .



#### Figure 1. Internal schematic diagram



#### Table 1. Device summary

| Order code  | Marking   | Package | Packaging |
|-------------|-----------|---------|-----------|
| STGW50HF60S | GW50HF60S | TO-247  | Tube      |

Doc ID 16989 Rev 2

www.st.com

# 1 Electrical ratings

| Table 2. | Absolute | maximum  | ratings |
|----------|----------|----------|---------|
|          | ABOOIDIO | maximani | raingo  |

| Symbol                                                                 | Parameter                                              | Value       | Unit |
|------------------------------------------------------------------------|--------------------------------------------------------|-------------|------|
| V <sub>CES</sub>                                                       | Collector-emitter voltage (V <sub>GE</sub> = 0)        | 600         | V    |
| $I_{C}^{(1)}$                                                          | Continuous collector current at $T_C = 25 \ ^{\circ}C$ | 110         | Α    |
| $I_{C}^{(1)}$ Continuous collector current at $T_{C} = 100 \text{ °C}$ |                                                        | 60          | Α    |
| $I_{CL}^{(2)}$                                                         | Turn-off latching current                              | 60          | А    |
| I <sub>CP</sub> <sup>(3)</sup>                                         | Pulsed collector current                               | 130         | А    |
| $V_{GE}$                                                               | Gate-emitter voltage                                   | ±20         | V    |
| P <sub>TOT</sub>                                                       | Total dissipation at $T_{C}$ = 25 °C                   | 284         | W    |
| Тj                                                                     | Operating junction temperature                         | - 55 to 150 | °C   |

1. Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

2. Vclamp = 80% of V\_{CES}, T\_j =150 °C, R\_G=10  $\Omega,$  V\_GE=15 V

3. Pulse width limited by maximum junction temperature and turn-off within RBSOA

| Table | 3.         | Thermal        | data |
|-------|------------|----------------|------|
| IUDIC | <b>U</b> . | 1 II CI III UI | autu |

| Symbol            | Parameter                           | Value | Unit |
|-------------------|-------------------------------------|-------|------|
| R <sub>thJC</sub> | Thermal resistance junction-case    | 0.44  | °C/W |
| R <sub>thJA</sub> | Thermal resistance junction-ambient | 50    | °C/W |



# 2 Electrical characteristics

 $T_J$  = 25 °C unless otherwise specified.

| Table 4.             | Static                                                                                        |                                                                                                      |      |              |           |          |
|----------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------|--------------|-----------|----------|
| Symbol               | Parameter                                                                                     | Test conditions                                                                                      | Min. | Тур.         | Max.      | Unit     |
| V <sub>(BR)CES</sub> | Collector-emitter<br>breakdown voltage<br>(V <sub>GE</sub> = 0)                               | I <sub>C</sub> = 1 mA                                                                                | 600  |              |           | v        |
| V <sub>CE(sat)</sub> | Collector-emitter saturation voltage                                                          | $V_{GE}$ = 15 V, I <sub>C</sub> = 30 A<br>$V_{GE}$ = 15 V, I <sub>C</sub> = 30 A,<br>$T_{J}$ =125 °C |      | 1.15<br>1.05 | 1.45      | v<br>v   |
| V <sub>GE(th)</sub>  | Gate threshold voltage                                                                        | V <sub>CE</sub> = V <sub>GE</sub> , I <sub>C</sub> = 250 μA                                          | 3.5  |              | 5.7       | V        |
| I <sub>CES</sub>     | $\begin{array}{c} \text{Collector cut-off current} \\ \text{(V}_{\text{GE}} = 0) \end{array}$ | V <sub>CE</sub> =600 V<br>V <sub>CE</sub> =600 V, T <sub>J</sub> =125 °C                             |      |              | 50<br>500 | μΑ<br>μΑ |
| I <sub>GES</sub>     | Gate-emitter leakage<br>current (V <sub>CE</sub> = 0)                                         | V <sub>GE</sub> =± 20 V                                                                              |      |              | ± 100     | nA       |
| 9 <sub>fs</sub>      | Forward transconductance                                                                      | V <sub>CE</sub> = 15 V <sub>,</sub> I <sub>C</sub> = 30 A                                            |      | 25           |           | S        |

### Table 4. Static

### Table 5. Dynamic

| Symbol                                                   | Parameter                                                                  | Test conditions                                                         | Min. | Тур.               | Max. | Unit           |
|----------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|------|--------------------|------|----------------|
| C <sub>ies</sub><br>C <sub>oes</sub><br>C <sub>res</sub> | Input capacitance<br>Output capacitance<br>Reverse transfer<br>capacitance | V <sub>CE</sub> = 25 V, f = 1 MHz, V <sub>GE</sub> =0                   | -    | 4300<br>400<br>100 | -    | pF<br>pF<br>pF |
| Q <sub>g</sub><br>Q <sub>ge</sub><br>Q <sub>gc</sub>     | Total gate charge<br>Gate-emitter charge<br>Gate-collector charge          | V <sub>CE</sub> = 480 V,<br>I <sub>C</sub> = 30 A,V <sub>GE</sub> =15 V | -    | 200<br>27<br>90    | -    | nC<br>nC<br>nC |

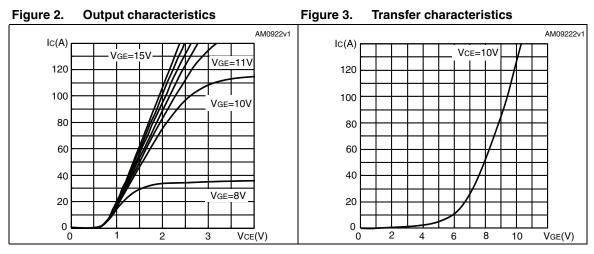


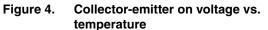
| Table 0.                                                                                  | Switching On/On (inductive load)                                  |                                                                                                                                                                      |      |                   |      |                  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|------|------------------|
| Symbol                                                                                    | Parameter                                                         | Test conditions                                                                                                                                                      | Min. | Тур.              | Max. | Unit             |
| t <sub>d(on)</sub><br>t <sub>r</sub><br>(di/dt) <sub>on</sub>                             | Turn-on delay time<br>Current rise time<br>Turn-on current slope  | $V_{CC} = 400 \text{ V}, I_C = 30 \text{ A}$<br>$R_G = 10 \Omega, V_{GE} = 15 \text{ V},$<br>(see Figure 14)                                                         | -    | 50<br>20<br>1280  | -    | ns<br>ns<br>A/µs |
| t <sub>d(on)</sub><br>t <sub>r</sub><br>(di/dt) <sub>on</sub>                             | Turn-on delay time<br>Current rise time<br>Turn-on current slope  |                                                                                                                                                                      | -    | 47<br>22<br>1100  | -    | ns<br>ns<br>A/µs |
| $t_r(V_{off}) \ t_d(_{off}) \ t_f$                                                        | Off voltage rise time<br>Turn-off delay time<br>Current fall time | $V_{CC} = 400 \text{ V}, I_C = 30 \text{ A}$<br>$R_G = 10 \Omega, V_{GE} = 15 \text{ V},$<br>(see Figure 14)                                                         | -    | 370<br>220<br>465 | -    | ns<br>ns<br>ns   |
| t <sub>r</sub> (V <sub>off</sub> )<br>t <sub>d</sub> ( <sub>off</sub> )<br>t <sub>f</sub> | Off voltage rise time<br>Turn-off delay time<br>Current fall time | $\begin{split} V_{CC} &= 400 \; V, \; I_C = 30 \; A \\ R_G &= 10 \; \Omega, \; V_{GE} &= 15 \; V, \\ T_J &= 125 \; ^\circ C \; \textit{(see Figure 14)} \end{split}$ | -    | 700<br>250<br>800 | -    | ns<br>ns<br>ns   |

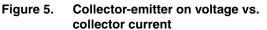
 Table 6.
 Switching on/off (inductive load)

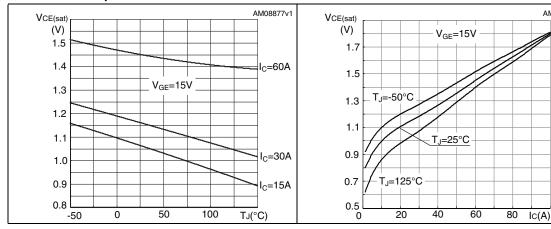
Table 7. Switching energy (inductive load)

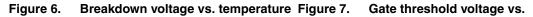
| Symbol                                                                   | Parameter                                                                       | Test conditions                                                                                                                           | Min. | Тур.                | Max. | Unit           |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|------|----------------|
| Eon <sup>(1)</sup><br>E <sub>off</sub> <sup>(2)</sup>                    | Turn-on switching losses<br>Turn-off switching losses                           | $V_{CC} = 400 \text{ V}, I_C = 30 \text{ A}$<br>$R_G = 10 \Omega, V_{GF} = 15 \text{ V},$                                                 | -    | 0.25<br>4.2         | -    | mJ<br>mJ       |
| E <sub>ts</sub>                                                          | Total switching losses                                                          | (see Figure 14)                                                                                                                           |      | 4.45                |      | mJ             |
| Eon <sup>(1)</sup><br>E <sub>off</sub> <sup>(2)</sup><br>E <sub>ts</sub> | Turn-on switching losses<br>Turn-off switching losses<br>Total switching losses | $V_{CC} = 400 \text{ V}, I_C = 30 \text{ A}$<br>$R_G = 10 \Omega, V_{GE} = 15 \text{ V},$<br>$T_J = 125 ^{\circ}\text{C}$ (see Figure 14) | -    | 0.45<br>7.8<br>8.25 | -    | mJ<br>mJ<br>mJ |

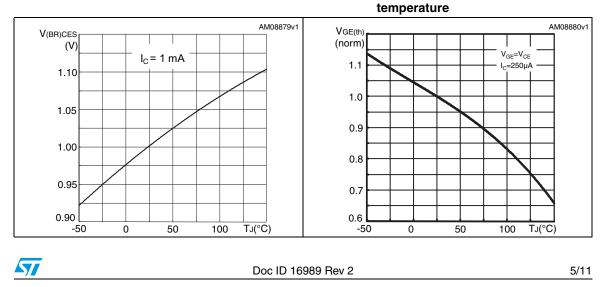

 Eon is the turn-on losses when a typical diode is used in the test circuit in *Figure 14*. If the IGBT is offered in a package with a co-pack diode, the co-pack diode is used as external diode. IGBTs and diode are at the same temperature (25 °C and 125 °C).


2. Turn-off losses include also the tail of the collector current.





AM08878v1


## 2.1 Electrical characteristics (curves)














#### Figure 8. Gate charge vs. gate-emitter voltage

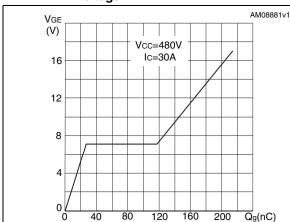
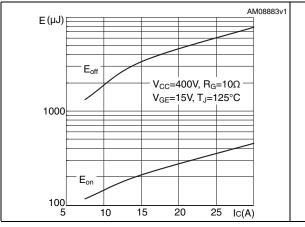
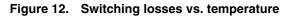
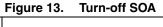
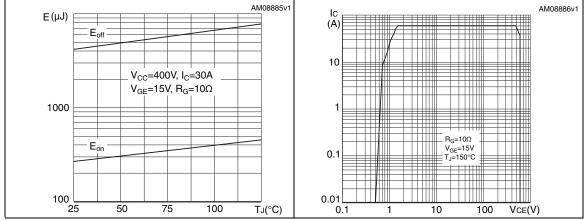







Figure 10. Switching losses vs. collector current









AM08882v1 С (pF)

**Capacitance variations** 

Figure 9.

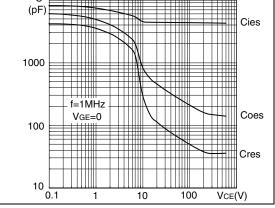
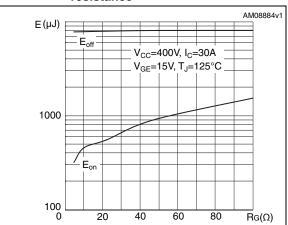




Figure 11. Switching losses vs. gate resistance





# 3 Test circuits

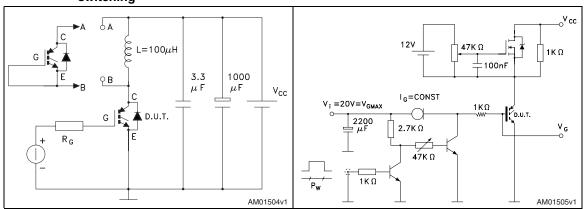
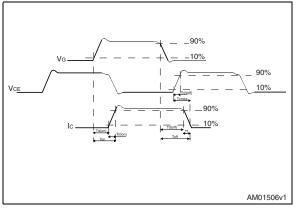




Figure 15. Gate charge test circuit

Figure 14. Test circuit for inductive load switching

Figure 16. Switching waveform





## 4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

| Dim  |       | mm    |       |
|------|-------|-------|-------|
| Dim. | Min.  | Тур.  | Max.  |
| A    | 4.85  |       | 5.15  |
| A1   | 2.20  |       | 2.60  |
| b    | 1.0   |       | 1.40  |
| b1   | 2.0   |       | 2.40  |
| b2   | 3.0   |       | 3.40  |
| С    | 0.40  |       | 0.80  |
| D    | 19.85 |       | 20.15 |
| E    | 15.45 |       | 15.75 |
| е    |       | 5.45  |       |
| L    | 14.20 |       | 14.80 |
| L1   | 3.70  |       | 4.30  |
| L2   |       | 18.50 |       |
| ØP   | 3.55  |       | 3.65  |
| ØR   | 4.50  |       | 5.50  |
| S    |       | 5.50  |       |

Table 8. TO-247 mechanical data



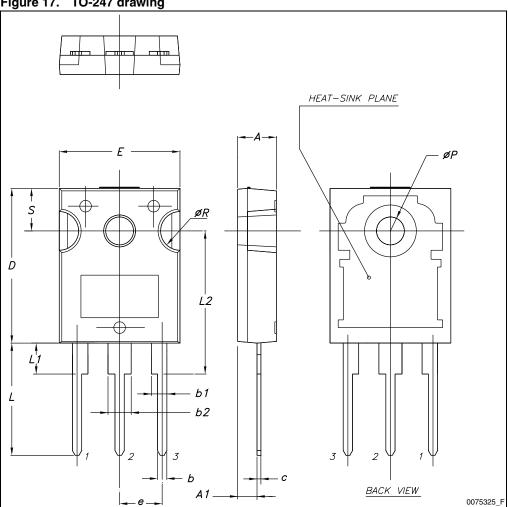



Figure 17. TO-247 drawing



Doc ID 16989 Rev 2

# 5 Revision history

#### Table 9.Document revision history

| Date        | Revision | Changes                                                      |
|-------------|----------|--------------------------------------------------------------|
| 18-Jan-2010 | 1        | Initial release.                                             |
| 21-Jan-2011 | 2        | Document status promoted from preliminary data to datasheet. |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



Doc ID 16989 Rev 2