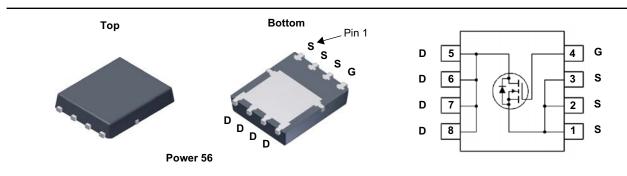


FDMS7676 N-Channel PowerTrench[®] MOSFET 30 V, 5.5 m Ω

Features

- Max $r_{DS(on)}$ = 5.5 m Ω at V_{GS} = 10 V, I_D = 19 A
- Max $r_{DS(on)}$ = 7.6 m Ω at V_{GS} = 4.5 V, I_D = 15 A
- Advanced Package and Silicon design for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery. Provides Schottky-like performance with minimum EMI in sync buck converter applications
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r_{DS(on)}, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and Server
- OringFET / Load Switch
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

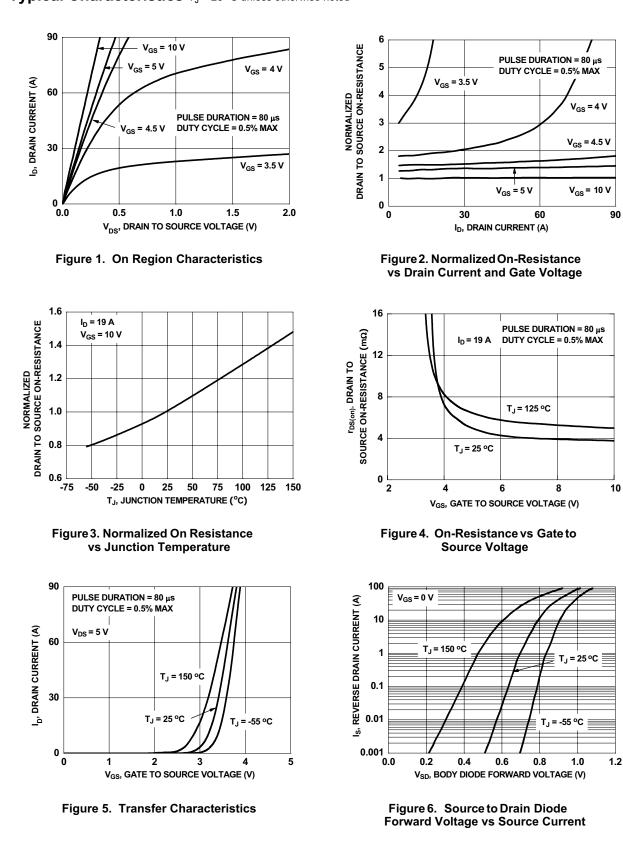
Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V
ID	Drain Current -Continuous (Package limited)	T _C = 25 °C		28	
	-Continuous (Silicon limited)	T _C = 25 °C		76	
	-Continuous	T _A = 25 °C	(Note 1a)	16	— A
	-Pulsed			90	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	72	mJ
P _D	Power Dissipation T _C = 2			48	14/
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	W
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to +150	°C

Thermal Characteristics

R	θJC	Thermal Resistance, Junction to Case		2.6	°C/W
R	θJA	Thermal Resistance, Junction to Ambient (1	Note 1a)	50	0/00

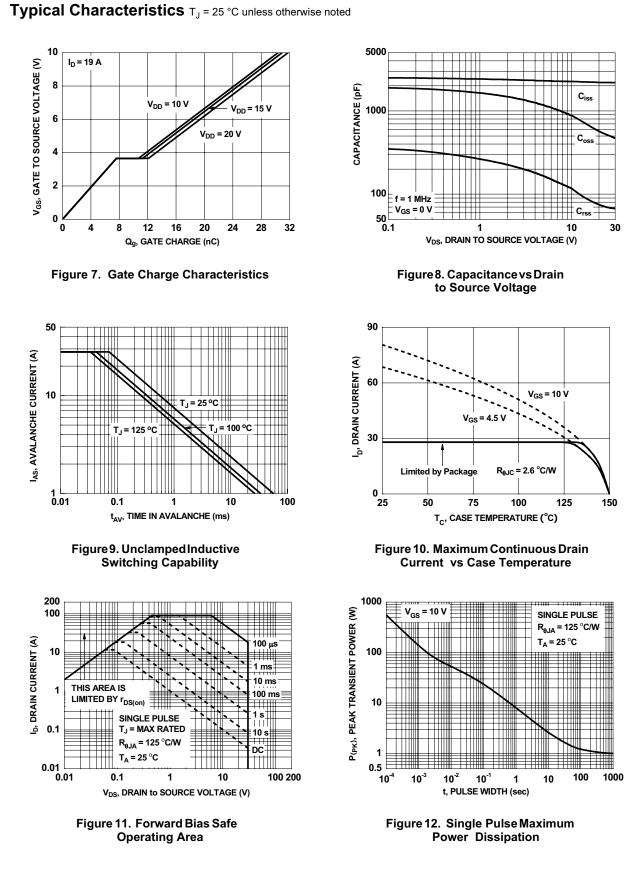
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7676	FDMS7676	Power 56	13 "	12 mm	3000 units

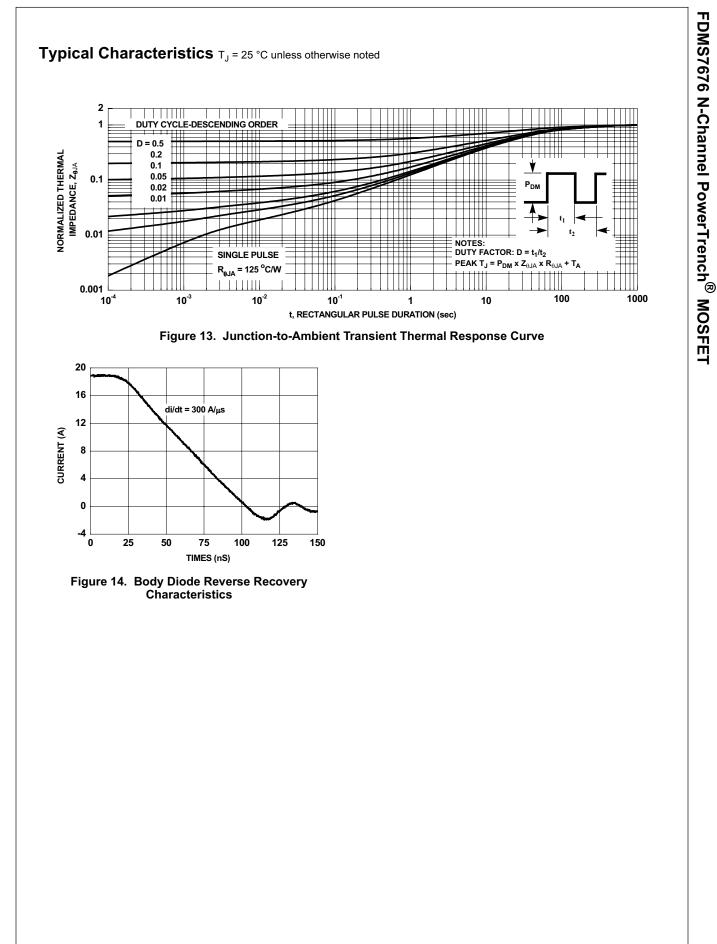

©2009 Fairchild Semiconductor Corporation FDMS7676 Rev. A

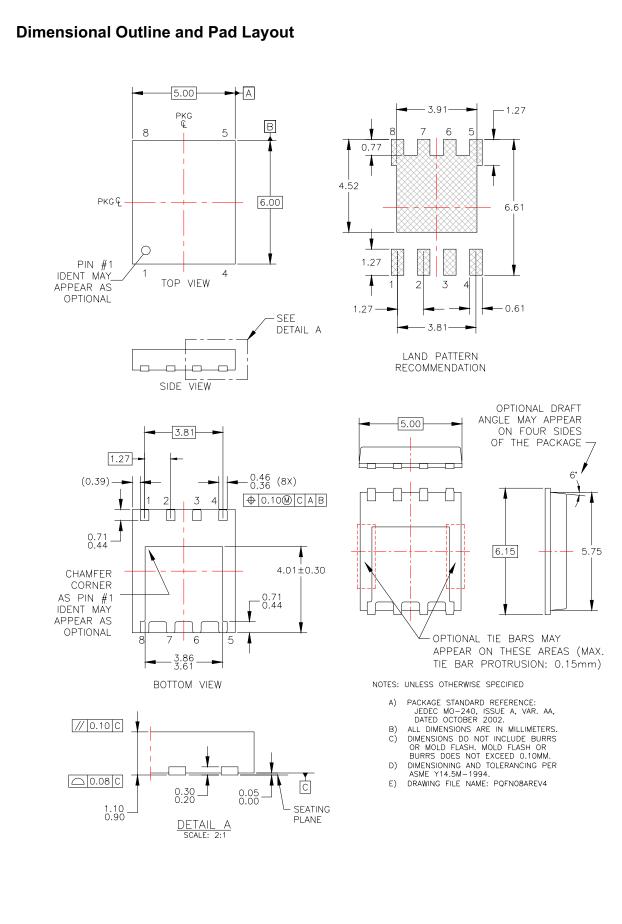
July 2009

Off Chara	Parameter	Test Conditions	Min	Тур	Max	Units	
JII Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30			V	
ABV _{DSS}	Breakdown Voltage Temperature					-	
ΔT_{J}	Coefficient	I_D = 250 µA, referenced to 25 °C		15		mV/°0	
DSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA	
GSS	Gate to Source Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA	
	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1.25	2.0	3.0	V	
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage		1.20		0.0		
$\frac{\Delta V GS(th)}{\Delta T_J}$	Temperature Coefficient	I_D = 250 μ A, referenced to 25 °C		-7		mV/°0	
		V _{GS} = 10 V, I _D = 19 A		3.8	5.5		
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 15 A		5.4	7.6	mΩ	
20(01)		V _{GS} = 10 V, I _D = 19 A, T _J = 125 °C		5.2	7.5	1	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 19 A		64		S	
Dynamic	Characteristics						
	Input Capacitance			2225	2960	pF	
C _{oss}	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0 V,		685	910	pF	
O _{oss} C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		90	130	pr pF	
	Gate Resistance			0.7	1.5	Ω	
R _g				0.7	1.5	52	
Switching	Characteristics	,					
t _{d(on)}	Turn-On Delay Time			13	23	ns	
r	Rise Time	V _{DD} = 15 V, I _D = 19 A,		5	10	ns	
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6 Ω		25	40	ns	
t _f	Fall Time			4	10	ns	
Qg	Total Gate Charge	$V_{GS} = 0 V$ to 10 V		31	44	nC	
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		14	19	nC	
Q _{gs}	Gate to Source Charge	I _D = 19 A		7.6		nC	
Q _{gd}	Gate to Drain "Miller" Charge			3.7		nC	
Drain-Sou	arce Diode Characteristics						
		V _{GS} = 0 V, I _S = 2.1 A (Note 2)		0.7	0.95		
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 19 A$ (Note 2)		0.8	1.1	V	
t _{rr}	Reverse Recovery Time			32	51	ns	
Q _{rr}	Reverse Recovery Charge			14	24	nC	
t _a	Reverse Recovery Fall Time	I _F = 19 A, di/dt = 100 A/μs		15		nC	
t _b	Reverse Recovery Rise Time	1' ' '		17		nC	
S	Softness (t _b /t _a)	-		1.1			
t _{rr}	Reverse Recovery Time			26	42	ns	
Q _{rr}	Reverse Recovery Charge	I _F = 19 A, di/dt = 300 A/μs		25	40	nC	


Electrical Characteristics T_J = 25 °C unless otherwise noted

FDMS7676 N-Channel PowerTrench[®] MOSFET


Typical Characteristics T_J = 25 °C unless otherwise noted


FDMS7676 Rev. A

FDMS7676 N-Channel PowerTrench[®] MOSFET

FDMS7676 Rev. A

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

CorePOWER™ <i>CROSSVOLT™</i> CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ *	GTO [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MiCROCOUPLER [™] MicroFET [™] MicroPak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] [®] PDP SPM [™] Power-SPM [™]	RapidConfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ EGENERAL ®*	TinyLogic [®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* µSerDes™ WestPoes™ UHC [®] Ultra FRFET™ UItra FRFET™ VCX™ VisualMax™ XS™
		GENERAL	N 3 ····

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
	Formative / In Design First Production Full Production

FDMS7676 Rev. A

7

FDMS7676 N-Channel PowerTrench[®] MOSFET