FAIRCHILD

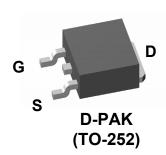
SEMICONDUCTOR®

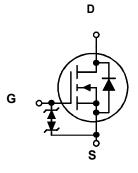
FDD86102LZ

N-Channel PowerTrench[®] MOSFET 100 V, 35 A, 22.5 m Ω

Features

- Max $r_{DS(on)}$ = 22.5 m Ω at V_{GS} = 10 V, I_D = 8 A
- Max r_{DS(on)} = 31 mΩ at V_{GS} = 4.5 V, I_D = 7 A
- HBM ESD protection level > 6 kV typical (Note 4)
- Very low Qg and Qgd compared to competing trench technologies
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance and switching loss. G-S zener has been added to enhance ESD voltage level.

Applications

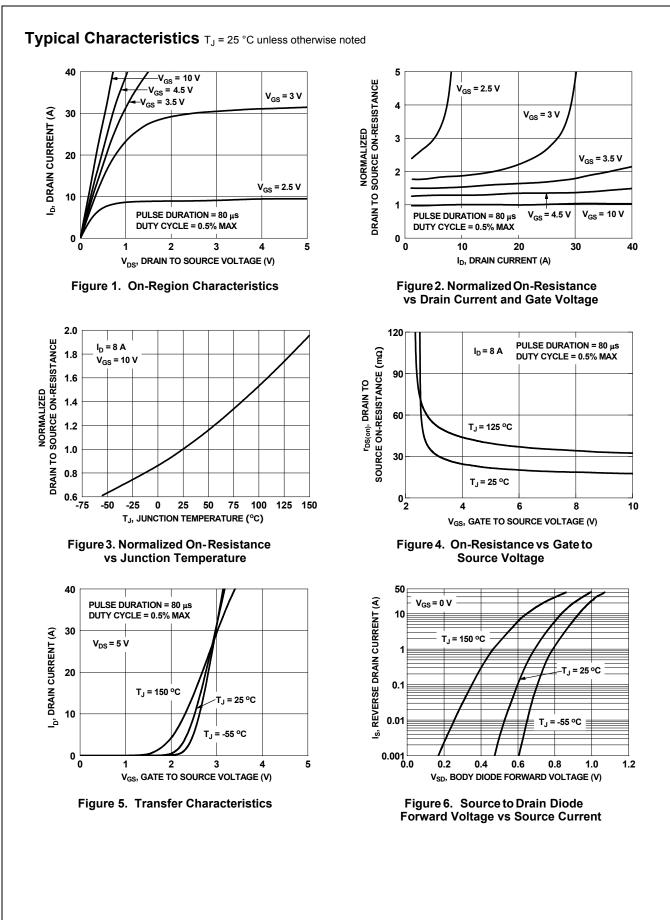
- DC DC Conversion
- Inverter
- Synchronous Rectifier

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

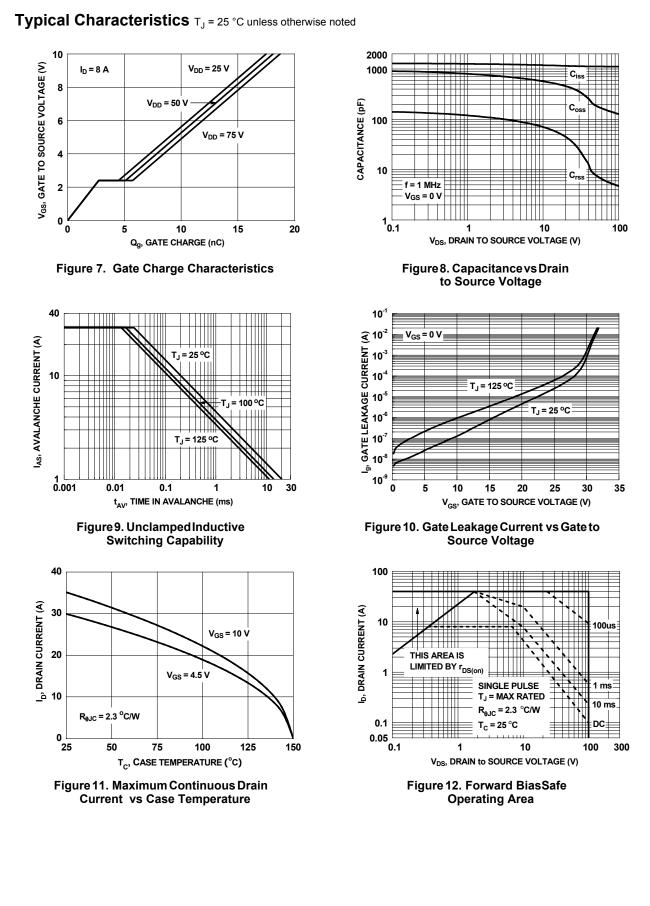
Symbol		Parameter				Ratings		Units	
V _{DS}	Drain to	Drain to Source Voltage					100		
V _{GS}	Gate to	Gate to Source Voltage				±20		V	
ID	Drain Current -Continuous (Package limited) T _C = 25 °C					42			
	-Continuous (Silicon limited) $T_{C} = 25 \text{ °C}$					35			
		-Continuous $T_A = 25 \degree C$ (Note 1a)) 8		Α	
	-Pulsed					40			
E _{AS}	Single P	Single Pulse Avalanche Energy (Note 3)			84		mJ		
P _D	Power D	Power Dissipation $T_C = 25 \degree C$				54	54		
	Power D	Dissipation	T _A = 2	25 °C	(Note 1a) 3.1	W		
T _J , T _{STG}	Operating and Storage Junction Temperature Range					-55 to +150		°C	
Thermal Cl		stics Resistance, Junction to Ca	ase			2.3		°C/W	
R _{0JA}		Thermal Resistance, Junction to Ambient (Note 1a)					40		
Package M	arking a	nd Ordering Informa	tion						
Device M	arking	Device	Package	Re	el Size	Tape Width	Qua	antity	
FDD86102LZ		FDD86102LZ	D-PAK(TO-252)		13 "	12 mm	250	0 units	

Downloaded from Elcodis.com electronic components distributor

October 2010

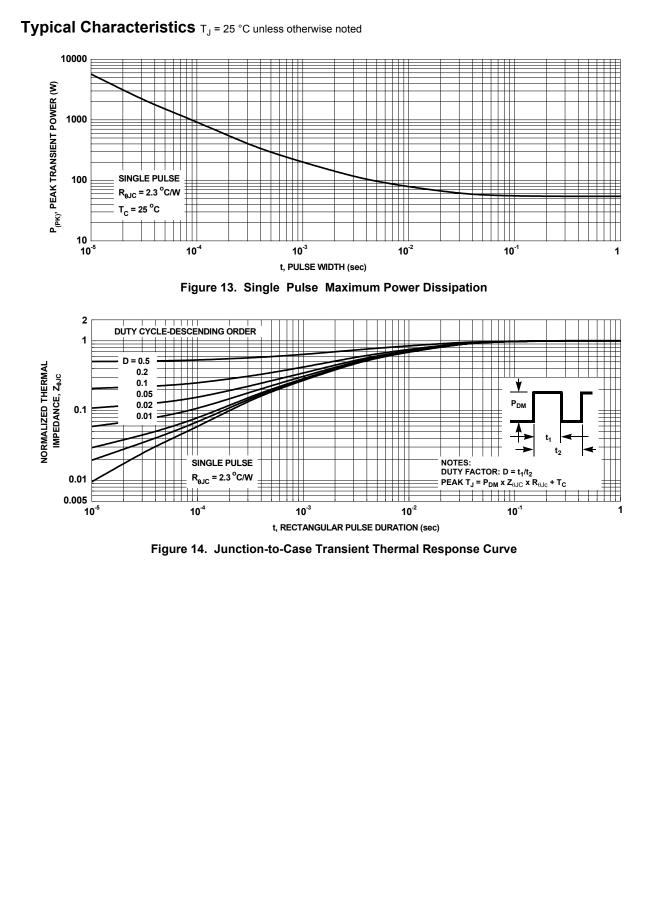

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	kdown Voltage $I_D = 250 \ \mu A, V_{GS} = 0 \ V$				V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		69		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μΑ
	cteristics (Note 2)			l.	1	1
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA		1.5	3.0	V
$\Delta V_{GS(th)}$ ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	Gate to Source Threshold Voltage $L = 250 \text{ where for example 1}$		-6		mV/°C
		V _{GS} = 10 V, I _D = 8 A		17.8	22.5	mΩ
r _{DS(on)} S	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 7 \text{ A}$		23.2	31	
()		V _{GS} = 10 V, I _D = 8 A, T _J = 125 °C		31.1	40	
9 _{FS}	Forward Transconductance	$V_{DS} = 5 V, I_D = 8 A$		31		S
Dynamic	Characteristics	-				•
C _{iss}	Input Capacitance			1157	1540	pF
$S_{\rm OSS}$	Output Capacitance	$V_{\rm DS} = 50 \text{ V}, \text{ V}_{\rm GS} = 0 \text{ V},$		181	245	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		7.7	15	pF
R _g	Gate Resistance			0.6		Ω
-	g Characteristics					1
t _{d(on)}	Turn-On Delay Time			6.6	14	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 8 A,		2.3	10	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		20	32	ns
ł	Fall Time			2.3	10	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V		18	26	nC
Q ^g	Total Gate Charge	V_{GS} = 0 V to 4.5 V V_{DD} = 50 V,		8.7	13	nC
Q _{gs}	Gate to Source Gate Charge	I _D = 8 A		2.7		nC
Q _{gd}	Gate to Drain "Miller" Charge			2.4		nC
Drain-Sou	urce Diode Characteristics					
V _{SD} S	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 8 A$ (Note 2)	0 V, I _S = 8 A (Note 2)		1.3	
		$V_{GS} = 0 V, I_S = 2.6 A$ (Note 2)		0.75	1.2	V
rr	Reverse Recovery Time			43	70	ns
2 _m	Reverse Recovery Charge	I _F = 8 A, di/dt = 100 A/μs		43	70	nC
otes: R _{θJA} is the sur	m of the junction-to-case and case-to-ambient thermal resis teed by design while R_{0JA} is determined by the user's boa		as the solde	er mounting s	urface of the	drain pins.
		en mounted on a 2 oz copper.		/ when moun n pad of 2 oz		

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


3. Starting T_J = 25°C, L = 1 mH, I_{AS} = 13 A, V_{DD} = 90 V, V_{GS} = 10 V.

4. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

©2010 Fairchild Semiconductor Corporation FDD86102LZ Rev.C



©2010 Fairchild Semiconductor Corporation FDD86102LZ Rev.C

©2010 Fairchild Semiconductor Corporation FDD86102LZ Rev.C

FDD86102LZ N-Channel PowerTrench[®] MOSFET

FDD86102LZ Rev.C

©2010 Fairchild Semiconductor Corporation

application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buyft from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

©2010 Fairchild Semiconductor Corporation FDD86102LZ Rev.C

www.fairchildsemi.com

FDD86102LZ N-Channel PowerTrench[®] MOSFE⁻