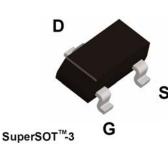
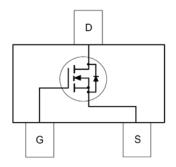


FDN8601 N-Channel PowerTrench[®] MOSFET 100 V, 2.7 A, 109 m Ω

Features

- Max r_{DS(on)} = 109 mΩ at V_{GS} = 10 V, I_D = 1.5 A
- Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 6 V, I_D = 1.2 A
- High performance trench technology for extremely low r_{DS(on)}
- High power and current handling capability in a widely used surface mount package
- Fast switching speed
- 100% UIL tested
- RoHS Compliant




General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced Power Trench[®] process that has been optimized for $r_{DS(on)}$, switching performance and ruggedness.

Applications

- Primary DC-DC Switch
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DS}	Drain to Source Voltage	100	V		
V _{GS}	Gate to Source Voltage		±20	V	
I _D	-Continuous	(Note 1a)	2.7	•	
	-Pulsed		12	A	
E _{AS}	Single Pulse Avalanche Energy	(Note 3)	13	mJ	
P _D	Power Dissipation	(Note 1a)	1.5	w	
	Power Dissipation	(Note 1b)	0.6	VV	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Note 1)	75	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	80	C/vv

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
8601	FDN8601	SSOT-3	7 "	8 mm	3000 units

©2010 Fairchild Semiconductor Corporation FDN8601 Rev. C July 2010

-
Ē
N86
<u>i01</u>
N-C
N-Channel
Inn
el F
NOC
verl
Tre
nch
Ø
MOS
SFE
Щ

I _{DSS} I _{GSS} On Chara	Gate to Source Leakage Current	V_{DS} = 80 V, V_{GS} = 0 V				μA
On Chara	cate to course Loundyo ourrent	$V_{GS} = \pm 20 V, V_{DS} = 0 V$			±100	nA
Uli Chara				1		
	Icteristics (Note 2)	V V I 050 A	0.0	0.0	4.0	
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-8		mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 V, I_D = 1.5 A$ $V_{GS} = 6 V, I_D = 1.2 A$ $V_{GS} = 10 V, I_D = 1.5 A, T_J = 125 °C$		85.4	109	mΩ
				117	175	
				143	183	
9 _{FS}	Forward Transconductance	V _{DS} = 10 V, I _D = 1.5 A		8		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			156	210	pF
C _{oss}	Output Capacitance	$V_{\rm DS} = 50 \text{ V}, V_{\rm GS} = 0 \text{ V},$		47	65	pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		2.7	5	pF
R _q	Gate Resistance			1.0		Ω
0			1			
Switching	g Characteristics					1
t _{d(on)}	Turn-On Delay Time			4.3	10	ns
t _r	Rise Time	V_{DD} = 50 V, I _D = 1.5 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		1.3	10	ns
t _{d(off)}	Turn-Off Delay Time			7.8	16	ns
t _f	Fall Time			3.4	10	ns
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 10 V$		3	5	nC
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 5 V$ $V_{DD} = 50 V,$ $I_D = 1.5 A$		1.8	3	nC
Q _{gs}	Gate to Source Gate Charge Gate to Drain "Miller" Charge			0.9 0.8		nC nC
Q _{gd}	Gate to Drain Miller Charge			0.0		ne
Drain-Sou	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 1.5 A$ (Note 2)		0.81	1.3	V
t _{rr}	Reverse Recovery Time	1 - 1 = 0 di/dt = 100 0/m		29	46	ns
Q _{rr}	Reverse Recovery Charge	— I _F = 1.5 A, di/dt = 100 A/μs		15	27	nC
R _{θJC} is guarar	m of the junction-to-case and case-to-ambient thermal resisneed by design while R _{0CA} is determined by the user's boar a) 80 °C/W when mounter 1 in ² pad of 2 oz copper ulse Width < 300 μs, Duty cycle < 2.0%. 25 °C; N-ch: L = 3 mH, I _{AS} = 3 A, V _{DD} = 100 V, V _{GS} = 10 V.	d on a r		n mounted on		, oran pino
	niconductor Corporation	2			10110111	airchildse

Test Conditions

 I_D = 250 μ A, V_{GS} = 0 V

Min

100

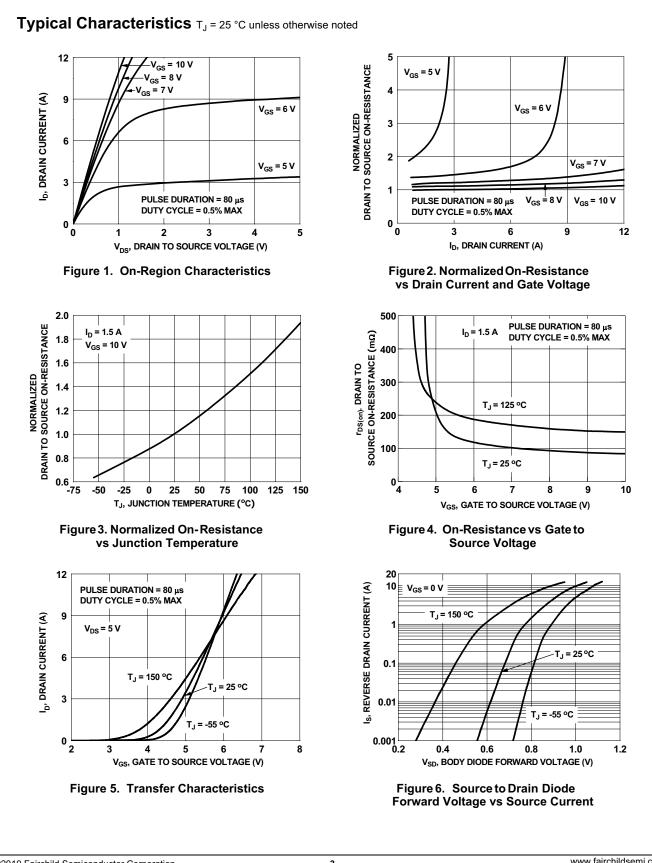
Тур

Мах

Units

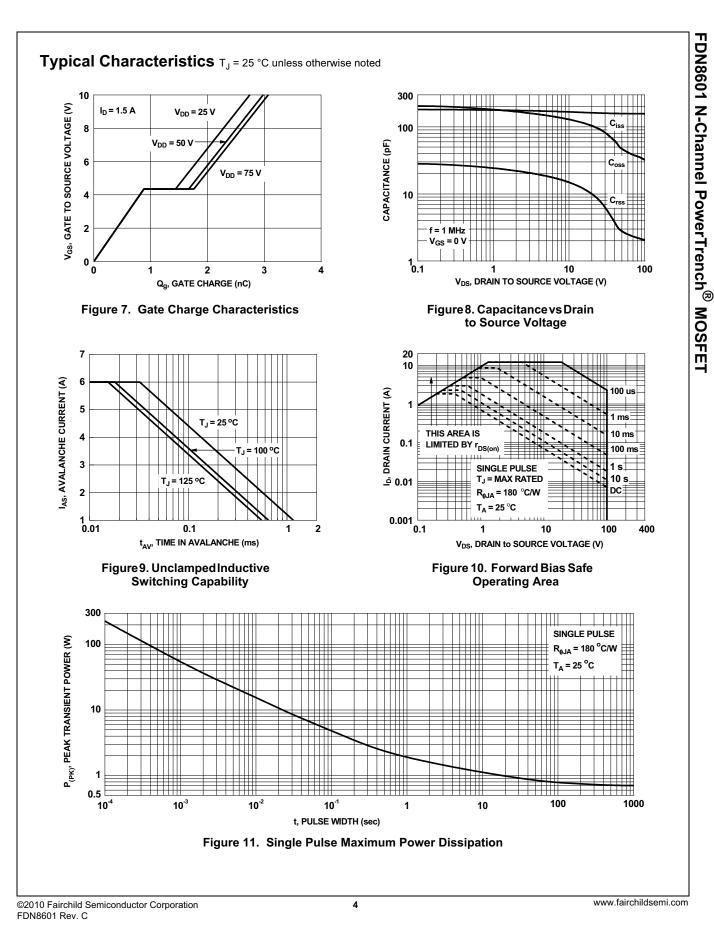
V

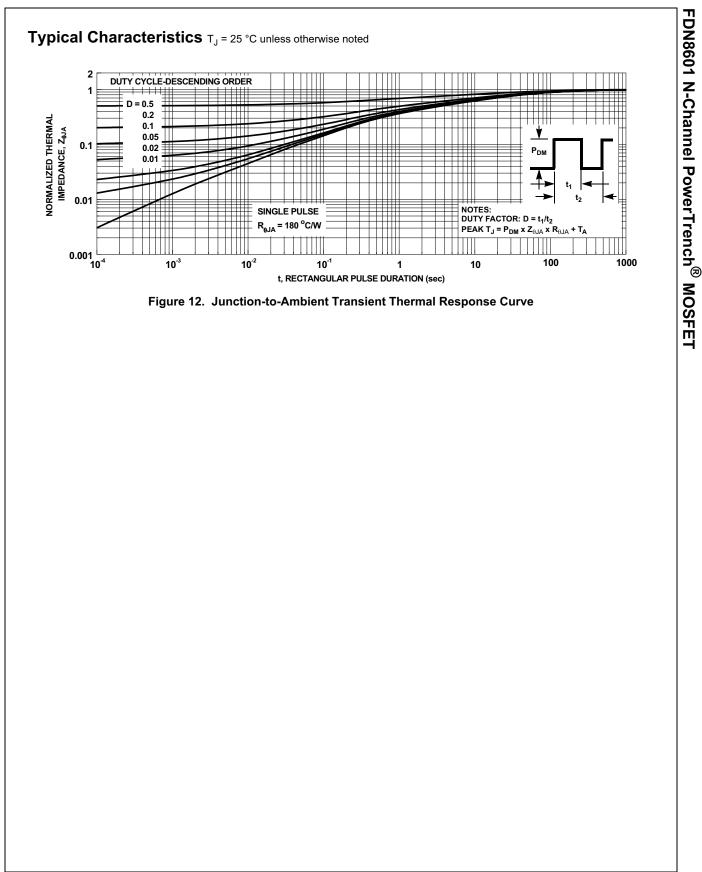
Electrical Characteristics T_J = 25 °C unless otherwise noted

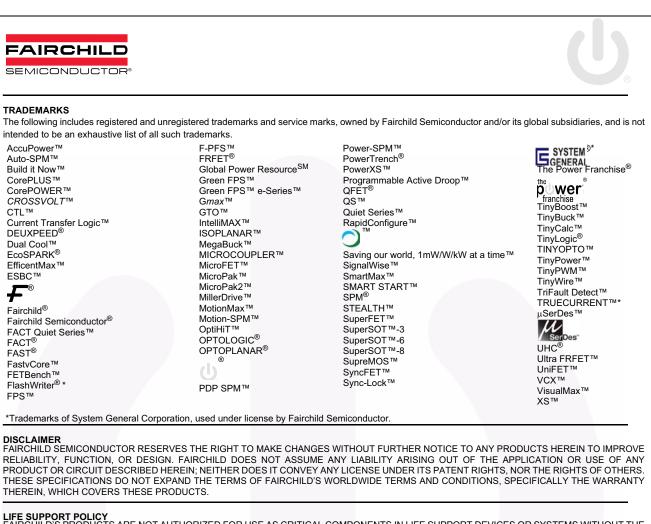

Parameter

Drain to Source Breakdown Voltage

Symbol


BV_{DSS}


Off Characteristics


©2010 Fairchild Semiconductor Corporation FDN8601 Rev. C

www.fairchildsemi.com

©2010 Fairchild Semiconductor Corporation FDN8601 Rev. C

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life. and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2 system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Downloaded from Elcodis.com electronic components distributor

6

FDN8601 N-Channel PowerTrench[®] MOSFE