

A Teledyne Technologies Company

SURFACE MOUNT
HIGH REPEATABILITY
8 GHz
TO-5 Relays
SIGNAL INTEGRITY TO 12 Gbps
DPDT

SERIES GRF312

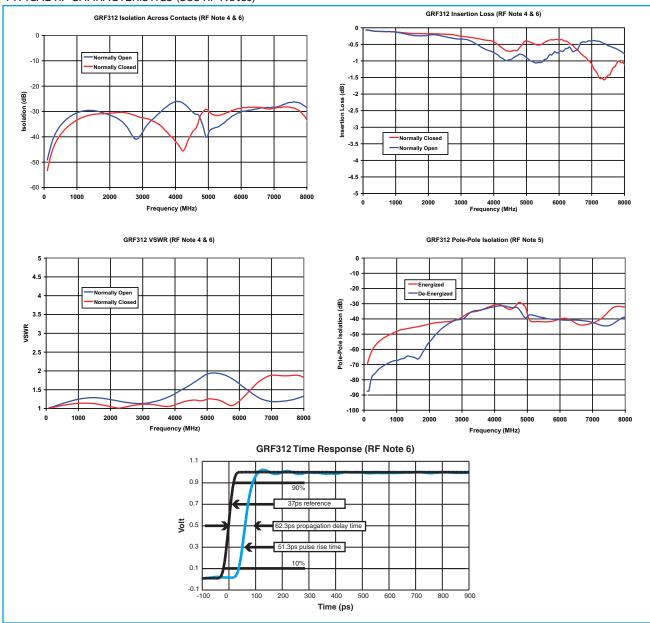
SERIES DESIGNATION	RELAY TYPE	
GRF312	Repeatable, RF TO-5 relay	

ENVIRONMENTAL AND PHYSICAL SPECIFICATIONS						
Temperature (Ambient)	Storage	−65°C to +125°C				
	Operating	−55°C to +85°C				
Vibration (General Note 1)		10 g's to 500 Hz				
Shock (General Note 1)		30 g's, 6ms half sine				
Enclosure		Hermetically sealed				
Weight		0.09 oz. (2.55g) max.				

PERFORMANCE FEATURES

The ultraminiature GRF312 relay is designed to improve upon the GRF300/GRF303 relay's high frequency performance. The GRF312 offers monotonic insertion loss to 8 GHz. This improvement in RF insertion loss over the frequency range makes these relays highly suitable for use in attenuator and other RF circuits. The GRF312 features:

- · High repeatability.
- Broader bandwidth.
- · Metal enclosure for EMI shielding.
- High isolation between control and signal paths.
- · Highly resistant to ESD.


CONSTRUCTION FEATURES

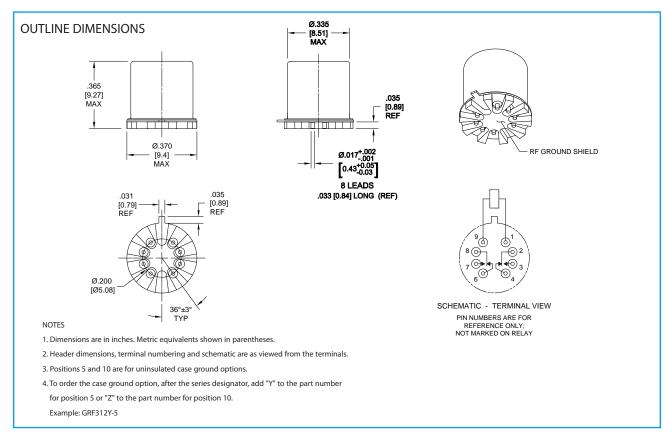
The following unique construction features and manufacturing techniques provide excellent resistance to environmental extremes and overall high reliability.

- Uni-frame motor design provides high magnetic efficiency and mechanical rigidity.
- Minimum mass components and welded construction provide maximum resistance to shock and vibration.
- Advanced cleaning techniques provide maximum assurance of internal cleanliness.
- Gold-plated precious metal alloy contacts ensure reliable switching.
- · Hermetically sealed.
- · Solderable leads.

SERIES GRF312

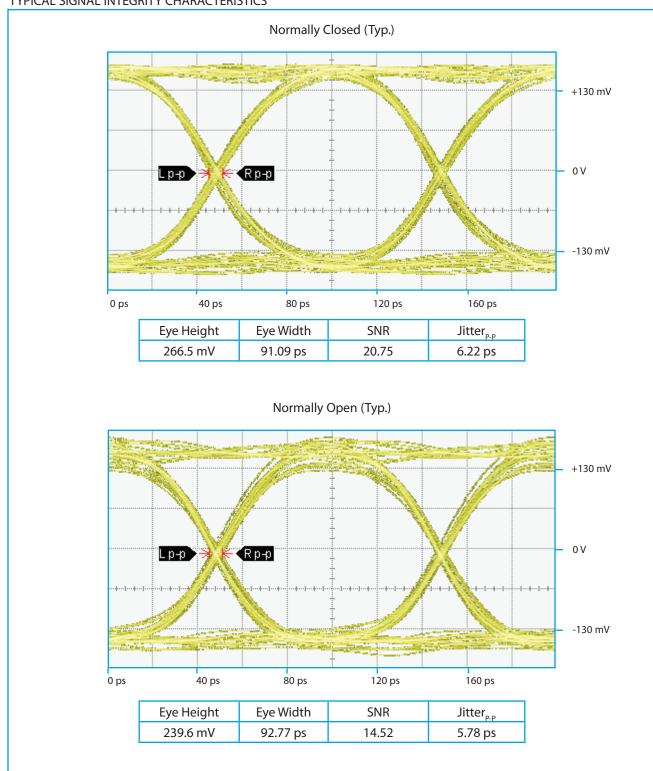
TYPICAL RF CHARACTERISTICS (See RF Notes)

RF NOTES


- 1. Test conditions:
- a. Fixture: .031" copper clad, reinforced PTFE, RT/duroid* 6002 with SMA connectors. (RT/duroid* is a registered trademark of Rogers Corporation.)
- b. RF ground shield is soldered to PCB RF ground plane.
- c. Room ambient temperature.
- d. Terminals not tested were terminated with 50-ohm load.
- e. Contact signal level: -10 dBm.
- f. No. of test samples: 2.
- 2. Data presented herein represents typical characteristics and is not intended for use as specification limits.
- 3. Data is per pole, except fpr pole-to-pole data.
- 4. Data is the average from readings taken on all open contacts.
- 5. Data is the average from readings taken between poles with coil energized and de-energized.
- 6. Data is the average from readings taken on all closed contacts.
- 7. Test fixture effect de-embedded from frequency and time response data.

SERIES GRF312 GENERAL ELECTRICAL SPECIFICATIONS (@25°C unless otherwise noted) (Notes 2 & 3)

Contact Arrangement	2 Form C (DPDT)		
Rated Duty	Continuous		
Contact Resistance	0.15 Ω max. initial (measured 1/8" from the header)		
Contact Load Rating	Resistive: 1Amp/28Vdc Low level: 10 to 50 μA @ 10 to 50 mV		
Contact Life Ratings	10,000,000 cycles (typical) at low level		
Coil Operating Power	450 mW typical @ nominal rated voltage		
Operate Time	4.0 mS max.		
Release Time	3.0 mS max.		
Intercontact Capacitance	0.4 pf typical		
Insulation Resistance	1,000 M Ω min. between mutually isolated terminals		
Dielectric Strength	350 Vrms (60 Hz) @ atmospheric pressure		


DETAILED ELECTRICAL SPECIFICATIONS (@25°C)

BASE PART NUMBERS	GRF312-5	GRF312-12	GRF312-18	GRF312-26
Coil Voltage, Nominal (Vdc)	5.0	12.0	18.0	26.5
Coil Resistance (Ohms ±20%)	50	390	880	1560
Pick-up Voltage (Vdc max.)	3.6	9.0	12.3	16.5

GENERAL NOTES

- 1. Relays will exhibit no contact chatter in excess of 10 µsec or transfer in excess of 1 µsec.
- 2.. Relays may be subjected to 260 °C peak solder reflow temperature, 1 minute, 3 passes.
- 3. Butt-lead ends are coplanar within .003" (0.08mm).
- 4. Application notes available for PCB mounting information.

PATTERN GENERATOR SETTINGS

- 10 Gbps Random Pulse Pattern Generator
- 2³¹ 1 PRBS signal
- PRBS output of 300 mV_{p.p} (nominal) RF PCB effect (negligible) not removed from measurement
- Data shown is typical of both poles