

POWER

We developed optimal shapes and characteristics for the DC power lines of cutting-edge digital devices, where downsizing and increased, multified functionality are sought, such as highend mobile phones with diverse features, digital still cameras, portable digital video cameras, diverse mobile audio-visual devices, PDAs, laptop PCs, and so forth.

Unprecedented advantages of low-Rdc and reduced implementation area are offered to MPUs, for which rigorous management of voltage dip is required; to choke coils for the Vccline decoupling of diverse LSI; and to the stepup/stepdown inductors of mobile phones' DC-DC converter circuits.

GLFR series 1608 type

With the technology drastically reducing the Rdc value of GLF series 1608 type by 49-67%, the 1608 type, which is in the industry's smallest class as winding type, has achieved a value of 47 μ H. E3 series offers a total of 6 products ranging from 1 μ H to 47 μ H. The almost identical specification and inductance frequency characteristic as GLF series 2012 type allows designing of high-density patterns through replacement.

Wire-wound Surface Mount 🛭 🔊

GLFR series 2012 type

The Rdc value of GLF series 2012 type, which is proudly on the industry's smallest level, was reduced by 12-30%, offering further freedom in designing the patterns of the Vcc lines of the MPUs of laptop computers and the image processing LSIs for digital still cameras, and digital video cameras where voltage dip is severely managed. Similarly to GLF series 2012 type, E3 series offers a total of 7 products ranging from 1μ H to 100μ H.

All products conform to the RoHS Directive.*

The high-temperature reflow process is supported through our original terminal electrode structure, which supports mold resin and diverse lead-free soldering which are superior in physical property and heat resistance.

* Conformity to RoHS Directive: This means that, in conformity with EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

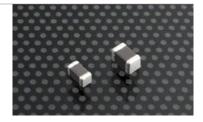
Product Update File

The world's smallest Rdc value as winding type chip inductor was sought. We respond to the advanced needs of DC power line designs.

The most important characteristic required for electronic parts indispensable to DC power lines

Generally, the range of the voltage fluctuation which CPUs, various LSIs, and ICs can tolerate is set around $\pm 5\%$. However, with the involvement of the inductance element parasitizing on the Vcc line when the load capacity (consumption current) changes and the choke coils inserted in the line for decoupling, the output voltage of the DC-DC converter on the circuit is expected to drop by about 1-2% before it's supplied to the Vcc terminal of the IC. To avoid such voltage dip and to ensure the stable operation of CPUs, LSIs, and ICs, appropriate consideration has been made in designing the patters of Vcc lines.

However, as devices become smaller and slimmer and circuits become denser, wiring rules are further narrowed and the fluctuation amount of consumption current tends to increase. With mobile devices such as multi-functional high-end mobile phones and small digital still cameras, digital videocameras, and so on where diverse circuit units are assembled in three dimensional, there have been an increasing number of circumstances where the existing countermeasures against voltage dip are not enough. Further reduction of Rdc is required for the stepup/stepdown inductors for mobile phones' DC-DC converter circuits as well as the decoupling choke coils, which are heavily used for reduction and removal of the high-frequency noise elements superimposed in Vcc lines.

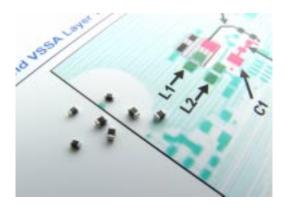

Processor Filer Specifications NCCA. VCCU.***********************************	A B CONTRACT OF THE STATE
VCODEL VCODE VCODE	Rescant Frequency

GLFR/GLF series

Comparative tables of DC resistance value and rated current value (Categorized by shape type)

Idc (Rated current) notations: "10%" when nominal value L decreased by 10%; "20°C" when the temperature rose to 20°C by self heating

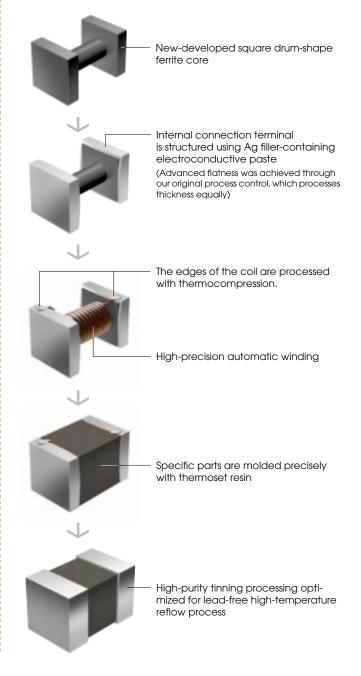
Series	1 <i>μ</i> Η			2.2 <i>µ</i> l	н		4.7 <i>µ</i> ŀ	1		10 μ Η	I		22 <i>µ</i> H	I		47 <i>μ</i> Η			100 µ	Н	
Shape type		ldc(m			ldc(m	nA)		ldc(m			ldc(m			ldc(m			ldc(m			ldc(m	
	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C	Rdc(Ω)	10%	20°C
	x T0.8 mm																				
GLFR1608	0.08	230	900	0.17	160	600	0.24	110	500	0.36	80	400	1	50	200	2.3	35	100			
GLF1608	0.17	125	400	0.33	75	275	0.55	70	220	0.7	50	180	3	35	100						
Rdc reduction amount	-52.9	%		-48.5	%		-56.4	%		-48.6	%		-66.7	%							
🗊 L2.0 x W1.2	25 x T 1.25 n	nm																			
GLFR2012	0.058	300	1150	0.088	240	900	0.2	140	600	0.3	75	300	0.7	75	300	1.38	50	230	3	30	160
GLF2012	0.07	300	1000	0.1	240	850	0.24	140	550	0.36	100	450	1	75	300	1.7	50	180	4	30	120
Rdc reduction amount	-17.1	%		-12%			-16.7	%		-16.7	%		-30%			-18.8	%		-25%		
🐨 L2.0 x W1.2	25 x T0.8 m	m																			
GLF201208	0.15	340	560	0.36	220	380	0.66	160	300	1.1	130	230	2.6	80	130	5.3	60	100			
ST L2.5 x W1	.8 x T 1.8 m	ım																			
GLF2518	0.05	500	1200	0.08	340	950	0.11	240	800	0.2	165	600	0.45	115	400	0.85	85	275	1.9	55	17
GLC2518*	0.08	850	980	0.13	650	750	0.2	475	600	0.36	350	470	0.9	225	300	1.9	170	200	3.5	110	150
*GLC series : Hig	gh Current	Type																			
	.8 x T1.25 r	nm																			
GLF251812	10.1	650	900	0.2	450	(05	0.38	275	450	10.4	200	350	1.2	140	250	2.5	100	175	4.7	80	12


TDK's consistent efforts: Simultaneous pursuit of downsizing and reduced Rdc

Responding to these technological trends, TDK has been making consistent and concurrent effort toward downsizing and reduced Rdc of DC power line decoupling choke coils. Also, since early 2002, we have been developing and supplying GLF, GLC series as the second-generation ultrasmall series following NLC, NLCV, NLFC, and NLFV series, which were highly acclaimed worldwide with the original structural designs and the rich product lineup as the small SMD type inductor for DC power lines.

Since the development of NL453232 (in 1981), the NL family has continued to receive worldwide high recognition with the sales of over 34 billion units in the cumulative total with 3 characteristic groups and 5 shapes covering $0.01-10000 \,\mu$ H. The GLF and GLC series were realized through a new structural design and production processes where the reliable technologies cultivated in the NL family were implemented in a further downsized shape. These 2 series belong to the world's smallest group as the winding mold type.

A new chip structure seeking the limit in minimization and reducing Rdc of winding inductors


To respond quickly to the needs of the latest circuit designs of high-end mobile phones, digital still cameras, digital video cameras, and so forth, which bring a huge impact on the global electronics market with their continuous downsizing and heightened functions, we present you the most advanced series GLFR, which further improved GLF and GLC's fundamental concept: "Downsizing to the world's smallest level and realization of low-Rdc".

As shown in the DC resistance values and rated-current comparative table, the biggest advantage of GLFR series is the low Rdc which is even lower than GLF series. Despite the fact that its structure allows mass production in the same production processes and lines as GLF and GLC series, Rdc was reduced by 12-30% in 2012 type and by as much as 49-67% in 1608 type. The technological "core" which made that possible literally lies within the built-in ferrite core.

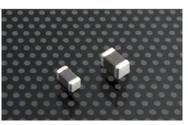
Original structure and production processes

A homogeneous and precise crystal structure was realized by making the starting materials minute and by optimizing the burning process. Not to mention that the magnetic characteristic was improved, a robust physical characteristic was achieved. As a result, the thickness of both edges (brim) could be made even thinner than the existing limit, which drastically increased the volume of the winding with a similar outside dimension to that of the conventional core for GLF series, achieving a similar inductance value with a thicker winding than before.

Product Update File

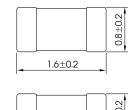
Main product types of winding SMD type small inductors

Idc (rated current) notation: A smaller value between the one based on inductance changing rate (Decreased by 10% to the nominal value L) and the one based on temperature rise (temperature rise by 20 degrees C by self heating) is specified.



0.01

Shapes and dimensions/Equivalent circuit Recommended PC board pattern Basic specifications

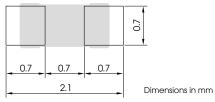


Recommended PC board pattern

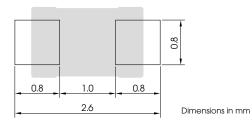
Shapes and dimensions Equivalent circuit

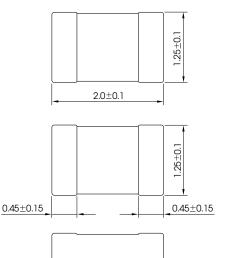
 $\overline{}$

Nondirectional


Weight : 5mg Dimensions in mm

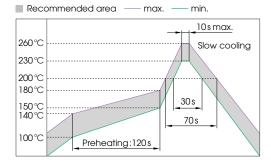
Weight: 15mg


Dimensions in mm


Reflow process

GLFR2012

GLFR2012



Nondirectional

 \sim

Recommended soldering conditions

Lead-free solder/High-temperature reflow process

Temperature range

Operating : - 30 to +105°C Storage* : -40 to +105°C *Single product

Electrical characteristics Frequency characteristics DC superposition characteristics

GLFR1608 @

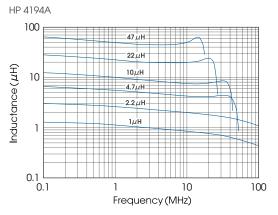
Electrical characteristics

1 ± 20 7.96 0.08 230 360 900 GLFR1608T1R01 2.2 ± 20 7.96 0.17 160 240 600 GLFR1608T221 4.7 ± 20 7.96 0.24 110 170 500 GLFR1608T4R71 10 ± 20 2.52 0.36 80 120 400 GLFR1608T1001 22 ± 20 2.52 1 50 70 200 GLFR1608T220	Inductance (μH) Inductance $(\%)$		Inductance test frequency	DC resistance		ent (mA) max. e changing rate*1	Temperature rise*2	Part No.	
2.2 ± 20 7.96 0.17 160 240 600 GLFR1608T2R21 4.7 ± 20 7.96 0.24 110 170 500 GLFR1608T2R21 10 ± 20 2.52 0.36 80 120 400 GLFR1608T1001 22 ± 20 2.52 1 50 70 200 GLFR1608T2201			(MHz)	(Ω) ±30%	at 10%	at 30%	at 20°C		
4.7 ± 20 7.96 0.24 110 170 500 GLFR1608T4R71 10 ± 20 2.52 0.36 80 120 400 GLFR1608T1001 22 ± 20 2.52 1 50 70 200 GLFR1608T2201	1	±20	7.96	0.08	230	360	900	GLFR1608T1R0M-LR	
10 ± 20 2.52 0.36 80 120 400 GLFR1608T1001 22 ± 20 2.52 1 50 70 200 GLFR1608T2010	2.2	±20	7.96	0.17	160	240	600	GLFR1608T2R2M-LR	
22 ±20 2.52 1 50 70 200 GLFR1608T2201	4.7	±20	7.96	0.24	110	170	500	GLFR1608T4R7M-LR	
	10	± 20	2.52	0.36	80	120	400	GLFR1608T100M-LR	
	22	± 20	2.52	1	50	70	200	GLFR1608T220M-LR	
47 ±20 2.52 2.5 35 50 100 GLFR100814/01	47	± 20	2.52	2.3	35	50	100	GLFR1608T470M-LR	

*1. Based on inductance changing rate

at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 30%: The value when the rate decreased by 30% to the nominal value L *2. Based on temperature rise

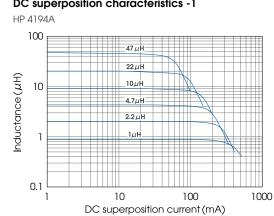
at 20°C: The electric current value when it reached 20°C by self heating


Measuring Instruments

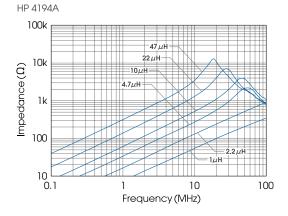
L: Agilent Technologies 4294A Impedance analyzer +16197A Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLFR1608 @

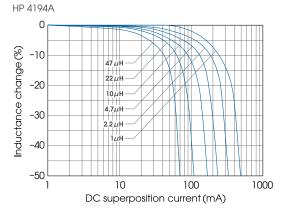

Inductance vs. frequency characteristics

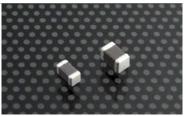
GLFR1608 @


Inductance change vs.

DC superposition characteristics -1

GLFR1608 @




GLFR1608 #

Inductance change vs.

DC superposition characteristics -2

series

GLFR2012 🧊

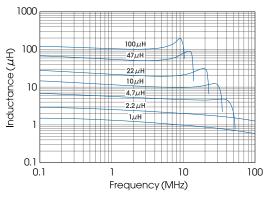
Electrical characteristics

Inductance	Inductance tolerance	Inductance test frequency	DC resistance		rent (mA) max. ce changing rate*1	Temperature rise*2	Part No.	
(µH) (%)		(MHz)	(Ω) ±30%	at 10%	at 30%	at 20°C		
1	±20	7.96	0.058	300	550	1150	GLFR2012T1R0M-LR	
2.2	± 20	7.96	0.088	240	400	900	GLFR2012T2R2M-LR	
4.7	±20	7.96	0.2	140	280	600	GLFR2012T4R7M-LR	
10	±20	2.52	0.3	100	180	500	GLFR2012T100M-LR	
22	±20	2.52	0.7	75	110	300	GLFR2012T220M-LR	
47	±20	2.52	1.38	50	85	230	GLFR2012T470M-LR	
100	±20	0.796	3	30	60	160	GLFR2012T101M-LR	

*1. Based on inductance changing rate at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 30%: The value when the rate decreased by 30% to the nominal value L

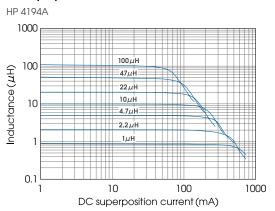
*2. Based on temperature rise at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

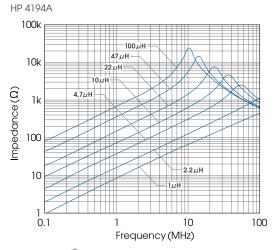

L: Agilent Technologies 4294A Impedance analyzer +16197A Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLFR2012 🧊


Inductance vs. frequency characteristics

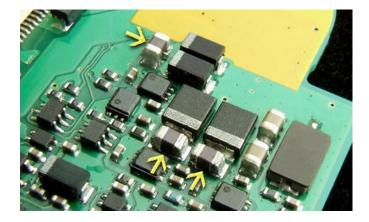
HP 4194A

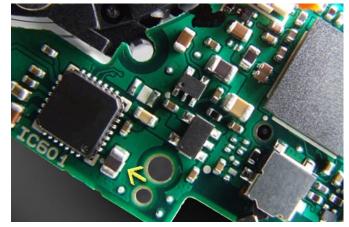

GLFR2012 🗊

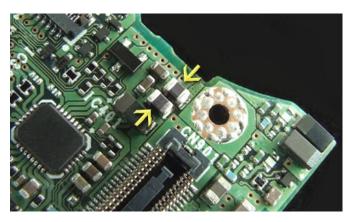
Inductance change vs. DC superposition characteristics -1

GLFR2012 🗊

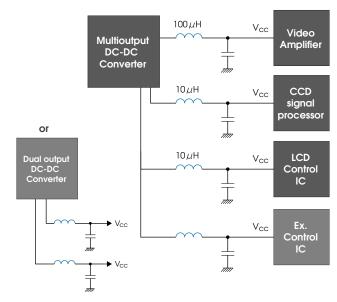
GLFR2012 🗊

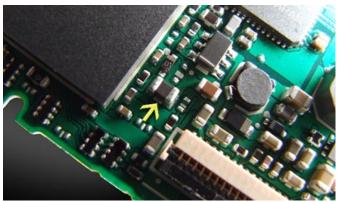

Inductance change vs.

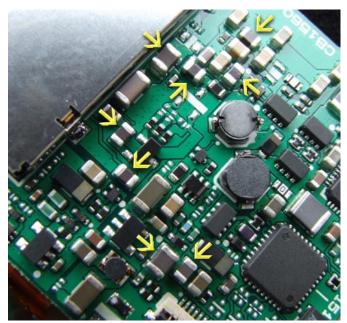

DC superposition characteristics -2


Product Update File

Example of application **Digital still camera**





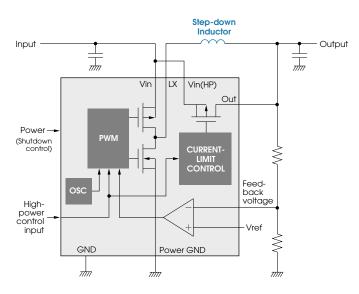


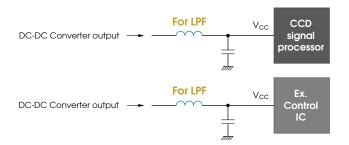
Representative example of use Decoupling of diverse IC Vcc lines (LC filter circuit structure)

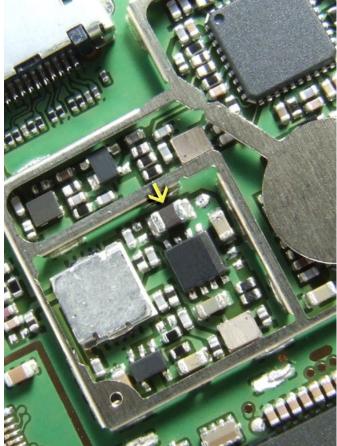


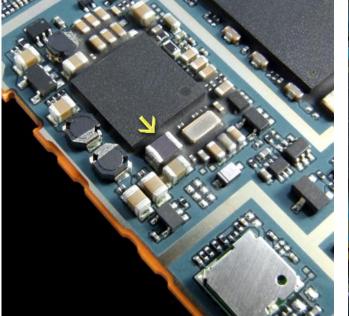
Example of application

Cellular phone




Representative example of use -1


Step-up inductor/step-down inductor for DC-DC converter circuits



Representative example of use -2

Decoupling of diverse IC Vcc lines (LC filter circuit structure)

Related products / GLF series Electrical characteristics

Low Rdc Type

GLF1608 🦈

1.6 0.8 (mm)

1.25

1.25 (mm)

Inductance	Inductance tolerance	Inductance test frequency	DC resistance	Rated current (mA) max. Inductance changing rate*1		Temperature rise*2	Part No.
(µH)	(%)	(MHz)	(Ω)±30%	at 10%	at 20%	at 20°C	
1	±20	7.96	0.17	125	220	400	GLF1608T1R0M
2.2	±20	7.96	0.33	75	160	275	GLF1608T2R2M
4.7	±20	7.96	0.55	70	115	220	GLF1608T4R7M
10	±20	2.52	0.7	50	90	180	GLF1608T100M
22	±20	2.52	3	35	60	100	GLF1608T220M

*1. Based on inductance changing rate

at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLF2012 🧊

Inductance	Inductance tolerance	Derance test frequency DC resistance			rent (mA) max. ce changing rate*1	Temperature rise*2	Part No.
(µH)	(%) (MHz) $(\Omega \Sigma) \pm 30\%$		(Ω)±30%	at 10%	at 20%	at 20°C	
1	±20	7.96	0.07	300	400	1000	GLF2012T1R0M
2.2	±20	7.96	0.1	240	300	850	GLF2012T2R2M
4.7	±20	7.96	0.24	140	200	550	GLF2012T4R7M
10	±10	2.52	0.36	100	140	450	GLF2012T100K
22	±10	2.52	1	75	100	300	GLF2012T220K
47	±10	2.52	1.7	50	75	180	GLF2012T470K
100	±10	0.796	4	30	50	120	GLF2012T101K

*1. Based on inductance changing rate

at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GL	F2518	1
GL	.F2518	

		1.8
2.5	1.8	, (mm)

Inductance	Inductance tolerance	Inductance test frequency	DC resistance		rent (mA) max. e changing rate*1	Temperature rise*2	Part No.	
(μH)	(%)	(MHz)	(Ω)	at 10%	at 20%	at 20°C		
1	±20	7.96	$0.05 \pm 30\%$	500	675	1200	GLF2518T1R0M	
2.2	±20	7.96	$0.08\pm\!30\%$	340	450	950	GLF2518T2R2M	
4.7	±20	7.96	0.11±30%	240	320	800	GLF2518T4R7M	
10	±10	2.52	0.2±20%	165	210	600	GLF2518T100K	
22	±10	2.52	$0.45 \pm 20\%$	115	150	400	GLF2518T220K	
47	±10	2.52	0.85±20%	85	100	275	GLF2518T470K	
100	±10	0.796	1.9±20%	55	75	175	GLF2518T101K	

*1. Based on inductance changing rate

at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

series

Low Profile Type

GLF201208 🗇

Inductance tolerance	Inductance test frequency	DC resistance			Temperature rise*2	Part No.
(%)	(MHz)	(<u>C</u> 2)±20%	at 10%	at 20%	at 20°C	
±20	7.96	0.15	340	460	560	GLF201208T1R0M
±20	7.96	0.36	220	300	380	GLF201208T2R2M
±20	7.96	0.66	160	230	300	GLF201208T4R7M
±20	2.52	1.1	130	170	230	GLF201208T100M
±20	2.52	2.6	80	110	130	GLF201208T220M
±20	2.52	5.3	60	80	100	GLF201208T470M
	tolerance ± 20 ± 20 ± 20 ± 20 ± 20 ± 20 ± 20	tolerance test frequency (MHz) ± 20 7.96 ± 20 7.96 ± 20 7.96 ± 20 2.52 ± 20 2.52	tolerance (%)test frequency (MHz)DC resistance $(\Omega) \pm 20\%$ ± 20 7.960.15 ± 20 7.960.36 ± 20 7.960.66 ± 20 2.521.1 ± 20 2.522.6	$ \begin{array}{c} \mbox{holerance} \\ \mbox{test frequency} \\ \mbox{(\%)} \\ \mbox{(MHz)} \\ \end{array} \begin{array}{c} \mbox{DC resistance} \\ \mbox{(}\Omega) \pm 20\% \\ \mbox{at 10\%} \\ \mbox{at 10\%} \\ \mbox{at 10\%} \\ \mbox{at 10\%} \\ \mbox{at 20} \\ \mbox{at 20} \\ \mbox{7.96} \\ \mbox{0.66} \\ \mbox{160} \\ \m$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

*1. Based on inductance changing rate

at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLF251812 🜍

Inductance Inductance		e Inductance test frequency	DC resistance		rent (mA) max. e changing rate*1	Temperature rise*2	Part No.	
(µH)	(%)	(MHz)	(Ω)±20%	at 10%	at 20%	at 20°C		
1	±20	7.96	0.1	650	800	900	GLF251812T1R0M	
2.2	±20	7.96	0.2	450	600	625	GLF251812T2R2M	
4.7	±20	7.96	0.38	275	450	450	GLF251812T4R7M	
10	±20	2.52	0.6	200	325	350	GLF251812T100M	
22	±20	2.52	1.2	140	250	250	GLF251812T220M	
47	±20	2.52	2.5	100	175	175	GLF251812T470M	
100	±20	0.796	4.7	80	125	125	GLF251812T101M	

*1. Based on inductance changing rate at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

		1.25
2.5	1.8	(mm)

Related products / GLCR, GLC series Electrical characteristics

High Current Type

GLCR2012 🗊

Inductance (µH)	Inductance tolerance (%)	Inductance test frequency (MHz)	DC resistance $(\Omega)\pm30\%$	Rated current (mA) max. Inductance changing rate*1		Temperature rise*2	Part No.
				at 10%	at 30%	at 20°C	
1	±20	7.96	0.09	490	850	900	GLCR2012T1R0M
2.2	±20	7.96	0.2	350	550	600	GLCR2012T2R2M
4.7	±20	7.96	0.29	225	420	500	GLCR2012T4R7M
10	±20	2.52	0.5	155	270	380	GLCR2012T100M
22	±20	2.52	1	105	180	250	GLCR2012T220M
47	±20	2.52	2.4	70	120	170	GLCR2012T470M
100	±20	0.796	4.5	40	85	130	GLCR2012T101M

*1. Based on inductance changing rate at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 30%: The value when the rate decreased by 30% to the nominal value L *2. Based on temperature rise

at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer +16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLC2518 😭

		1.8
2.5	1.8	(mm)

1.25

1.25 (mm)

2.0

Inductance (µH)	Inductance tolerance (%)	Inductance test frequency (MHz)	DC resistance (Ω)	Rated current (mA) max. Inductance changing rate*1		Temperature rise*2	Part No.
				at 10%	at 30%	at 20°C	
1	±20	7.96	$0.08 \pm 30\%$	850	—	980	GLC2518T1R0M
2.2	±20	7.96	0.13±30%	650	—	750	GLC2518T2R2M
4.7	±20	7.96	0.2±30%	475	—	600	GLC2518T4R7M
10	±10	2.52	0.36 ± 20%	350	—	470	GLC2518T100K
22	±10	2.52	$0.9 \pm 20\%$	225	—	300	GLC2518T220K
47	±10	2.52	1.9±20%	170	—	200	GLC2518T470K
100	±10	0.796	3.5±20%	110	_	150	GLC2518T101K

*1. Based on inductance changing rate at 10%: The electric current value when the rate decreased by 10% to the nominal value L; at 20%: The value when the rate decreased by 20% to the nominal value L *2. Based on temperature rise at 20°C : The electric current value when it reached 20°C by self heating

Measuring Instruments

L : Agilent Technologies 4294A Impedance analyzer+16034E Test fixture or a similar product

Rdc: MATSUSHITA VP-2941A Digital milliohm meter or a similar product

GLFR

series

