

very high impedance multi-turn sleeve snap

WITH SERPENTINE CABLE THREADING CAPABILITY.

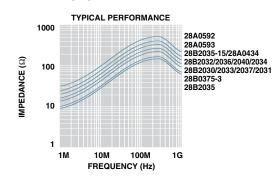
By increasing the number of times the circuit passes through the ferrite core, the effective magnetic path is lengthened yielding a significant increase in impedance. See page 4, figures 3 and 4. The gain is equal to N², the square of the number of turns, and depending on the circuit cable load and frequencies involved, much of the increase can be realized.

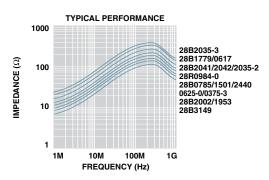
Cables may be "looped back through" as shown at left; or, "looped over the top" as shown at left (insert).

In an alternate configuration, separate cable circuits can be accommodated without saturation. Three styles permit different approaches:

The **1-hole** allows two passes of a cable with a diameter up to .365" (*9,3mm*) or three passes of a cable with a diameter up to .243" (*6,2mm*). The **2-hole** allows two passes of a cable with a diameter up to .335" (*8,5mm*). The **3-hole** allows three passes of cable with a diameter up to .203" (*5,8mm*).

Each is available with an optional adhesive foam pad mounting base.


Available in standard colors gray (i.e., SS28B2035) and black (i.e., SS28B2035K) Patent No. 5,003,278


SS28B2035 1-hole .030* (0,7E) Optional adhesive pad	$\bigcup_{E} \bigcap_{D}$
\$\$28B2035-2 2-holes .030° (0,76) Doptional adhesive pad	$\begin{array}{c} \overline{} \\ \overline{} \\$
SS28B2035-3 3-holes (0,76) Optional adhesive pad	$\bar{\mathbb{D}}$

PART No.	w/Adhesive	Description	Α	В	С	D	Е	IMPED	ANCE IN OHMS ref.
SS28B2035	AS28B2035	1-hole	1.155 29,3	1.250 31,8	1.125 <i>28,6</i>	.780 19,8	1.230 31,2	1N=129*	$2N=2^2=4N\Omega$ ref.
SS28B2035-2	AS28B2035-2	2-hole	1.155 <i>29,3</i>	1.250 <i>31,8</i>	1.125 <i>28,6</i>	.335 <i>8,5</i>	1.230 <i>31,2</i>	1N=270*	$3N=3^2=9N\Omega$ ref.
SS28B2035-3	AS28B2035-3	3-hole	1.155 <i>29,3</i>	1.250 <i>31,8</i>	1.125 <i>28,6</i>	.203 <i>5,2</i>	1.230 <i>31,2</i>	1N=340*	depending on circuit load and frequency

* @ 100 MHz

performance by part number:

