32MHz, 64-Channel Serial to Parallel Converter with Push-Pull Outputs

Features

- HVCMOS ${ }^{\circledR}$ technology
- 5.0V CMS Logic
- Output voltage up to +80 V
- Low power level shifting
- 32 MHz equivalent data rate
- Latched data outputs
- Foreward and reverse shifting options (DIR pin)
- Diode to VPP allows efficient power recovery
- Outputs may be hot switched
- Hi-Rel processing available

General Description

The HV57708 is a low voltage serial to high voltage parallel converter with push-pull outputs. The device has been designed for use as a driver for EL displays. It can also be used in any application requiring multiple output high voltage current sourcing and sinking capability such
as driving plasma panels, vacuum fluorescent displays, or large matrix LCD displays.

The device has 4 parallel 16 -bit registers, permitting data rates $4 x$ the speed of one (they are clocked together). There are also 64 latches and control logic to perform the polarity select and blanking of the outputs. $\mathrm{HV}_{\text {out }} 1$ is connected to the first stage of the first shift register through the polarity and blanking logic. Data is shifted through the shift registers on the logic low to high transition of the clock. The DIR pin causes CCW shifting when connected to GND, and CW shifting when connected to VDD. A data output buffer is provided for cascading devices. This output reflects the current status of the last bit of the shift register ($\mathrm{HV}_{\text {оит }} 64$). Operation of the shift register is not affected by the $\overline{L E}$ (latch enable), $\overline{\mathrm{BL}}$ (blanking), or the $\overline{\mathrm{POL}}$ (polarity) inputs. Transfer of data from the shift registers to the latches occurs when the LE input is high. The data in the latches is stored when the $\overline{L E}$ is low.

Functional Block Diagram

Note:
Each SR (shift register) provides 16 outputs. SR1 supplies every fourth output starting with 1; SR2 supplies every fourth output with 2, etc.

Ordering Information

Device	Package Options
	80-Lead PQFP
	3.40mm height body o.80mm pitch

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	-0.5 V to +7.5 V
Output voltage, V_{PP}	-0.5 V to +90 V
Logic input levels	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Ground current ${ }^{1}$	1.5 A
Continuous total power dissipation ${ }^{2}$	1200 mW
Operating temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage temperature range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature 3	$260^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Notes:

1. Limited by the total power dissipated in the package.
2. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to maximum operating temperature at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
3. $1.6 \mathrm{~mm}(1 / 16 \mathrm{inch})$ from case for 10 seconds.

Pin Configuration

Product Marking

$\mathrm{YY}=\mathrm{Year}$ Sealed WW = Week Sealed
L = Lot Number
C = Country of Origin*
A = Assembler ID*

\qquad = "Green" Packaging
*May be part of top marking

80-Lead PQFP (PG)

Recommended Operating Conditions

Sym	Parameter	Min	Max	Units
V_{DD}	Logic supply voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{PP}}$	Output voltage	8.0	80	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$	-	V
V_{IL}	Low-level input voltage	0	0.5	V
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency per register	-	8.0	MHz
T_{A}	Operating free-air temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Notes:

Power-up sequence should be the following:

1. Apply ground.
2. Apply $V_{D D}$
3. Set all inputs ($\mathrm{D}_{\mathrm{iN}}, C L K$, Enable, etc.) to a known state.
4. Apply V_{PP}.
5. The V_{PP} should not drop below V_{DD} or float during operation.

Power-down sequence should be the reverse of the above.

DC Electrical Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter		Min	Max	Units	Conditions
$I_{\text {D }}$	V_{DD} supply current		-	15	mA	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}} \mathrm{max}, \mathrm{f}_{\text {CLK }}=8.0 \mathrm{MHz}$
$\mathrm{I}_{\text {PP }}$	High voltage supply current		-	100	$\mu \mathrm{A}$	Outputs high
			-	100	$\mu \mathrm{A}$	Outputs low
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} sup	current	-	100	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$
$\mathrm{V}_{\text {OH }}$	High level output	HV ${ }_{\text {OUT }}$	65	-	V	$\mathrm{I}_{0}=-15 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+80 \mathrm{~V}$
		Data out	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	V	$\mathrm{I}_{0}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {oL }}$	Low level output	$\mathrm{HV}_{\text {OUT }}$	-	7.0	V	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}, \mathrm{~V}_{\mathrm{PP}}=+80 \mathrm{~V}$
		Data out	-	0.5	V	$\mathrm{I}_{\mathrm{o}}=100 \mu \mathrm{~A}$
I_{H}	High-level logic input current		-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{DD}}$
$1 /$	Low-level logic input current		-	-1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
$\mathrm{V}_{\text {oc }}$	High voltage clamp diode		-	1.0	V	$\mathrm{l}_{\text {OC }}=1.0 \mathrm{~mA}$

AC Electrical Characteristics ${ }_{\left(T_{A}\right.}=85^{\circ} \mathrm{C}$ max. Logic signal inputs and Data inputs have $t_{r} t_{t} \leq 5 n s[10 \%$ and 90% pointss)

Sym	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock frequency	-	8.0	MHz	Per register
$\mathrm{t}_{\mathrm{WL}}, \mathrm{t}_{\text {WH }}$	Clock width high or low	62	-	ns	---
$\mathrm{t}_{\text {SU }}$	Data set-up time before clock rises	10	-	ns	---
t_{H}	Data hold time after clock rises	15	-	ns	---
$\mathrm{t}_{\text {ON }} \mathrm{t}_{\text {OFF }}$	Time from latch enable to $\mathrm{HV} \mathrm{O}_{\text {out }}$	-	500	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DHL }}$	Delay time clock to data high to low	-	70	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time clock to data low to high	-	70	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {DLE }}{ }^{*}$	Delay time clock to $\overline{\text { LE low to high }}$	25	-	ns	---
$\mathrm{t}_{\text {WLE }}$	$\overline{\mathrm{LE}}$ pulse width	25	-	ns	---
$\mathrm{t}_{\text {SLE }}$	$\overline{\mathrm{LE}}$ set-up time before clock rises	0	-	ns	---

[^0]
Input and Output Equivalent Circuits

Logic Inputs

Logic Data Output

High Voltage Outputs

Switching Waveforms

Function Table

Function	Inputs						Outputs		
	Data	CLK	$\overline{\text { LE }}$	$\overline{\text { BL }}$	$\overline{\text { POL }}$	DIR	Shift Reg	HV Outputs	Data Out
All O/P high	X	X	X	L	L	X	-	H	-
All O/P low	X	X	X	L	H	X	-	L	-
O/P normal	X	X	X	H	H	X	-	No inversion	-
O/P inverted	X	X	X	H	L	X	-	Inversion	-
Data falls through (latches transparent)	L	_ ${ }^{-}$	H	H	H	X	L	L	-
	H	_ ${ }^{-}$	H	H	H	X	H	H	-
	L	_ ${ }^{-}$	H	H	L	X	L	H	-
	H	$_^{\uparrow}{ }^{-}$	H	H	L	X	H	L	-
Data stored/ latches loaded	X	X	L	H	H	X	*	Stored Data	-
	X	X	L	H	L	X	*	Inversion of stored data	-
I/O relation	$\mathrm{D}_{10} 1-4 \mathrm{~A}$	_閏	H	H	H	H	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}+1}$	New H or L	$\mathrm{D}_{10} 1-4 \mathrm{~B}$
	$\mathrm{D}_{10} 1-4 \mathrm{~A}$	$\ldots \uparrow^{-}$	L	H	H	H	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}+1}$	Previous H or L	$\mathrm{D}_{110} 1-4 \mathrm{~B}$
	$\mathrm{D}_{10} 1-4 \mathrm{~B}$	_ ${ }^{-}$	L	H	H	L	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}-1}$	Previous H or L	$\mathrm{D}_{110} 1-4 \mathrm{~A}$
	$\mathrm{D}_{10} 1-4 \mathrm{~B}$	_ ${ }^{-}$	H	H	H	L	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}-1}$	New H or L	$\mathrm{D}_{1 / 0} 1-4 \mathrm{~A}$

Note:

* $=$ dependent on previous stage's state. See Pin configuration for DIN and DOUT pin designation for CW and CCW shift.

Shift Register Operation

Pin Function

Pin $\#$	Function
1	$\mathrm{HV}_{\text {OUT }} 24 / 41$
2	$\mathrm{HV}_{\text {OUT }} 23 / 42$
3	$\mathrm{HV}_{\text {oUT }} 22 / 43$
4	$\mathrm{HV}_{\text {OUT }} 21 / 44$
5	$\mathrm{HV}_{\text {oUT }} 20 / 45$
6	$\mathrm{HV}_{\text {OUT }} 19 / 46$
7	$\mathrm{HV}_{\text {OUT }} 18 / 47$
8	$\mathrm{HV}_{\text {OUT }} 17 / 48$
9	$\mathrm{HV}_{\text {OUT }} 16 / 49$
10	$\mathrm{HV}_{\text {OUT }} 15 / 50$
11	$\mathrm{HV}_{\text {OUT }} 14 / 51$
12	$\mathrm{HV}_{\text {OUT }} 13 / 52$
13	$\mathrm{HV}_{\text {OUT }} 12 / 53$
14	$\mathrm{HV}_{\text {OUT }} 11 / 54$
15	$\mathrm{HV}_{\text {OUT }} 10 / 55$
16	$\mathrm{HV}_{\text {OUT }} 9 / 56$
17	$\mathrm{HV}_{\text {OUT }} 8 / 57$
18	$\mathrm{HV}_{\text {OUT }} 7 / 58$
19	$\mathrm{HV}_{\text {OUT }} 6 / 59$
20	$\mathrm{HV}_{\text {OUT }} 5 / 60$

$\begin{gathered} \text { Pin } \\ \# \end{gathered}$	Function
21	$\mathrm{HV}_{\text {OUT }} 4 / 61$
22	$\mathrm{HV}_{\text {OUT }} 3 / 62$
23	$\mathrm{HV}_{\text {Out }} 2 / 63$
24	$\mathrm{HV}_{\text {OUT }} 1 / 64$
25	$\mathrm{D}_{\text {IN }} 1 / \mathrm{D}_{\text {OUT }} 4(\mathrm{~A})$
26	$\mathrm{D}_{\text {IN }} 2 / \mathrm{D}_{\text {OUT }} 3(\mathrm{~A})$
27	$\mathrm{D}_{\text {IN }} 3 / \mathrm{D}_{\text {OUT }} 2(\mathrm{~A})$
28	$\mathrm{D}_{\text {IN }} 4 / \mathrm{D}_{\text {OUT }} 1(\mathrm{~A})$
29	$\overline{\text { LE }}$
30	CLK
31	$\overline{\mathrm{BL}}$
32	VDD
33	DIR
34	GND
35	$\overline{\mathrm{POL}}$
36	$\mathrm{D}_{\text {OUT }} 4 / \mathrm{D}_{\text {IN }} 1(\mathrm{~B})$
37	$\mathrm{D}_{\text {OUT }} 3 / \mathrm{D}_{\text {IN }} 2(\mathrm{~B})$
38	$\mathrm{D}_{\text {OUT }} 2 / \mathrm{D}_{\text {IN }} 3$ (B)
39	$\mathrm{D}_{\text {OUT }} 1 / \mathrm{D}_{\text {IN }} 4(\mathrm{~B})$
40	VPP

Pin $\#$	Function
41	$\mathrm{HV}_{\text {OUT }} 64 / 1$
42	$\mathrm{HV}_{\text {OUT }} 63 / 2$
43	$\mathrm{HV}_{\text {OUT }} 62 / 3$
44	$\mathrm{HV}_{\text {OUT }} 61 / 4$
45	$\mathrm{HV}_{\text {OUT }} 60 / 5$
46	$\mathrm{HV}_{\text {OUT }} 59 / 6$
47	$\mathrm{HV}_{\text {OUT }} 58 / 7$
48	$\mathrm{HV}_{\text {OUT }} 57 / 8$
49	$\mathrm{HV}_{\text {OUT }} 56 / 9$
50	$\mathrm{HV}_{\text {OUT }} 55 / 10$
51	$\mathrm{HV}_{\text {OUT }} 54 / 11$
52	$\mathrm{HV}_{\text {OUT }} 53 / 12$
53	$\mathrm{HV}_{\text {OUT }} 52 / 13$
54	$\mathrm{HV}_{\text {OUT }} 51 / 14$
55	$\mathrm{HV}_{\text {OUT }} 50 / 15$
56	$\mathrm{HV}_{\text {OUT }} 49 / 16$
57	$\mathrm{HV}_{\text {OUT }} 48 / 17$
58	$\mathrm{HV}_{\text {OUT }} 47 / 18$
59	$\mathrm{HV}_{\text {OUT }} 46 / 19$
60	$\mathrm{HV}_{\text {OUT }} 45 / 20$

$\begin{gathered} \text { Pin } \\ \# \end{gathered}$	Function
61	$\mathrm{HV}_{\text {OUT }} 44 / 21$
62	$\mathrm{HV}_{\text {out }} 43 / 22$
63	$\mathrm{HV}_{\text {OUT }} 42 / 23$
64	$\mathrm{HV}_{\text {out }} 41 / 24$
65	$\mathrm{HV}_{\text {OUT }} 40 / 25$
66	$\mathrm{HV}_{\text {OUT }} 39 / 26$
67	$\mathrm{HV}_{\text {OUT }} 38 / 27$
68	$\mathrm{HV}_{\text {OUT }} 37 / 28$
69	$\mathrm{HV}_{\text {OUT }} 36 / 29$
70	$\mathrm{HV}_{\text {OUT }} 35 / 30$
71	$\mathrm{HV}_{\text {out }} 34 / 31$
72	$\mathrm{HV}_{\text {OUT }} 33 / 32$
73	$\mathrm{HV}_{\text {OUT }} 32 / 33$
74	$\mathrm{HV}_{\text {out }} 31 / 34$
75	$\mathrm{HV}_{\text {out }} 30 / 35$
76	$\mathrm{HV}_{\text {out }} 29 / 36$
77	$\mathrm{HV}_{\text {OUT }} 28 / 37$
78	$\mathrm{HV}_{\text {OUT }} 27 / 38$
79	$\mathrm{HV}_{\text {out }} 26 / 39$
80	$\mathrm{HV}_{\text {out }} 25 / 40$

Note:

Pin designation for $D I R=H / L$.
Example: For $D I R=H$, pin 41 is $H V_{\text {out }} 64$.
For $D I R=L$, pin 41 is $H V_{\text {out }} 1$.
For CW/CCW Shift see function table $Q_{N} \rightarrow Q_{N+1}$.

80-Lead PQFP Package Outline (PG)

$20.00 \times 14.00 \mathrm{~mm}$ body, 3.40 mm height (max), 0.80 mm pitch, 3.90 mm footprint

Top View

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	$\boldsymbol{\theta}$	01
Dimension (mm)	MIN	2.80*	0.25	2.55	0.30	23.65*	19.80*	17.65*	13.80*	$\begin{aligned} & 0.80 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	2.80	-	23.90	20.00	17.90	14.00		0.88			$3.5{ }^{\circ}$	-
	MAX	3.40	0.50*	3.05	0.45	24.15*	20.20*	18.15*	14.20*		1.03			70	16°

JEDEC Registration MO-112, Variation CB-1, Issue B, Sept. 1995.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

Drawings not to scale.
Supertex Doc. \#: DSPD-80PQFPPG, Version B101708.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an
adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the
replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications
are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

[^0]: ${ }^{*} t_{D L E}$ is not required but is recommended to produce stable HV outputs and thus minimize power dissipation and current spikes (allows internal SR output to stabilize).

