

FEATURES

Ultra-Small Package - 3x3x0.9mm LGA User-selectable G Range User-selectable Output Data Rate *Directional Tap/Double-Tap*[™] Detection Algorithm Active/Inactive Detection Algorithm Device-orientation Detection Algorithm Digital I²C 8-bit or 12-bit Resolution Digital High-Pass Filter Outputs Low Power Consumption Lead-free Solderability Excellent Temperature Performance High Shock Survivability Factory Programmable Offset and Sensitivity Self-test Function

KXTF9 Series Accelerometers and Inclinometers

MARKETS

APPLICATIONS

Mobile Phones and Mobile Internet Devices

User Interface Gesture Recognition Power Management Active/Inactive Monitoring

Game Controllers and Computer Peripherals

Inclination and Tilt Sensing User Interface Power Management Activity Monitoring Gesture Recognition

Health Care and Fitness

Static and Dynamic Acceleration Activity Monitoring Gesture Recognition

Personal Navigation Devices

E-Compass Dead Reckoning

PROPRIETARY TECHNOLOGY

These high-performance silicon micromachined linear accelerometers and inclinometers consist of a sensor element and an ASIC packaged in a 3x3x0.9mm Land Grid Array (LGA). The sensor element is fabricated from single-crystal silicon with proprietary Deep Reactive Ion Etching (DRIE) processes, and is protected from the environment by a hermetically-sealed silicon cap at the wafer level.

The KXTF9's *Directional Tap/Double-Tap*[™] detection feature recognizes singletap and double-tap input and reports the acceleration axis and direction from which each tap originated, enabling up to 12, user-defined, function commands. Its active/inactive algorithm reports changes in a device's motion state, either moving (active) or not moving (inactive), and the orientationdetection feature reports changes in landscape, portrait, face-up, and facedown conditions. A highly-manufacturable product with consistent product performance across use conditions, the KXTF9 operates across a supply voltage of 1.8V to 3.6V DC.

The sensor element functions on the principle of differential capacitance. Acceleration causes displacement of a silicon structure resulting in a change in capacitance. The sense element design utilizes common mode cancellation to decrease errors from process variation and environmental stress. An ASIC, using a standard CMOS manufacturing process, detects and transforms capacitance changes into an analog voltage, which is proportional to acceleration. Analog signals are further processed into digital signals and within embedded digital algorithms. The device communicates to the system via I²C bus interface.

36 Thornwood Dr. - Ithaca, NY 14850 USA tel: 607-257-1080 - fax: 607-257-1146 - www.kionix.com - info@kionix.com

"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. Information provided in this document is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. No license is granted by implication or otherwise under any patent or other rights of Kionix. Kionix reserves the right to change product specifications or discontinue this product at any time without prior notice.

KXTF9 Series

Accelerometers and Inclinometers

PERFORMANCE SPECIFICATIONS

The performance parameters below are programmed and tested at 1.8 volts (KXTF9-4100) and 3.3V (KXTF9-2050). However, the devices can be factory programmed to accept supply voltages from 1.8V to 3.6V. Performance parameters will change with supply voltage variations.

	PERFO	RMANCE SPECIFIC	ATIONS		
PARAMETERS	UNITS	KXTF9-4100	KXTF9-2050	CONDITION	
Range	g	±2.0, ±4.0, ±8.0	±2.0, ±4.0, ±8.0	User-selectable full-scale output range	
Sensitivity ¹	counts/g	64, 32, 16	64, 32, 16	(8-bit) Typical	
		1024, 512, 256	1024, 512, 256	(12-bit)Typical	
Sensitivity vs. Temp	%/°C	±0.01 (xy) ±0.03 (z)	±0.01 (xy) ±0.03 (z)	Typical	
0g Offset vs. Temp.	mg/°C	±0.7 (xy) ±0.4 (z)	±0.7 (xy) ±0.4 (z)	Typical	
Mechanical Resonance ²	Hz	3500 (xy) 1800 (z)	3500 (xy) 1800 (z)	-3dB (Typical)	
Output Data Rate (ODR) ³	Hz	25 min; 800 max	25 min; 800 max		
Bandwidth ⁴	Hz	ODR/2 typical	ODR/2 typical		
Non-Linearity	% of FS	1.0 typical	1.0 typical	% of full scale output	
Cross-axis Sensitivity	%	2.0 typical	2.0 typical		
I ² C Communication Rate	KHz	400 max	400 max		
Power Supply	V	1.8 typical	3.3 typical	Factory programmable, 1.8V - 3.6V	
	μA	230 typical	360 typical	RES = 0; Operating	
Current Consumption	μA	570 typical	840 typical	RES = 1; Operating	
	μΑ	0.1 typical	0.1 typical	Standby	
	ENVIRO	NMENTAL SPECIF	CATIONS		
PARAMETERS	UNITS	KXTF9-4100	KXTF9-2050	CONDITION	
Operating Temperature	°C	-40 to 85	-40 to 85	Powered	
Storage Temperature	°C	-55 to 150	-55 to 150	Un-powered	
Mechanical Shock	g	5000, 0.5 msec 10,000, 0.2 msec	5000, 0.5 msec 10,000, 0.2 msec	Powered or un-powered, halversine	
ESD	V	2000 Max	2000 Max	Human body model	

¹ Resolution and acceleration ranges are user selectable via I²C.

 2 Resonance as defined by the dampened mechanical sensor.

³ User selectable.

⁴ Dependent on ODR and 8-bit or 12-bit resolution.

ORDERING GUIDE

Product	Output	Axes of Sensi- tivity	Range (g)	Sensitivity (counts/g)	Offset (counts)	Operating Voltage (V)	Temperature (°C)	Package
KXTF9-1026	Digital I ² C	XYZ	2, 4, 8	64, 32, 16 (8-bit) 1024, 512, 256 (12-bit)	0	2.6	-40 to +85	3x3x0.9mm LGA
KXTF9-2050	Digital I ² C	XYZ	2, 4, 8	64, 32, 16 (8-bit) 1024, 512, 256 (12-bit)	0	3.3	-40 to +85	3x3x0.9mm LGA
KXTF9-4100	Digital I ² C	XYZ	2, 4, 8	64, 32, 16 (8-bit) 1024, 512, 256 (12-bit)	0	1.8	-40 to +85	3x3x0.9mm LGA